概率论与数理统计7.3区间估计
合集下载
概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n
概率论与数理统计第7章参数估计PPT课件

5
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
a1(1, ,k )=v1
1 f1(v1, ,vk )
假定方程组a2(1, ,k ) v2 ,则可求出2 f2(v1, ,vk )
ak (1, ,k ) vk
k fk (v1, ,vk )
则x1 xn为X的样本值时,可用样本值的j阶原点矩Aj估计vj,其中
Aj
1 n
n i1
xij ( j
L(x1, ,xn;ˆ)maxL(x1, ,xn;),则称ˆ(x1, ,xn)为
的一种参数估计方法 .
它首先是由德国数学家
高斯在1821年提出的 ,然而, 这个方法常归功于英国统
Gauss
计学家费歇(Fisher) . 费歇在1922年重新发现了
这一方法,并首先研究了这
种方法的一些性质 .
Fisher
10
极大似然估计是在已知总体分布形式的情形下的 点估计。
极大似然估计的基本思路:根据样本的具体情况
注:估计量为样本的函数,样本不同,估计量不 同。
常用估计量构造法:矩估计法、极大似然估计法。
4
7.1.1 矩估计法
矩估计法是通过参数与总体矩的关系,解出参数, 并用样本矩替代总体矩而得到的参数估计方法。 (由大数定理可知样本矩依概率收敛于总体矩, 且许多分布所含参数都是矩的函数)
下面我们考虑总体为连续型随机变量的情况:
n
它是的函数,记为L(x1, , xn; ) f (xi , ), i 1
并称其为似然函数,记为L( )。
注:似然函数的概念并不仅限于连续随机变量 ,
对于离散型随机变量,用 P {Xx}p(x,)
替代f ( x, )
即可。
14
设总体X的分布形式已知,且只含一个未知参数,
概率论与数理统计应用_参数估计_

概率论与数理统计应用
第7章 参数估计
7.2 估计量的评选标准
授课教师:李林杉 副教授
估计量的评选标准
由前面的学习知道, 对于同一个参数,用不同的估计方法求出的估计量可能不相同,对 不同的样本值也会得到不同的估计值,原则上任何统计量都可以作为未知参数的估计量.
问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么?
D(1 6
X1
5 6
X
3)
1 36
D
X1
25 36
D
X
2
13 ቤተ መጻሕፍቲ ባይዱ8
因为 13 18
5 ,所以估计量 9
ˆ1
2 3
X1
1 3
X 2 更有效.
估计量的评选标准
三、相合性
我们不仅希望一个估计量是无偏的,并且具有较小的方差,还希望当样本容量n 增大时,估计量能充分地接近于未知参数的真值, 因此就引出相合性(一致性)的 评价标准.
解
的矩估计量和极大似然估计量都是 X
1 n
n i 1
Xi
.
的估计值都是 ˆ x 1200
估计值与真值的误差?(精度) 点估计可信程度有多大?(可信度)
区间估计
二、置信区间
定义 设总体X 的分布函数F(x,θ)含有一个未知参数θ. X1, X 2, , X n 为总体的样本, 对于给定值α( 0<α<1), 若能确定两个统计量
( X1, X 2, , X n ), ( X1, X 2, , X n ) 满足: P{ } 1
则称随机区间 , 是θ 的置信度为1 的置信区间,
——置信下限, ——置信上限, 置信度1 ——称为置信水平.
第7章 参数估计
7.2 估计量的评选标准
授课教师:李林杉 副教授
估计量的评选标准
由前面的学习知道, 对于同一个参数,用不同的估计方法求出的估计量可能不相同,对 不同的样本值也会得到不同的估计值,原则上任何统计量都可以作为未知参数的估计量.
问题 (1)对于同一个参数究竟采用哪一个估计量好? (2)评价估计量的标准是什么?
D(1 6
X1
5 6
X
3)
1 36
D
X1
25 36
D
X
2
13 ቤተ መጻሕፍቲ ባይዱ8
因为 13 18
5 ,所以估计量 9
ˆ1
2 3
X1
1 3
X 2 更有效.
估计量的评选标准
三、相合性
我们不仅希望一个估计量是无偏的,并且具有较小的方差,还希望当样本容量n 增大时,估计量能充分地接近于未知参数的真值, 因此就引出相合性(一致性)的 评价标准.
解
的矩估计量和极大似然估计量都是 X
1 n
n i 1
Xi
.
的估计值都是 ˆ x 1200
估计值与真值的误差?(精度) 点估计可信程度有多大?(可信度)
区间估计
二、置信区间
定义 设总体X 的分布函数F(x,θ)含有一个未知参数θ. X1, X 2, , X n 为总体的样本, 对于给定值α( 0<α<1), 若能确定两个统计量
( X1, X 2, , X n ), ( X1, X 2, , X n ) 满足: P{ } 1
则称随机区间 , 是θ 的置信度为1 的置信区间,
——置信下限, ——置信上限, 置信度1 ——称为置信水平.
第七章7-3概率论与数理统计

3.以该区间内任一值作为的近似值,
误差不大于
s
6.2022
n t 2(n 1)=
2.1315 2=6.61 16
9
2 方差 2的置信区间 只讨论均值未知情形
由于
(n 1)S2 2
~
2(n 1)
取 (n 1)S2 作为枢轴量
2
对给定的置信水平1 ,确定分位数
2 1
2(n 1) , 2 2(n 1) ,
§4 正态总体均值与方差的区间估计
一 单个总体N (, 2 )的情形 设已给定置信水平为1-,并设
X1, X 2,L ,X n为总体N (, 2 )的样本,
X 和S 2分别是样本均值和方差.
1
1 均值的置信区间
(1) 2已知,均值的置信水平为1-
的置信区间为
简记为
X
n
z 2 ,
X
n
z
2
X
n
试求总体均值 的置信水平为0.95的
置信区间
6
解:这是单总体方差未知,总体均值 的区间估计问题.
均值 的置信水平为 1的置信区间为
s
s
x
n t 2(n 1), x
n
t
2(n1) 这里 1 0.95, / 2 0.025, n 1 15,
t / 2 (n 1) t0.025 (15) 2.1315
S
11 n1 n2
18
从而可得,在
12
2 2
2,但 2未知,
均值差1 2的置信水平为1-的置信区间
X Y t /2 (n1 n2 2)S
其中
1 n1
1 n2
S2
(n1
1)S12 (n2 1)S22 n1 n2 2
概率论——区间估计

概率论与数理统计
概率与 概率与统计
第十九讲 区间估计
主讲教师: 主讲教师: 于红香 e-mail:fishr2001@
概率论与数理统计
第四节
区间估计
学习要求
理解区间估计的概念 会求单个正态总体的均值和方差的置信区间 会求两个正态总体的均值差和方差比的置信区间
对于概念和理论方面的内容,从高到低分别用 “理解”、“了解”、“知道”三级来表述; 对于方法,运算和能力方面的内容,从高到低分别用 “熟练掌握”、“掌握”、“能”(或“会”)三级来 表述。
N( µ, σ2 )的情况 单个总体
2 2 N( µ1, σ1 ),N( µ2 , σ2 )的情况 两个总体
课堂练习 小结 布置作业
概率论与数理统计
一、单个总体 N( µ, σ ) 的情况
2
X
N( µ, σ2 ),并设 X1,K, Xn 为来自总体的
样本 , X, S2 分别为样本均值和样本方差 .
的置信水平( 则称区间 ( θ,θ ) 是 θ 的置信水平(置信度 )为1−α 为 置信区间 的置信区间.
θ 和 θ 分别称为置信下限和置信上限 分别称为置信下限 置信上限. 置信下限和
概率论与数理统计
1. 要求 θ 以很大的可能被包含在区间( θ,θ ) 内,就是说,概率 P{θ < θ < θ} 要尽可能大 . 就是说, 即要求估计尽量可靠. 即要求估计尽量可靠 2. 估计的精度要尽可能的高 如要求区间长度 估计的精度要尽可能的高. 尽可能短,或能体现该要求的其它准则. θ − θ 尽可能短,或能体现该要求的其它准则 可靠度与精度是一对矛盾, 可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度. 精度
概率与 概率与统计
第十九讲 区间估计
主讲教师: 主讲教师: 于红香 e-mail:fishr2001@
概率论与数理统计
第四节
区间估计
学习要求
理解区间估计的概念 会求单个正态总体的均值和方差的置信区间 会求两个正态总体的均值差和方差比的置信区间
对于概念和理论方面的内容,从高到低分别用 “理解”、“了解”、“知道”三级来表述; 对于方法,运算和能力方面的内容,从高到低分别用 “熟练掌握”、“掌握”、“能”(或“会”)三级来 表述。
N( µ, σ2 )的情况 单个总体
2 2 N( µ1, σ1 ),N( µ2 , σ2 )的情况 两个总体
课堂练习 小结 布置作业
概率论与数理统计
一、单个总体 N( µ, σ ) 的情况
2
X
N( µ, σ2 ),并设 X1,K, Xn 为来自总体的
样本 , X, S2 分别为样本均值和样本方差 .
的置信水平( 则称区间 ( θ,θ ) 是 θ 的置信水平(置信度 )为1−α 为 置信区间 的置信区间.
θ 和 θ 分别称为置信下限和置信上限 分别称为置信下限 置信上限. 置信下限和
概率论与数理统计
1. 要求 θ 以很大的可能被包含在区间( θ,θ ) 内,就是说,概率 P{θ < θ < θ} 要尽可能大 . 就是说, 即要求估计尽量可靠. 即要求估计尽量可靠 2. 估计的精度要尽可能的高 如要求区间长度 估计的精度要尽可能的高. 尽可能短,或能体现该要求的其它准则. θ − θ 尽可能短,或能体现该要求的其它准则 可靠度与精度是一对矛盾, 可靠度与精度是一对矛盾,一般是 在保证可靠度的条件下尽可能提高 精度. 精度
《概率论与数理统计》7

未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2
中国矿业大学周圣武概率论与数理统计_图文

定义2 设 都是参数θ的无偏估计量,若有
则称
有效。
例:160页,例7、例8
定义3 设
为参数θ的估计量,
若对于任意θ∈Θ,当
则称
的一致估计量。
例:由大数定律知
一致性说明:对于大样本,由一次抽样得到的估 计量 的值可作θ的近似值
例5 设 X1, X2, …, Xn 是取自总体 X 的一个样本,
⑴ 验证
试求θ的极大似然估计值。 解
极大似然估计的不变性
练习
1.设总体X在
上服从均匀分布,
X1 , X 2 ,L X n是来自X的样本,试求 q 的矩估计量
和最大似然估计.
2.设X1,X2,…Xn是取自总体X的一个样本
其中 >0, 求 的极大似然估计.
课堂练习
P156:5,6
作业
P178:1,2,5,6
Fisher
最大似然法的基本思想:
问题:请推断兔子 是谁打中的?
例6 袋中放有白球和黑球共4个,今进行3次有放回 抽样,每次抽取1个,结果抽得2次白球1次黑球,试 估计袋中白球个数。 解 设袋中白球个数为m,
X为3次抽样中抽得的白球数,则
当袋中白球数m分别为1,2,3时, p对应的值分别为1/4,2/4,3/4, X对应的分布律见下表
中国矿业大学周圣武概率论与数理统计_图文 .ppt
第七章 参数估计
§7.1 点估计 §7.2 估计量的评选标准 §7.3 区间估计 §7.4 单个正态总体参数的区间估计 §7.4 两个正态总体参数的区间估计
统计推断
矩估计 点估计 最大似然估计
参数估计
最小二乘估计
区间估计
参数假设检验
假设检验 非参数假设检验
概率论与数理统计 71 点估计与最大似然估计 优质课件

10
解方程组即得
1 = 1 ( X1 , X2 ,
k = k ( X1 , X2 ,
, Xn), , Xn),
这就是1 ,2 , ,k 的矩估计量 .
11
例1: 设总体 X 在[a , b]上服从均匀分布, a , b 未知 . X1 , X2 , … , Xn 是来自 X 的样本, 求a , b的矩估计量.
5
一、点估计的概念:
1、定义7.1:
设总体 X 的分布函数为 F( x , θ ), 其中θ 为 未知参数 . 从总体 X 中抽取样本 X1 , X2 ,
… , Xn , 其观测值为 x1 , x2 , … , xn .
构造一个统计量 ( X1 , X2 , , Xn ), 用它的 观测值 ( x1 , x2 , , xn ) 来估计参数 , 称
设总体分布已知, 但含有k个未知数1,2 , ,k ,
若总体 X 的前 k 阶矩均存在 , 则可令
E( X rX
r i
,r =1,2,
,k ,
再利用总体 X 分布已知, 具体求出 E( X r ),
当然它是未知参数 1 ,2 , ,k 的函数, 这样
就得到含 k 个未知数和 k 个方程的方程组 ,
1 n
n i 1
Xi =A1称为一阶样本原点矩,
4
,1 n
n i 1
Xik =Ak称为k阶样本原点矩,
样本k阶中心矩:
Sn2 =
1 n
n
(Xi -X )2=B2称为样本二阶中心矩,
i 1
Snk =
1 n
n i 1
(Xi -X )k =
Bk 称为样本k阶中心矩,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 对于给定的置信度1 ,定 出两个常数a,b, 使 P{a Z( X1, X2 ,, Xn; ) b} 1 .
(3) 若能从 a Z( X1, X2 ,, Xn; ) b 得到等价的 不等式 , 其中 ( X1, X2 ,, Xn ), ( X1, X2 ,, Xn ) 都是统计量, 那么 ( , ) 就 是 的一个置信度为1 的置信区间.
第三节 区间估计
一、区间估计的基本概念 二、典型例题
一、区间估计的基本概念
1. 置信区间的定义
设总体 X 的分布函数F ( x; )含有一个未知参 数 , 对于给定值 (0 1), 若由样本X1, X2 ,,
Xn 确定的两个统计量
( X1, X2 ,, Xn )和 ( X1, X2 ,, Xn ) 满足 P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1 , 则称随机区间( , )是 的,
则置信区间为(5.20 0.49), 即 (4.71, 5.69).
在例2中如果给定 0.05,
则又有
P
z0.04
X
/
n
z0.01
0.95,
即
P{ X
n
z0.01
X
n
z0.04
}
0.95,
故 X
n
z0.01
,
X
n
z0.04
也是
间, 和分别称为置信度为1 的双侧置信区间 的置信下限和置信上限, 1 为置信度.
关于定义的说明
被估计的参数虽然未知, 但它是一个常数, 没有随机性, 而区间( , )是随机的.
因此定义中下表达式
P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1
的本质是:
X
n
z
/
2
.
这样的置信区间常写成
X
n
z
/
2
.
其置信区间的长度为
2
n
z / 2
.
注意 : 置信水平为 1 的置信区间是不唯一的.
如果在例2中取 n 16, 1, 0.05,
查表可得 z / 2 z0.025 1.96,
得一个置信水平为0.95的置信区间 X
1 16
1.96.
n
z
/
2
,
X
n
z
/
2
,
由 n 9, 4, 0.05, z0.025 1.96, x 147.333知,
的置信度为0.95的置信区间为 (144.720, 149.946).
样本容量n固定, 置信水平1 增大, 置信区
间长度增大, 可信程度增大, 区间估计精度降低.
置信水平1 固定, 样本容量 n 增大, 置信区
间长度减小, 可信程度不变, 区间估计精度提高.
二、典型例题
例1 设总体 X 在 [0, ] 上服从均匀分布, 其中 ( 0) 未知, ( X1, X2,, Xn ) 是来自总体X的样本, 给定 , 求 的置信水平为1 的置信区间.
按伯努利大数定理, 在这样多的区间中,
包含真值的约占100(1 )%, 不包含的约占100%.
例如 若 0.01, 反复抽样1000 次, 则得到的 1000 个区间中不包含 真值的约为10个.
2. 求置信区间的一般步骤(共3步)
(1) 寻求一个样本 X1, X2 ,, Xn的函数 :
Z Z( X1, X2 ,, Xn; ) 其中仅包含待估参数 , 并且 Z 的分布已知 且不依赖于任何未知参数 (包括 ).
置信区间长度最小.
例3 设某工件的长度 X 服从正态分布 N ( ,16),
今抽9件测量其长度, 得数据如下(单位:mm):
142, 138, 150, 165, 156, 148, 132, 135, 160.
试求参数 的置信水平为 95%的置信区间. 解 根据例2得的置信度为1 的置信区间
X
解 因为 X 是 的无偏估计, 且 U X ~ N (0,1), / n X ~ N (0,1)是不依赖于任何未知参数的, / n
由标准正态分布的上 分位点的定义知
P
X
/
n
z
/
2
1,
即
P X
n
z
/
2
X
n
z
/
2
1
,
于是得的一个置信水平为 1 的置信区间
X
n z / 2 ,
的置信
水平
为0.95的置信区间.
其置信区间的长度为
n
(
z0.04
z0.01) .
比较两个置信区间的长度
L1
2
n
z0.025
3.92
,
n
L2
n
( z0.04
z0.01
)
4.08
,
n
显然 L1 L2 . 置信区间短表示估计的精度高.
说明: 对于概率密度的图形是单峰且关于纵坐标
轴对称的情况, 易证取a和b关于原点对称时,能使
随机区间( , )以1 的概率包含着参数的真值, 而不能说参数以1 的概率落入随机区间( , ).
另外定义中的表达式
P{ ( X1 , X 2 ,, X n ) ( X1 , X 2 ,, X n )} 1
还可以描述为 : 若反复抽样多次(各次得到的样本容量相等,都是n)
每个样本值确定一个区间( , ), 每个这样的区间或包含 的真值或不包含 的真值,
满足条件
P a
Xh
b
1 ,
即 1 b nz n1dz bn an , a
P
Xh b
Xh a
1 ,
Xh b
,
Xh a
为置信区间.
例2 设 X1, X2,, Xn 是来自正态总体N (, 2 ) 的样本, 其中 2 为已知, 为未知, 求 的置信水平 为 1 的置信区间.
解 令 Xh max{X1, X2,, Xn},
由上节例3可知, n 1 n
因为 Xh的概率密度为f
Xh 是 (x)
的无偏估计 ,
nx
n1 n
,
0 x
,
0,
其他.
考察包括待估参数 的随机变量 Z Xh ,
其概率密度为
g(z)
nz n1,
0,
0 z 1, 其他.
对于给定的 ,可定出两个常数 a,b(0 a b 1),
(3) 若能从 a Z( X1, X2 ,, Xn; ) b 得到等价的 不等式 , 其中 ( X1, X2 ,, Xn ), ( X1, X2 ,, Xn ) 都是统计量, 那么 ( , ) 就 是 的一个置信度为1 的置信区间.
第三节 区间估计
一、区间估计的基本概念 二、典型例题
一、区间估计的基本概念
1. 置信区间的定义
设总体 X 的分布函数F ( x; )含有一个未知参 数 , 对于给定值 (0 1), 若由样本X1, X2 ,,
Xn 确定的两个统计量
( X1, X2 ,, Xn )和 ( X1, X2 ,, Xn ) 满足 P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1 , 则称随机区间( , )是 的,
则置信区间为(5.20 0.49), 即 (4.71, 5.69).
在例2中如果给定 0.05,
则又有
P
z0.04
X
/
n
z0.01
0.95,
即
P{ X
n
z0.01
X
n
z0.04
}
0.95,
故 X
n
z0.01
,
X
n
z0.04
也是
间, 和分别称为置信度为1 的双侧置信区间 的置信下限和置信上限, 1 为置信度.
关于定义的说明
被估计的参数虽然未知, 但它是一个常数, 没有随机性, 而区间( , )是随机的.
因此定义中下表达式
P{ ( X1, X2 ,, Xn ) ( X1, X2 ,, Xn )} 1
的本质是:
X
n
z
/
2
.
这样的置信区间常写成
X
n
z
/
2
.
其置信区间的长度为
2
n
z / 2
.
注意 : 置信水平为 1 的置信区间是不唯一的.
如果在例2中取 n 16, 1, 0.05,
查表可得 z / 2 z0.025 1.96,
得一个置信水平为0.95的置信区间 X
1 16
1.96.
n
z
/
2
,
X
n
z
/
2
,
由 n 9, 4, 0.05, z0.025 1.96, x 147.333知,
的置信度为0.95的置信区间为 (144.720, 149.946).
样本容量n固定, 置信水平1 增大, 置信区
间长度增大, 可信程度增大, 区间估计精度降低.
置信水平1 固定, 样本容量 n 增大, 置信区
间长度减小, 可信程度不变, 区间估计精度提高.
二、典型例题
例1 设总体 X 在 [0, ] 上服从均匀分布, 其中 ( 0) 未知, ( X1, X2,, Xn ) 是来自总体X的样本, 给定 , 求 的置信水平为1 的置信区间.
按伯努利大数定理, 在这样多的区间中,
包含真值的约占100(1 )%, 不包含的约占100%.
例如 若 0.01, 反复抽样1000 次, 则得到的 1000 个区间中不包含 真值的约为10个.
2. 求置信区间的一般步骤(共3步)
(1) 寻求一个样本 X1, X2 ,, Xn的函数 :
Z Z( X1, X2 ,, Xn; ) 其中仅包含待估参数 , 并且 Z 的分布已知 且不依赖于任何未知参数 (包括 ).
置信区间长度最小.
例3 设某工件的长度 X 服从正态分布 N ( ,16),
今抽9件测量其长度, 得数据如下(单位:mm):
142, 138, 150, 165, 156, 148, 132, 135, 160.
试求参数 的置信水平为 95%的置信区间. 解 根据例2得的置信度为1 的置信区间
X
解 因为 X 是 的无偏估计, 且 U X ~ N (0,1), / n X ~ N (0,1)是不依赖于任何未知参数的, / n
由标准正态分布的上 分位点的定义知
P
X
/
n
z
/
2
1,
即
P X
n
z
/
2
X
n
z
/
2
1
,
于是得的一个置信水平为 1 的置信区间
X
n z / 2 ,
的置信
水平
为0.95的置信区间.
其置信区间的长度为
n
(
z0.04
z0.01) .
比较两个置信区间的长度
L1
2
n
z0.025
3.92
,
n
L2
n
( z0.04
z0.01
)
4.08
,
n
显然 L1 L2 . 置信区间短表示估计的精度高.
说明: 对于概率密度的图形是单峰且关于纵坐标
轴对称的情况, 易证取a和b关于原点对称时,能使
随机区间( , )以1 的概率包含着参数的真值, 而不能说参数以1 的概率落入随机区间( , ).
另外定义中的表达式
P{ ( X1 , X 2 ,, X n ) ( X1 , X 2 ,, X n )} 1
还可以描述为 : 若反复抽样多次(各次得到的样本容量相等,都是n)
每个样本值确定一个区间( , ), 每个这样的区间或包含 的真值或不包含 的真值,
满足条件
P a
Xh
b
1 ,
即 1 b nz n1dz bn an , a
P
Xh b
Xh a
1 ,
Xh b
,
Xh a
为置信区间.
例2 设 X1, X2,, Xn 是来自正态总体N (, 2 ) 的样本, 其中 2 为已知, 为未知, 求 的置信水平 为 1 的置信区间.
解 令 Xh max{X1, X2,, Xn},
由上节例3可知, n 1 n
因为 Xh的概率密度为f
Xh 是 (x)
的无偏估计 ,
nx
n1 n
,
0 x
,
0,
其他.
考察包括待估参数 的随机变量 Z Xh ,
其概率密度为
g(z)
nz n1,
0,
0 z 1, 其他.
对于给定的 ,可定出两个常数 a,b(0 a b 1),