无线电领航5.1无线电领航概述
《空中领航学》5.2 无线电方位

5.2.1 无线电方位的概念
飞机方位角(QDR、QTE)
飞机方位角表示飞机在电台所在位置的哪个方位 上。
背台飞行时,QDR是飞机从电台正上方通过后背 离电台飞行的磁方位。
NM QDR=0°~90° QDR=270°~0° 飞机在电台位置东北方
NM
飞机在电台位置西北方
QDR=180°~270° QDR=90°~180° 飞机在电台位置西南方 飞机在电台位置东南方
MH
RB=180°~270°
RB=90°~180°
电台在飞机纵轴左后方 电台在飞机纵轴右后方
5.2.1 无线电方位的概念
电台方位角(QDM、QUJ)
电台方位角的概念:从飞机所在位置的经线北端 顺时针量到无线电方位线的角度。
电台真方位(QUJ——True Bearing) :以真北 为基准的电台方位角。
QDR=MTK 背台飞行
5.2.1 无线电方位的概念
方位角之间的关系
电台磁方位与电台相机方位角与电台方位角之间的关系: QDR=QDM±180°
NT NM QTE=QUJ±180° NT NM MH
RB QDM QUJ
5.2.1 无线电方位的概念
航向仪和相对方位指示器读数如下,求出当时的 QDM和QDR?
5.2.2 无线电方位的变化规律
保持航向飞行,无线电方位的变化
保持MH不变,当飞机在左、电台在右,随着 飞机前向飞行,飞机位置发生改变,三个方位角都 逐渐增大;当飞机在右、电台在左,随着飞机前向
飞行,飞机位置改变,三个方位角都逐渐减小。
Nm
Nm
飞机在左 MH2=MH1
MH2
QDM2 Nm
RB2>RB1
ADF系统不仅可以测角定向,还可以实现定位, 利用机上安装的两套ADF分别调谐在两个不同的地面 导航台NDB的频率上,以实现θ-θ定位,当然也利用 NDB/DME实现ρ-θ定位。
船用无线电导航系统教学教材

法规与标准
阐述船用无线电导航系统 相关的法规与标准,强调 遵守相关规定的重要性。
案例分析与实践
结合实际案例,分析船用 无线电导航系统在航海中 的应用,提高实践应用能 力。
教学方法与手段
理论教学
采用讲授、演示、图解等 多种方式,帮助学生理解 船用无线电导航系统的理 论知识。
实验教学
模拟训练
通过实验操作,让学生亲 身体验船用无线电导航系 统的操作过程,加深理解。
企业合作
与企业合作,安排学 生参与实际项目,提 高实践应用能力。
技能考核
制定技能考核标准, 对学生的实践操作能 力进行考核,确保达 到教学要求。
THANKS
感谢观看
提高船舶航行的安全性和效率。
物联网技术将船用无线电导航系统与船舶其他设 03 备连接起来,实现信息共享和协同工作,提高船
舶运营效率。
未来船用无线电导航系统的展望
01 未来船用无线电导航系统将更加注重环保和节能, 采用新能源和绿色技术,降低船舶排放。
02 未来船用无线电导航系统将更加注重用户体验, 提供更为丰富和个性化的服务,如虚拟现实(VR) 导航、语音识别等。
定。
信号强度
信号强度决定了无线 电导航系统的覆盖范
围和定位精度。
系统容量
船用无线电导航系统 的系统容量决定了同 时服务的用户数量。
可靠性
船用无线电导航系统 的可靠性决定了其在 实际应用中的稳定性
和可靠性。
03
船用无线电导航系统应用
海上航行导航
航迹推算
利用船舶的航向、速度和 时间,通过航迹推算确定 船舶的预计位置和航向。
特点
船用无线电导航系统具有高精度、高可靠性和实时性的 特点,能够满足船舶在复杂水域和恶劣天气条件下的导 航需求。
领航与导航知识点总结

领航与导航知识点总结第一章绪论一、空中导航的三个基本问题;1.定位:导航的首要和基本问题,是确定应飞航向和飞行时间的基础;可以采用的定位方法:目视,无线电,区域导航等;定位后判断偏航,进而修正航向等参量。
2.确定应飞航向:目的是修正风的影响,使飞机沿着预定的航迹飞行;要根据飞行高度上风速、风向和预定航迹的关系确定实际应飞航向。
3.确定飞行时间:目的是准确把握飞行进程,及时修正飞行速度,确保飞机能够准时到达目的地;根据飞行计划的要求,利用航路检查点检查飞机的飞行进程,采取相应的措施消磨和吸收飞行时间。
二、导航的类型:1.无线电领航(Radio Navigation)(1)根据无线电的传播特性,利用无线电领航设备进行定向、测距、定位,引导飞机飞行。
精度高;(2)定位时间短,可以连续、实时的定位;能够在昼夜、复杂气象条件或缺少地标的条件现使用,大大扩大了飞行时空。
局限性:地面限制、电磁干扰(3)测向系统:ADF、VOR、ILS、MLS(方位角、仰角、距离);测距系统:DME;测向测距系统:VOR/DME,TACAN ;测高系统:RA ;测距差系统:OMEGA、LORAN2.惯性导航INS(Inertial Navigation)(1)利用惯性元件测量飞机相对于惯性空间的加速度,在给定的初始条件下,利用导航计算机的积分运算,确定飞机的姿态、位置、速度,引导飞机飞行。
(2)完全自主导航;不受气象条件和地面导航设施限制,隐蔽性好;系统校准后短时定位精度高。
(3)定位误差随时间而不断积累,存在积累误差;成本高。
3.卫星导航通过测量飞机与导航卫星的相关位置来解算领航参数4.)区域导航(1)惯性导航、卫星导航以及飞行管理计算机系统的不断发展,使得导航手段发生了根本的变化。
(2)飞机无需局限于地面导航设施形成的航线逐台飞行,而是根据飞行管理计算机系统管理来自惯性导航系统、卫星导航系统、或地面导航设施的导航信息,编排更加灵活的短捷的希望航线,计算飞机的航线偏离信息,并通过与自动驾驶耦合,实现自动驾驶,引导飞机沿着最佳的飞行路径飞行,从实践和设备上摆脱了地面导航设施的束缚,这种实施导航的方法称之为区域导航(RNAV:AreaNavigation)第二章地球知识一、地球1.地球是一个两极稍扁、赤道略鼓的旋转椭球体,椭球的基本元素包括:极半径a,赤道半径b,扁率e=(b-a)/a 。
《空中领航学》5.3 进入预定方位线

(2)飞机在右,QDM>QDM预,判断出: 未到预定 方位线。
判断是否进入预定方位线(填:未到、到、已过)。
QDM预 MH
QDM实
判断
354° 99° 350° 已过
262° 218° 266° 已过
325° 212° 318° 未到
266° 20° 270° 未到
240° 342° 243° 未到
6、填:将以上数据填入领航计划表中。
5.3.2 进入预定方位线的地面准备
航线为绵阳导航台——遂宁导航台,检查点为三台,准备 用五凤溪导航台来控制飞机到检查点的时机,气象台预报 空中风为280°/9m/s ,飞机保持TAS185km/h、指定高度 2100m飞行, 完成进入预定方位线的地面准备。
解:进行地图作业,在填领航计划表之 前(含领航计划表地标罗盘领航部分) 步骤与之前地标罗盘领航一致。
(1) QDM预80°
(2)QDM=MH+RB=70°<QDM预,判断:未到。 (2)
(3)QDM=MH+RB=60°<QDM预,判断:未到。 (3)
350°
5.3.3 进入预定方位线的空中实施
RMI进入预定方位线的方法
已知RMI指示如下图,判断是否进入预定方位线?
QDM预345° 12:11
85°
(6)填写领航计划表。
绵阳导航台 146°153°205 50 三台 146°153°205 82
遂宁导航台
15 1297 2100 五凤溪 229°83° 76°正切三台 24 1297 2100 +10
WA-46°DA-7°
5.3.3 进入预定方位线的空中实施
进入预定方位线的空中实施步骤
《无线电导航原理》辅导提纲

无线电导航原理课程辅导提纲军区空军自考办第一章无线电导航概论一、内容提要本章分五节,主要讲述了航空导航导的基本任务、航空导航的基本参量、导航技术的发展历程与技术特点,无线电波段的划分及此波段常用的导航设备、导航信号的特点、导航参数与位置线、位置线交点定位的方法,航空器对无线电导航的基本要求、无线电导航设备的种类和系统分类,对无线电导航系统的基本要求等内容。
二、重点内容、要求(一)航空导航基本概念1、能够阐明航空导航各基本参量的定义及意义;2、能够阐明各种导航方法的原理及特点;3、能够把握航空导航的核心任务和主要任务。
(二)无线电导航基本理论1、能够阐明各波段无线电导航信号的传播方式及特点;2、能够阐明位置线的定义以及位置线的分类;3、能够理解无线电导航的物理基础;4、能够掌握如何利用位置线交点法定位实现导航定位。
(三)无线电导航系统的分类及基本要求l、能够说出无线电导航系统的分类方法;2、能够说出对无线电导航系统各种性能指标的要求;3、理解工作容量的含义。
三、典型例题(一)填空题1、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
2、惯性导航的物理依据是牛顿第二定律。
3、飞机与两导航台距离之差相等各点的连线是一条双曲线位置线。
4、飞机重心在空间运动时的轨迹称为航迹。
5、飞机重心在空间运动时的轨迹在地面上的投影称为航线。
6、飞机重心点的子午线北向顺时针到飞机纵轴之间的夹角在水平面的投影称为航向。
7、利用无线电技术测定飞机位置、方向和距离等参数,引导飞机航行的方法称为无线电导航。
8、飞机所在点的磁子午线北端顺时针到电台方向的夹角在水平面的投影称为电台磁方位角。
9、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
10、电台所在点的磁子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机磁方位角。
11、飞机与地面投影点的垂直距离称为飞机的真实高度。
无线电领航5.1无线电领航概述

利用机载无线电导航设备接收和处理无 线电波从而获得导航参量,确定出飞机位置及 飞往预定点的航向、时间,从而引导飞机沿选 定航线安全、经济地完成规定的飞行任务。
优点:
不受时间、天气限制; 精度高; 定位时间短,可以连续地、适时地定位; 设备简单、可靠。
一、无线电领航基本原理
电参量
位置线为双曲线,如奥米伽系统。
三、无线电导航设备和系统分 类
1 按测量电信号的参量不同 振幅、频率、相位、脉冲、脉冲/相位
2 按测量的位置线几何形状 测角、测距、测角/测距、测高、测距差
3 按有效作用距离 近程(100-500KM) 远程(500-3000KM) 超远程(3000KM以上)
4 按机载设备实现的系统功能分 自备式、他备式
长波
300~3000千赫(KHz)
中波
3~30兆赫(MHz)
短波
30~300兆赫(MHz)
超短波
300~3000兆赫(MHz)
分米波
3~30吉赫(GHz)
厘米波
30~300吉赫(GHz)
毫米波
波长范围
10~1万米 10~1千米 10~1百米 100~10米
10~1米 10~1分米 10~1厘米 10~1毫米
ADF ;NDB; AM BROADCAST HF COMM 3~30MHZ
MARKER BEACONS; FM BROADCAST;VHF NAV(VOR);VHF COMM GLIDESLOPE;DME;TRANSPOUNDER;GPS/SATCOM
RADAR ALTIMETER;DOPPLER NAV 8.8;WEATHER RADAR
导航参量
二、位置线与导航系统
位置线:
无线电导航系统概论
无线电导航系统概论——发展简史
10、其它导航系统 (1)前苏联及俄国建设情况 ①曾建立相应的双曲线定为系统,包括 BRAS
( Б р а с ) 、 RS-10 ( р с -10 ) 、 MARS-75 、 Chayka (ЧАЙКА)、 α 系统。 BRAS : 相 当 于 DECCA 系 统 , 精 度 达 12m ( 双 距 ) 12~60m(双曲线),包括1主台2副台,使用1660~2115 kHz,有6个频率,初始定位时间8~10分钟,提供位置间 隔1分钟。 RS-10类似于BRAS,但有5~6个副台。
2012-3-9 37 - 15
无线电导航系统概论——发展简史
(2)欧洲卫星导航系统建设情况 ①Navsat卫星导航系统 欧洲空间局于1982年提出建议,想通过国际合 作,研制满足海、空导航、搜索、营救、进出港、 民航机着陆等要求的民用卫星导航系统-Navsat卫 星导航系统。 特点:卫星网计划24颗星,提供三维定位、三 维速度和时间,定位精度分为10米和100米。
2012-3-9 37 - 27
无线电导航系统概论——定位原理
它可利用天线灵 敏度最小(理论灵敏 度为零)来确定电波 传播方向; 也利用天线方向性图的最大值来确定来波方向。 (2) 相位法
2π 4π ∆φ = 2 rd = D AB cos θ λ λ
2012-3-9 37 - 28
无线电导航系统概论——定位原理
2012-3-9
37 - 18
无线电导航系统概论——发展简史
地面系统: 主要由2个位于欧洲的Galileo控制中心(GCC) 和20个分布全球的Galileo传感器站(GSS)组 成,另外还有一个用于进行控制与卫星之间数 据交换的分布全球的5个S波段上行站和10个C波 段上行站。控制站与传感器站之间通过冗余通 信网络连接。
空中领航学5.1无线电领航概述课件
按工作方式分类
法,但无法双向通信和 指挥。
有源工作式、无缘工作式系统。
5.1.5 无线电导航系统发展历程
早期阶段
早期阶段从20世纪初至第二次世界大战前,这 一时期的特点是开始了无线电测向理论和实践的研 究,并研制出无线电罗盘和无线电信标等设备。
无线电罗盘Radio Compass
无方向性信标NDB Nondirectional Radiobeacon
测距/近程/它备式系统 1959年ICAO定为标准导航系统
测角测距/它备式系统
5.1.5 无线电导航系统发展历程
成熟阶段
成熟阶段从20世纪60年代至今,这一时期的 特点是以卫星导航技术为基础,无线电波发射频 率高,导航设备自动化程度高、可靠性强,导航 信号覆盖范围更大,导航精度高。包括卫星导航 系统、微波着陆系统、地形辅助导航系统、组合 导航系统等。
位置线为直线和圆——测角测距系统
这是一种测角与测距系 统的合成系统。
测角测距系统包括:
VOR/DME NDB/DME ILS/DME TACAN
测角测距系统及ρ-θ定位
5.1.3 位置线与导航系统
位置线为等高线——测高系统
如果位置线是等高线,这样的系统称为测高无 线电导航系统。
测高系统测量飞机到地面的垂直距离。 测高系统:
如果位置线是以导航台为圆心,飞机与电台间 的距离为半径的圆,这样的系统称为测距无线电导 航系统,或圆周无线电导航系统。
测距系统测量的是飞机
和地面导航台之间的斜距。
位置线
测距系统:
R
测距机DME
斜距
剖面图
距离为参数
5.1.3 位置线与导航系统
位置线为圆——测距(圆周)系统
空中领航学:第6章 无线电领航
向电台飞行简单可靠、易于掌握,是归航时常 有的方法。
分为:不修正偏流向电台飞行; 修正偏流向电台飞行。
22
1、不修正偏流向电台飞行
飞行中保持RB=0o,使飞机始终对正电台,直 至飞到电台上空。具体做法是:
23
离电台较远时,先根据无线电罗盘的指示对正电 台,然后用磁罗盘保持航向飞行;
30
(四)判断通过电台
(Tracking Over an NDB)
31
32
向台飞行时,随着向NDB台的接近,指 示器的指针越来越敏感;
当指示器指针在“0”刻度附近摆动 (20o-30o)后并迅速转向180o ,表 明已通过电台。
如果飞机从电台侧方通过,则指针指到 90o或270o时,就是通过电台的瞬间。
28
(2)按航迹修正角修正航迹
根据测出的偏离角,计算航迹修正角,在平均航向 的基础上修正航迹,飞向预定电台上空。
-测电台方位MB TO
-计算偏离角 CA=MC-MB TO
-计算航迹修正角TC =(t总 /t已 )CA -计算应飞航向 MH应 =MH-TC -保持MH应 飞行
MB TO
t已 180°-TC
固定刻度盘指示器(RBI)
指针指的是电台相对 方位角。
手动刻度盘指示器
在指标处定上航向后, 指针箭头指的是电台方位角; 箭尾指的是飞机方位角。
18Βιβλιοθήκη 指标指的是航向 指针箭头指的是电台方位角 箭尾指的是飞机方位角
无线电磁指示器(RMI)
19
(二)无线电定向(Orientation)
利用控制盒调准NDB后,从指示器上读出方位。
解: MB TO=80° CA=MC -MB TO=70°-80°=-10° TE=(t未/t已)CA=(8/4) ×(-10 ° ) =-20° MT=MC+TE=70°+(-20° )=50° DA=MT-MH平=50°-65°=-15° MH应=MB TO-DA=80°-(-15 °)=95° RB应=360 °+DA=360 °+(-15°)=345°
《无线电导航原理》辅导提纲解析
无线电导航原理课程辅导提纲军区空军自考办第一章无线电导航概论一、内容提要本章分五节,主要讲述了航空导航导的基本任务、航空导航的基本参量、导航技术的发展历程与技术特点,无线电波段的划分及此波段常用的导航设备、导航信号的特点、导航参数与位置线、位置线交点定位的方法,航空器对无线电导航的基本要求、无线电导航设备的种类和系统分类,对无线电导航系统的基本要求等内容。
二、重点内容、要求(一)航空导航基本概念1、能够阐明航空导航各基本参量的定义及意义;2、能够阐明各种导航方法的原理及特点;3、能够把握航空导航的核心任务和主要任务。
(二)无线电导航基本理论1、能够阐明各波段无线电导航信号的传播方式及特点;2、能够阐明位置线的定义以及位置线的分类;3、能够理解无线电导航的物理基础;4、能够掌握如何利用位置线交点法定位实现导航定位。
(三)无线电导航系统的分类及基本要求l、能够说出无线电导航系统的分类方法;2、能够说出对无线电导航系统各种性能指标的要求;3、理解工作容量的含义。
三、典型例题(一)填空题1、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
2、惯性导航的物理依据是牛顿第二定律。
3、飞机与两导航台距离之差相等各点的连线是一条双曲线位置线。
4、飞机重心在空间运动时的轨迹称为航迹。
5、飞机重心在空间运动时的轨迹在地面上的投影称为航线。
6、飞机重心点的子午线北向顺时针到飞机纵轴之间的夹角在水平面的投影称为航向。
7、利用无线电技术测定飞机位置、方向和距离等参数,引导飞机航行的方法称为无线电导航。
8、飞机所在点的磁子午线北端顺时针到电台方向的夹角在水平面的投影称为电台磁方位角。
9、电台所在点的地理子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机真方位角。
10、电台所在点的磁子午线北端顺时针到飞机方向的夹角在水平面的投影称为飞机磁方位角。
11、飞机与地面投影点的垂直距离称为飞机的真实高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电基础知识
频段名称
甚低频(VLF) 低频(LF) 中频(MF) 高频(HF)
甚高频(VHF) 特高频(UHF) 超高频(SHF) 极高频(EHF)
电磁波频段划分及机载无线电设备所使用的频率
机载无线电设备使用的频率
OMEGA Nav.10.2 11.3 13.6khz LORAN C 100khz;ADF ;NDB; AM BROADCAST
导航参量
二、位置线与导航系统
位置线:
一个导航系统所测量的电 信号的某一参数为定值时,该测 量值所对应的点位置的轨迹。
1 测角系统
位置线为直线,如自动定向系统 (ADF)、全向信标系统(VOR)。
2 测距系统
位置线为圆,如测距机(DME)。
DME
3 测高系统
位置线为等高线,如无线电高度表。
4 测距差系统
5 按无线电导航台的安装位置 陆基、空基、星基
6 按飞机的飞行区域分 航路、终端区
无线电基础知识
频段名称
甚低频(VLF) 低频(LF) 中频(MF) 高频(HF)
甚高频(VHF) 特高频(UHF) 超高频(SHF) 极高频(EHF)
电磁波频谱和波段划分
频段范围
波段名称
3~30千赫(KHz)
甚长波
30~300千赫(KHz)
无线电领航
利用机载无线电导航设备接收和处理无 线电波从而获得导航参量,确定出飞机位置及 飞往预定点的航向、时间,从而引导飞机沿选 定航线安全、经济地完成规定的飞行任务。
优点:
不受时间、天气限制; 精度高; 定位时间短,可以连续地、适时地定位; 设备简单、可靠。
一、无线电领航基本原理
电参量
ADF ;NDB; AM BROADCAST HF COMM 3~30MHZ
MARKER BEACONS; FM BROADCAST;VHF NAV(VOR);VHF COMM GLIDESLOPE;DME;TRANSPOUNDER;GPS/SATCOM
RADAR ALTIMETER;DOPPLER NAV 8.8;WEATHER RADAR
长波
300~3000千赫(KHz)
波
30~300兆赫(MHz)
超短波
300~3000兆赫(MHz)
分米波
3~30吉赫(GHz)
厘米波
30~300吉赫(GHz)
毫米波
波长范围
10~1万米 10~1千米 10~1百米 100~10米
10~1米 10~1分米 10~1厘米 10~1毫米
位置线为双曲线,如奥米伽系统。
三、无线电导航设备和系统分 类
1 按测量电信号的参量不同 振幅、频率、相位、脉冲、脉冲/相位
2 按测量的位置线几何形状 测角、测距、测角/测距、测高、测距差
3 按有效作用距离 近程(100-500KM) 远程(500-3000KM) 超远程(3000KM以上)
4 按机载设备实现的系统功能分 自备式、他备式