概率论与数理统计7.3区间估计

合集下载

概率论与数理统计复习7章

概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n

概率论与数理统计第7章参数估计PPT课件

概率论与数理统计第7章参数估计PPT课件
5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,

概率论与数理统计应用_参数估计_

概率论与数理统计应用_参数估计_
概率论与数理统计应用
第7章 参数估计
7.2 估计量的评选标准
授课教师:李林杉 副教授
估计量的评选标准
由前面的学习知道, 对于同一个参数,用不同的估计方法求出的估计量可能不相同,对 不同的样本值也会得到不同的估计值,原则上任何统计量都可以作为未知参数的估计量.
问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么?
D(1 6
X1
5 6
X
3)
1 36
D
X1
25 36
D
X
2
13 ቤተ መጻሕፍቲ ባይዱ8
因为 13 18
5 ,所以估计量 9
ˆ1
2 3
X1
1 3
X 2 更有效.
估计量的评选标准
三、相合性
我们不仅希望一个估计量是无偏的,并且具有较小的方差,还希望当样本容量n 增大时,估计量能充分地接近于未知参数的真值, 因此就引出相合性(一致性)的 评价标准.

的矩估计量和极大似然估计量都是 X
1 n
n i 1
Xi
.
的估计值都是 ˆ x 1200
估计值与真值的误差?(精度) 点估计可信程度有多大?(可信度)
区间估计
二、置信区间
定义 设总体X 的分布函数F(x,θ)含有一个未知参数θ. X1, X 2, , X n 为总体的样本, 对于给定值α( 0<α<1), 若能确定两个统计量
( X1, X 2, , X n ), ( X1, X 2, , X n ) 满足: P{ } 1
则称随机区间 , 是θ 的置信度为1 的置信区间,
——置信下限, ——置信上限, 置信度1 ——称为置信水平.

第七章7-3概率论与数理统计

第七章7-3概率论与数理统计

3.以该区间内任一值作为的近似值,
误差不大于
s
6.2022
n t 2(n 1)=
2.1315 2=6.61 16
9
2 方差 2的置信区间 只讨论均值未知情形
由于
(n 1)S2 2
~
2(n 1)
取 (n 1)S2 作为枢轴量
2
对给定的置信水平1 ,确定分位数
2 1
2(n 1) , 2 2(n 1) ,
§4 正态总体均值与方差的区间估计
一 单个总体N (, 2 )的情形 设已给定置信水平为1-,并设
X1, X 2,L ,X n为总体N (, 2 )的样本,
X 和S 2分别是样本均值和方差.
1
1 均值的置信区间
(1) 2已知,均值的置信水平为1-
的置信区间为
简记为
X
n
z 2 ,
X
n
z
2
X
n
试求总体均值 的置信水平为0.95的
置信区间
6
解:这是单总体方差未知,总体均值 的区间估计问题.
均值 的置信水平为 1的置信区间为
s
s
x
n t 2(n 1), x
n
t
2(n1) 这里 1 0.95, / 2 0.025, n 1 15,
t / 2 (n 1) t0.025 (15) 2.1315
S
11 n1 n2
18
从而可得,在
12
2 2
2,但 2未知,
均值差1 2的置信水平为1-的置信区间
X Y t /2 (n1 n2 2)S
其中
1 n1
1 n2
S2
(n1
1)S12 (n2 1)S22 n1 n2 2

概率论——区间估计

概率论——区间估计
概率论与数理统计
概率与 概率与统计
第十九讲 区间估计
主讲教师: 主讲教师: 于红香 e-mail:fishr2001@
概率论与数理统计
第四节
区间估计
学习要求
理解区间估计的概念 会求单个正态总体的均值和方差的置信区间 会求两个正态总体的均值差和方差比的置信区间
对于概念和理论方面的内容,从高到低分别用 “理解”、“了解”、“知道”三级来表述; 对于方法,运算和能力方面的内容,从高到低分别用 “熟练掌握”、“掌握”、“能”(或“会”)三级来 表述。
N( µ, σ2 )的情况 单个总体
2 2 N( µ1, σ1 ),N( µ2 , σ2 )的情况 两个总体
课堂练习 小结 布置作业
概率论与数理统计
一、单个总体 N( µ, σ ) 的情况
2
X
N( µ, σ2 ),并设 X1,K, Xn 为来自总体的
样本 , X, S2 分别为样本均值和样本方差 .
的置信水平( 则称区间 ( θ,θ ) 是 θ 的置信水平(置信度 )为1−α 为 置信区间 的置信区间.
θ 和 θ 分别称为置信下限和置信上限 分别称为置信下限 置信上限. 置信下限和
概率论与数理统计
1. 要求 θ 以很大的可能被包含在区间( θ,θ ) 内,就是说,概率 P{θ < θ < θ} 要尽可能大 . 就是说, 即要求估计尽量可靠. 即要求估计尽量可靠 2. 估计的精度要尽可能的高 如要求区间长度 估计的精度要尽可能的高. 尽可能短,或能体现该要求的其它准则. θ − θ 尽可能短,或能体现该要求的其它准则 可靠度与精度是一对矛盾, 可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度. 精度

《概率论与数理统计》7

《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

中国矿业大学周圣武概率论与数理统计_图文

中国矿业大学周圣武概率论与数理统计_图文

定义2 设 都是参数θ的无偏估计量,若有
则称
有效。
例:160页,例7、例8
定义3 设
为参数θ的估计量,
若对于任意θ∈Θ,当
则称
的一致估计量。
例:由大数定律知
一致性说明:对于大样本,由一次抽样得到的估 计量 的值可作θ的近似值
例5 设 X1, X2, …, Xn 是取自总体 X 的一个样本,
⑴ 验证
试求θ的极大似然估计值。 解
极大似然估计的不变性
练习
1.设总体X在
上服从均匀分布,
X1 , X 2 ,L X n是来自X的样本,试求 q 的矩估计量
和最大似然估计.
2.设X1,X2,…Xn是取自总体X的一个样本
其中 >0, 求 的极大似然估计.
课堂练习
P156:5,6
作业
P178:1,2,5,6
Fisher
最大似然法的基本思想:
问题:请推断兔子 是谁打中的?
例6 袋中放有白球和黑球共4个,今进行3次有放回 抽样,每次抽取1个,结果抽得2次白球1次黑球,试 估计袋中白球个数。 解 设袋中白球个数为m,
X为3次抽样中抽得的白球数,则
当袋中白球数m分别为1,2,3时, p对应的值分别为1/4,2/4,3/4, X对应的分布律见下表
中国矿业大学周圣武概率论与数理统计_图文 .ppt
第七章 参数估计
§7.1 点估计 §7.2 估计量的评选标准 §7.3 区间估计 §7.4 单个正态总体参数的区间估计 §7.4 两个正态总体参数的区间估计
统计推断
矩估计 点估计 最大似然估计
参数估计
最小二乘估计
区间估计
参数假设检验
假设检验 非参数假设检验

概率论与数理统计 71 点估计与最大似然估计 优质课件

概率论与数理统计 71 点估计与最大似然估计 优质课件

10
解方程组即得
1 = 1 ( X1 , X2 ,

k = k ( X1 , X2 ,
, Xn), , Xn),
这就是1 ,2 , ,k 的矩估计量 .
11
例1: 设总体 X 在[a , b]上服从均匀分布, a , b 未知 . X1 , X2 , … , Xn 是来自 X 的样本, 求a , b的矩估计量.
5
一、点估计的概念:
1、定义7.1:
设总体 X 的分布函数为 F( x , θ ), 其中θ 为 未知参数 . 从总体 X 中抽取样本 X1 , X2 ,
… , Xn , 其观测值为 x1 , x2 , … , xn .
构造一个统计量 ( X1 , X2 , , Xn ), 用它的 观测值 ( x1 , x2 , , xn ) 来估计参数 , 称
设总体分布已知, 但含有k个未知数1,2 , ,k ,
若总体 X 的前 k 阶矩均存在 , 则可令
E( X rX
r i
,r =1,2,
,k ,
再利用总体 X 分布已知, 具体求出 E( X r ),
当然它是未知参数 1 ,2 , ,k 的函数, 这样
就得到含 k 个未知数和 k 个方程的方程组 ,
1 n
n i 1
Xi =A1称为一阶样本原点矩,
4
,1 n
n i 1
Xik =Ak称为k阶样本原点矩,
样本k阶中心矩:
Sn2 =
1 n
n
(Xi -X )2=B2称为样本二阶中心矩,
i 1
Snk =
1 n
n i 1
(Xi -X )k =
Bk 称为样本k阶中心矩,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 对于给定的置信度1 ,定 出两个常数a,b, 使 P{a Z( X1, X2 ,, Xn; ) b} 1 .
(3) 若能从 a Z( X1, X2 ,, Xn; ) b 得到等价的 不等式 , 其中 ( X1, X2 ,, Xn ), ( X1, X2 ,, Xn ) 都是统计量, 那么 ( , ) 就 是 的一个置信度为1 的置信区间.
第三节 区间估计
一、区间估计的基本概念 二、典型例题
一、区间估计的基本概念
1. 置信区间的定义
设总体 X 的分布函数F ( x; )含有一个未知参 数 , 对于给定值 (0 1), 若由样本X1, X2 ,,
Xn 确定的两个统计量
( X1, X2 ,, Xn )和 ( X1, X2 ,, Xn ) 满足 P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1 , 则称随机区间( , )是 的,
则置信区间为(5.20 0.49), 即 (4.71, 5.69).
在例2中如果给定 0.05,
则又有
P
z0.04
X
/
n
z0.01
0.95,

P{ X
n
z0.01
X
n
z0.04
}
0.95,
故 X
n
z0.01
,
X
n
z0.04
也是
间, 和分别称为置信度为1 的双侧置信区间 的置信下限和置信上限, 1 为置信度.
关于定义的说明
被估计的参数虽然未知, 但它是一个常数, 没有随机性, 而区间( , )是随机的.
因此定义中下表达式
P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1
的本质是:
X
n
z
/
2
.
这样的置信区间常写成
X
n
z
/
2
.
其置信区间的长度为
2
n
z / 2
.
注意 : 置信水平为 1 的置信区间是不唯一的.
如果在例2中取 n 16, 1, 0.05,
查表可得 z / 2 z0.025 1.96,
得一个置信水平为0.95的置信区间 X
1 16
1.96.
n
z
/
2
,
X
n
z
/
2
,
由 n 9, 4, 0.05, z0.025 1.96, x 147.333知,
的置信度为0.95的置信区间为 (144.720, 149.946).
样本容量n固定, 置信水平1 增大, 置信区
间长度增大, 可信程度增大, 区间估计精度降低.
置信水平1 固定, 样本容量 n 增大, 置信区
间长度减小, 可信程度不变, 区间估计精度提高.
二、典型例题
例1 设总体 X 在 [0, ] 上服从均匀分布, 其中 ( 0) 未知, ( X1, X2,, Xn ) 是来自总体X的样本, 给定 , 求 的置信水平为1 的置信区间.
按伯努利大数定理, 在这样多的区间中,
包含真值的约占100(1 )%, 不包含的约占100%.
例如 若 0.01, 反复抽样1000 次, 则得到的 1000 个区间中不包含 真值的约为10个.
2. 求置信区间的一般步骤(共3步)
(1) 寻求一个样本 X1, X2 ,, Xn的函数 :
Z Z( X1, X2 ,, Xn; ) 其中仅包含待估参数 , 并且 Z 的分布已知 且不依赖于任何未知参数 (包括 ).
置信区间长度最小.
例3 设某工件的长度 X 服从正态分布 N ( ,16),
今抽9件测量其长度, 得数据如下(单位:mm):
142, 138, 150, 165, 156, 148, 132, 135, 160.
试求参数 的置信水平为 95%的置信区间. 解 根据例2得的置信度为1 的置信区间
X
解 因为 X 是 的无偏估计, 且 U X ~ N (0,1), / n X ~ N (0,1)是不依赖于任何未知参数的, / n
由标准正态分布的上 分位点的定义知
P
X
/
n
z
/
2
1,

P X
n
z
/
2
X
n
z
/
2
1
,
于是得的一个置信水平为 1 的置信区间
X
n z / 2 ,
的置信
水平
为0.95的置信区间.
其置信区间的长度为
n
(
z0.04
z0.01) .
比较两个置信区间的长度
L1
2
n
z0.025
3.92
,
n
L2
n
( z0.04
z0.01
)
4.08
,
n
显然 L1 L2 . 置信区间短表示估计的精度高.
说明: 对于概率密度的图形是单峰且关于纵坐标
轴对称的情况, 易证取a和b关于原点对称时,能使
随机区间( , )以1 的概率包含着参数的真值, 而不能说参数以1 的概率落入随机区间( , ).
另外定义中的表达式
P{ ( X1 , X 2 ,, X n ) ( X1 , X 2 ,, X n )} 1
还可以描述为 : 若反复抽样多次(各次得到的样本容量相等,都是n)
每个样本值确定一个区间( , ), 每个这样的区间或包含 的真值或不包含 的真值,
满足条件
P a
Xh
b
1 ,
即 1 b nz n1dz bn an , a
P
Xh b
Xh a
1 ,
Xh b
,
Xh a
为置信区间.
例2 设 X1, X2,, Xn 是来自正态总体N (, 2 ) 的样本, 其中 2 为已知, 为未知, 求 的置信水平 为 1 的置信区间.
解 令 Xh max{X1, X2,, Xn},
由上节例3可知, n 1 n
因为 Xh的概率密度为f
Xh 是 (x)
的无偏估计 ,
nx
n1 n
,
0 x
,
0,
其他.
考察包括待估参数 的随机变量 Z Xh ,
其概率密度为
g(z)
nz n1,
0,
0 z 1, 其他.
对于给定的 ,可定出两个常数 a,b(0 a b 1),
相关文档
最新文档