【压轴题】高一数学下期末试题带答案
【压轴卷】高一数学下期末试卷(附答案)

【压轴卷】高一数学下期末试卷(附答案)一、选择题1.已知扇形的周长是12,面积是8,则扇形的中心角的弧度数是( ) A .1B .4C .1或4D .2或42.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .3.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-4.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭ 5.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-6.函数2ln ||y x x =+的图象大致为( )A .B .C .D .7.函数()lg ||f x x x =的图象可能是( )A .B .C .D .8.已知二项式2(*)nx n N⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14 B .14-C .240D .240-9.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-10.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭11.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++= D .()()22114x y +++=12.在ABC ∆中,根据下列条件解三角形,其中有一解的是( )A .7a =,3b =,30B =oB .6b =,c =,45B =oC .10a =,15b =,120A =oD .6b =,c =60C =o二、填空题13.已知数列{}n a 前n 项和为n S ,若22nn n S a =-,则n S =__________.14.在ABC △ 中,若22a b -= ,sin C B = ,则A 等于__________. 15.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b -…,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______. 17.()()()()()1tan11tan 21tan31tan 441tan 45︒︒︒︒︒+++++L =__________.18.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.19.已知四棱锥P ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号)20.函数f(x)为奇函数,且x>0时,f(x)=x +1,则当x<0时,f(x)=________.三、解答题21.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小;(2)若23,4a b c =+=,求ABC ∆的面积. 22.投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n 年的纯利润总和(前年总收入-前年的总支出 -投资额72万元)(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值. 23.已知数列{}n a 的前n 和为n S ,若0n a >,21n n a S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若3nn n a b =,求数列{}n b 的前n 项和n T . 24.已知等差数列{}n a 的前n 项和为n S ,且28S =,38522a a a +=+. (1)求n a ; (2)设数列1{}n S 的前n 项和为n T ,求证:34n T <. 25.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式,并写出()f x 的最小正周期;(2)令()1π212g x f x ⎛⎫=-⎪⎝⎭,若在[]0,x π∈内,方程()()212320a g x ag x ⎡⎤-+-=⎣⎦有且仅有两解,求a 的取值范围.26.已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23xa a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】设扇形的半径为r ,弧长为 l ,则121282l r S lr +===,, ∴解得28r l ==, 或44r l ==,41lrα==或, 故选C .2.B解析:B 【解析】 【分析】计算函数()y f x =的表达式,对比图像得到答案. 【详解】 根据题意知:cos cos OM OP x x ==M 到直线OP 的距离为:sin cos sin OM x x x = 1()cos sin sin 22f x x x x ==对应图像为B故答案选B 【点睛】本题考查了三角函数的应用,意在考查学生的应用能力.3.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.4.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.5.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.6.A解析:A 【解析】 【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。
【压轴卷】高一数学下期末试题(附答案)(1)

【压轴卷】高一数学下期末试题(附答案)(1)一、选择题1.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( )A .若//m α,//n α,则//m nB .若//m α,//m β,则//αβC .若//m n ,n α⊥,则m α⊥D .若//m α,αβ⊥,则m β⊥2.若,则( )A .B .C .D .3.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线2y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 4.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A .53B .103C .56D .1165.C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )A .1b =rB .a b ⊥r rC .1a b ⋅=r rD .()4C a b +⊥B u u u r rr6.若,αβ均为锐角,25sin α=()3sin 5αβ+=,则cos β=A 25B 25C 25或25 D .257.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞ B .[)0,+∞C .[)0,4D .(0,4)8.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .58-B .58C .78-D .789.函数2ln ||y x x =+的图象大致为( )A .B .C .D .10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭11.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-12.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30oB .45oC .60oD .90o二、填空题13.()sin101370+=oo_____14.不等式2231()12x x -->的解集是______. 15.若,2παπ⎛⎫∈⎪⎝⎭,1sin 43πα⎛⎫+= ⎪⎝⎭,则sin α=_________16.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 17.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.18.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.19.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.20.如图,某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积为________.三、解答题21.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=x 2﹣2x . (1)求f (0)及f (f (1))的值; (2)求函数f (x )的解析式;(3)若关于x 的方程f (x )﹣m =0有四个不同的实数解,求实数m 的取值范围, 22.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上. (1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项公式;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T . 23.已知数列{}n a 满足()*112112n n n n na a a n Nb a a +==∈=+,,,. ()1证明数列{}n b 为等差数列;()2求数列{}n a 的通项公式.24.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.25.等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式;(2)设 31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 26.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断. 【详解】对于A 选项,若//m α,//n α,则m 与n 平行、相交、异面都可以,位置关系不确定; 对于B 选项,若l αβ=I ,且//m l ,m α⊄,m β⊄,根据直线与平面平行的判定定理知,//m α,//m β,但α与β不平行;对于C 选项,若//m n ,n α⊥,在平面α内可找到两条相交直线a 、b 使得n a ⊥,n b ⊥,于是可得出m a ⊥,m b ⊥,根据直线与平面垂直的判定定理可得m α⊥; 对于D 选项,若αβ⊥,在平面α内可找到一条直线a 与两平面的交线垂直,根据平面与平面垂直的性质定理得知a β⊥,只有当//m a 时,m 才与平面β垂直. 故选C . 【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】 【分析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,可得345127()a a a a a ++=+,5100S =,求出3a ,根据等差数列的通项公式,得到关于d 关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=.故选:A. 【点睛】本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.5.D解析:D 【解析】试题分析:2,2AB a AC a b ==+u u u r u u u r r Q rr ,AC AB b ∴=+u u u r u u u r r ,b AC AB BC ∴=-=u u u r u u u r u u u r r .由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭or r r r r .()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+u u ur u u u r u u u r u u u r u u u r u u u r u u u r r r 212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭o u u u r u u u r .()4a b BC ∴+⊥u u u r r r .故D 正确.考点:1向量的加减法;2向量的数量积;3向量垂直.6.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin 2α= s ,∴α>45°且5cos α= ,∵()3sin 5αβ+=,且1325< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα4355=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.7.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C. 8.C解析:C 【解析】 由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.本题选择C 选项.9.A解析:A 【解析】 【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。
【压轴题】高一数学下期末试题(附答案)

【压轴题】高一数学下期末试题(附答案)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5B .7C .9D .113.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元4.已知不等式()19a x y x y ⎛⎫++ ⎪⎝⎭≥对任意实数x 、y 恒成立,则实数a 的最小值为( ) A .8 B .6 C .4 D .25.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,7sin 4B =,574ABC S =△,则b =( ) A .23B .27C .15D .146.已知集合 ,则A .B .C .D .7.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b>8.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .609.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-UB .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞U10.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭11.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生12.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .4二、填空题13.设a >0,b >033a 与3b 的等比中项,则11a b+的最小值是__. 14.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.15.不等式2231()12x x -->的解集是______. 16.已知ABC V ,135B o∠=,22,4AB BC ==,求AB AC ⋅=u u u r u u u r______.17.已知0,0,2a b a b >>+=,则14y a b=+的最小值是__________. 18.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =___.19.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 20.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.三、解答题21.已知23()sin cos 3cos f x x x x =+- (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.22.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值. 23.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ;(2)平面//EFG 平面11BDD B .24.如图,某园林单位准备绿化一块直径为BC 的半圆形空,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若1BC =,ABC θ∠=,02πθ⎛⎫∈ ⎪⎝⎭,,设ABC ∆的面积为1S ,正方形的面积为2.S(1)用θ表示1S 和2S ; (2)当θ变化时,求12S S 的最小值及此时角θ的大小. 25.已知数列{}n a 满足()*112112n n n n na a a n Nb a a +==∈=+,,,. ()1证明数列{}n b 为等差数列;()2求数列{}n a 的通项公式.26.ABC ∆中,D 是BC 上的点,AD 平分∠BAC,ABD ∆面积是ADC ∆面积的2倍. (1)求sin sin BC; (2)若AD =1,DC =22,求BD 和AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.A解析:A 【解析】1353333,1a a a a a ++===,5153355()25522S a a a a =+=⨯==,选A. 3.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.4.C解析:C 【解析】 【分析】由题意可知,()min 19a x y x y ⎡⎤⎛⎫++≥⎢⎥ ⎪⎝⎭⎣⎦,将代数式()1a x y x y ⎛⎫++ ⎪⎝⎭展开后利用基本不等式求出该代数式的最小值,可得出关于a 的不等式,解出即可. 【详解】()11a ax yx y a x y y x⎛⎫++=+++ ⎪⎝⎭Q .若0xy <,则0yx<,从而1ax y a y x +++无最小值,不合乎题意;若0xy >,则0yx>,0x y >.①当0a <时,1ax ya y x+++无最小值,不合乎题意; ②当0a =时,111ax y y a y x x +++=+>,则()19a x y x y ⎛⎫++ ⎪⎝⎭≥不恒成立; ③当0a >时,())211111a ax y x y a a a x y y x⎛⎫++=+++≥+=+=⎪⎝⎭,当且仅当=y 时,等号成立.所以,)219≥,解得4a ≥,因此,实数a 的最小值为4.故选:C. 【点睛】本题考查基本不等式恒成立问题,一般转化为与最值相关的不等式求解,考查运算求解能力,属于中等题.5.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c,由sin 4B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC V中,sin 4B =,4ABC S =△1sin 24ABC S ac B ==V ,联立521sin 24sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin 4B =,所以3cos 4B ==所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故14b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.6.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.8.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.9.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<. 故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.10.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.11.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.12.B解析:B 【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.二、填空题13.【解析】由已知是与的等比中项则则当且仅当时等号成立故答案为2【点睛】本题考查基本不等式的性质等比数列的性质其中熟练应用乘1法是解题的关键 解析:【解析】由已知0,0a b >>33a 与b 的等比中项,则233,1a b ab =⋅∴=则111111122ab a b ab a b a b a b ⎛⎫⎛⎫+=+⨯=+⨯=+≥= ⎪ ⎪⎝⎭⎝⎭,当且仅当1a b ==时等号成立 故答案为2【点睛】本题考查基本不等式的性质、等比数列的性质,其中熟练应用“乘1法”是解题的关键.14.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则 解析:4 【解析】 【分析】 【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=15.【解析】【分析】先利用指数函数的单调性得再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法属中档题 解析:()1,3-【解析】 【分析】先利用指数函数的单调性得2230x x --<,再解一元二次不等式即可. 【详解】22321 ()1230132x x x x x -->⇔--<⇔-<<. 故答案为()1,3- 【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题.16.16【解析】【分析】由正余弦定理可得由平面向量的数量积公式有:得解【详解】由余弦定理可得:所以由正弦定理得:所以所以即故答案为16【点睛】本题考查了余弦定理正弦定理及向量的数量积属简单题解析:16 【解析】 【分析】由正余弦定理可得cos A ∠,由平面向量的数量积公式有:cos 165AB AC AB AC A u u u r u u u r u u u r u u u r ⋅=∠==,得解.【详解】由余弦定理可得:2222cos13540AC AB BC AB BC =+-⨯=o ,所以AC = 由正弦定理得:sin sin135BC ACA =∠o,所以sin A ∠=所以cos 5A ∠=,即cos 16AB AC AB AC A u u u r u u u r u u u r u u u r⋅=∠==, 故答案为16 【点睛】本题考查了余弦定理、正弦定理及向量的数量积,属简单题17.【解析】分析:利用题设中的等式把的表达式转化成展开后利用基本不等式求得y 的最小值详解:因为所以所以(当且仅当时等号成立)则的最小值是总上所述答案为点睛:该题考查的是有关两个正数的整式形式和为定值的情 解析:92【解析】分析:利用题设中的等式,把y 的表达式转化成14()()2a b a b++,展开后,利用基本不等式求得y 的最小值. 详解:因为2a b +=,所以12a b+=,所以14145259()()222222a b b a y a b a b a b +=+=+=++≥+=(当且仅当2b a =时等号成立),则14y a b =+的最小值是92,总上所述,答案为92. 点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.18.【解析】试题分析:因为且为三角形的内角所以又因为所以【考点】正弦定理两角和差的三角函数公式【名师点睛】在解有关三角形的题目时要有意识地考虑用哪个定理更合适或是两个定理都要用要抓住能够利用某个定理的信 解析:2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[()]sin()sin cos cos sin 65B AC A C A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6 【解析】 【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5, 即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=,则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6. 【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.20.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③ 【解析】 【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈ ⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫ ⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫=⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误. 【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫⎪⎝⎭上单调递减,命题②错误;对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫=⎪⎝⎭Q ,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>, 由于该函数为偶函数,当0x π-<<时,()0f x >,又()()()00ff f ππ=-==Q ,所以,该函数在区间[],ππ-上有且只有三个零点.因此,正确命题的序号为①③. 故答案为:①③. 【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题.三、解答题21.(1)对称轴方程为()212k x k Z ππ=+∈(2)单调递增区间为[0,]12π和7[,]12ππ【解析】 【分析】(1)由二倍角公式和辅助角公式对函数进行整理,可得()sin(2)3f x x π=+,令2()32x k k Z πππ+=+∈即可求出对称轴.(2)由(1)知,令222()232k x k k Z πππππ-+++∈剟,即可求出函数的单调递增区间,令0k =和1可求得函数在[0,]π上的单调递增区间. 【详解】解:(1)已知2()sin cos 2f x x x x =+-1sin 2cos 2)222x x =++-, sin(2)3x π=+,令2()32x k k Z πππ+=+∈,解得:()212k x k Z ππ=+∈, 所以函数()f x 的对称轴方程为()212k x k Z ππ=+∈. (2)由(1)得:令:222()232k x k k Z πππππ-+++∈剟,整理得:5()1212k x k k Z ππππ-++∈剟,当0k =和1时, 函数在[0,]π上的单调递增区间为[0,]12π和7[,]12ππ. 【点睛】本题考查了二倍角公式,考查了辅助角公式,考查了三角函数的对称轴求解,考查了三角函数单调区间的求解.本题的关键是对函数解析式的化简.本题的易错点是在求单调区间时,解不等式求错. 22.(Ⅰ)45;(Ⅱ)5665- 或1665. 【解析】【分析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果. 【详解】详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-, 所以()4sin πsin 5αα+=-=. (Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±. 由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++,所以56cos 65β=-或16cos 65β=. 点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 23.(1)证明见解析(2)证明见解析 【解析】 【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】 证明: (1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=, ∴平面//EFG 平面11BDD B . 【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.24.(1)2121sin cos sin cos 41sin cos S S θθθθθθ⎛⎫== ⎪+⎝⎭,;(2)最小值944πθ=, 【解析】 【分析】(1)在Rt ABC ∆中,可用,R θ表示,AB AC ,从而可求其面积,利用三角形相似可得PS 的长度,从而可得2S .(2)令sin 2t θ=,从而可得(]21144,0,14t t S t S ⎛⎫=++∈ ⎪⎝⎭,利用(]4,0,1s t t t=+∈的单调性可求12S S 的最小值.【详解】(1)在Rt ABC ∆中,cos ,sin AB AC θθ==,所以11sin cos 2S θθ=,02πθ⎛⎫∈ ⎪⎝⎭,. 而BC 边上的高为sin cos sin cos 1θθθθ=, 设APS ∆斜边上的为1h ,ABC ∆斜边上的高为2h , 因APS ABC ∆∆:,所以12sin cos sin cos h PS PSBC h θθθθ-==, 故sin cos 1sin cos PS θθθθ=+,故222sin cos 1sin cos S PS θθθθ⎛⎫== ⎪+⎝⎭,02πθ⎛⎫∈ ⎪⎝⎭,.(2)()()212221sin cos 2sin 224sin 2sin cos 1si 1sin cos 2sin cos n cos S S θθθθθθθθθθθθ++===⎛⎫ ⎪+⎝⎭,令(]sin 2,0,1t t θ=∈,则()212214444t t S t t S+⎛⎫==++ ⎪⎝⎭. 令(]4,0,1s t t t=+∈,设任意的1201t t <<≤, 则()()1212121240t t t t s s t t ---=>,故(]4,0,1s t t t=+∈为减函数, 所以min 5s =,故m 12in94S S ⎛⎫= ⎪⎝⎭,此时1t =即4πθ=. 【点睛】直角三角形中的内接正方形的问题,可借助于解直角三角形和相似三角形得到各边与角的关系,三角函数式的最值问题,可利用三角变换化简再利用三角函数的性质、换元法等可求原三角函数式的最值. 25.(1)见解析;(2)21n a n =+ 【解析】 【分析】(1)已知递推关系取倒数,利用等差数列的定义,即可证明.(2)由(1)可知数列{}n b 为等差数列,确定数列{}n b 的通项公式,即可求出数列{}n a 的通项公式. 【详解】()1证明:10a Q ≠,且有122nn n a a a +=+, ∴()*0n a n N ≠∈,又1n nb a =Q , ∴1121111222n n n n n n a b b a a a +++===+=+,即()*112n n b b n N +-=∈,且1111b a ==, ∴{}n b 是首项为1,公差为12的等差数列. ()2解:由()1知()111111222n n n b b n -+=+-⨯=+=,即112nn a+=, 所以21n a n =+.【点睛】本题考查数列递推关系、等差数列的判断方法,考查了运用取倒数法求数列的通项公式,考查了推理能力和计算能力,属于中档题. 26.(1)12;(2)1 【解析】试题分析:(1)借助题设条件运用三角形的面积公式求解;(2)借助题设余弦定理立方程组求解. 试题解析: (1),1sin 2ACD S AC AD CAD ∆=⋅⋅∠, ∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =. 由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =, ∴2BD =.设AC x =,则2AB x =,在△ABD 与△ACD 中,由余弦定理可知,2222cos 222AD BD AB ADB AD BD +-∠==⋅222232cos 22xAD CD AC ADC AD CD -+-∠==⋅ ∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232222x-=1x =, 即1AC =.考点:三角形的面积公式正弦定理余弦定理等有关知识的综合运用.。
【压轴卷】高一数学下期末试卷带答案

【压轴卷】高一数学下期末试卷带答案一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( ) A .0d >,170S > B .0d <,170S < C .0d >,180S < D .0d >,180S >3.ABC V 中,已知sin cos cos a b cA B C==,则ABC V 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形4.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .05.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?6.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱111ABC A B C -,其中AC BC ⊥,若11AA AB ==,当“阳马”即四棱锥11B A ACC -体积最大时,“堑堵”即三棱柱111ABC A B C -的表面积为A 21B 31C .232D .3327.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)8.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 9.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫ ⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称10.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .7B .6C .5D .411.如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M 是线段ED 的中点,则( )A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线12.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30oB .45oC .60oD .90o二、填空题13.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 14.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.15.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.16.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________ 件.17.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 18.设12a =,121n n a a +=+,21n n n a b a +=-,*n N ∈,则数列{}n b 的通项公式n b = .19.设,x y 满足约束条件210,{0,0,0,x y x y x y --≤-≥≥≥若目标函数()0,0z ax by a b =+>>的最大值为1,则14a b+的最小值为_________.20.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________. 三、解答题21.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛. 22.已知2()sin cos 2f x x x x =+- (1)求函数()f x 的对称轴方程;(2)求函数()f x 在[0,]π上的单调递增区间.23.已知数列{}n a 满足:()*22,21,n n a S n a n N ==+∈(1)设数列{}n b 满足()11nn b n a =•+,求{}n b 的前n 项和n T :(2)证明数列{}n a 是等差数列,并求其通项公式;24.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上. (1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项公式;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .25.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.26.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.D解析:D 【解析】 【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论. 【详解】9810S S S <<Q ,90a ∴<,9100a a +>,100a ∴>,0d >. 179017S a =<∴,()1891090S a a =+>.故选:D. 【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.3.B解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC V 为等腰直角三角形.故选:B .4.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点,22⎛ ⎝⎭,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.5.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.6.C解析:C 【解析】分析:由四棱锥11B A ACC -的体积是三棱柱体积的23,知只要三棱柱体积最大,则四棱锥体积也最大,求出三棱柱的体积后用基本不等式求得最大值,及取得最大值时的条件,再求表面积.详解:四棱锥11B A ACC -的体积是三棱柱体积的23,11111122ABC A B C V AC BC AA AC BC -=⋅⋅=⋅222111()444AC BC AB ≤+==,当且仅当AC BC ==时,取等号.∴12(1)122222S =⨯⨯+++⨯32+=. 故选C .点睛:本题考查棱柱与棱锥的体积,考查用基本不等式求最值.解题关键是表示出三棱柱的体积.7.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C.8.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确;∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.9.D解析:D 【解析】()sin(2)cos(2))2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.10.B解析:B 【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.考点:本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力.11.B解析:B 【解析】 【分析】利用垂直关系,再结合勾股定理进而解决问题. 【详解】如图所示, 作EO CD ⊥于O ,连接ON ,过M 作MF OD ⊥于F . 连BF ,Q 平面CDE ⊥平面ABCD .,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴∆与EON ∆均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,35,,72MF BF BM ==∴=.BM EN ∴≠,故选B . 【点睛】本题考查空间想象能力和计算能力, 解答本题的关键是构造直角三角性.12.A解析:A 【解析】 【分析】由题意,取AC 的中点O ,连结1,BO C O ,求得1BC O ∠是1BC 与侧面11ACC A 所成的角,在1BC O ∆中,即可求解. 【详解】由题意,取AC 的中点O ,连结1,BO C O ,因为正三棱柱111ABC A B C -2,底面三角形的边长为1, 所以1,BO AC BO AA ⊥⊥,因为1AC AA A ⋂=,所以BO ⊥平面11ACC A , 所以1BC O ∠是1BC 与侧面11ACC A 所成的角, 因为222113131(),(2)()222BO C O =-==+=, 所以11332tan 332BO BC O OC ∠===, 所以0130BC O ∠=,1BC 与侧面11ACC A 所成的角030.【点睛】本题主要考查了直线与平面所成的角的求解,其中解答中空间几何体的线面位置关系,得到1BC O ∠是1BC 与侧面11ACC A 所成的角是解答的关键,着重考查了推理与运算能力,以及转化与化归思想,属于中档试题.二、填空题13.【解析】【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数 3【解析】 【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】 因为函数()()()3sin 2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈.又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 14.36π【解析】三棱锥S −ABC 的所有顶点都在球O 的球面上SC 是球O 的直径若平面SCA⊥平面SCBSA=ACSB=BC 三棱锥S −ABC 的体积为9可知三角形SBC 与三角形SAC 都是等腰直角三角形设球的半解析:36π 【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径, 若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得112932r r r ⨯⨯⨯⨯= ,解得r=3. 球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值 解析:3π【解析】 【分析】先利用周期公式求出ω,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出m 的表达式,即可求出m 的最小值.【详解】由2T ππω==得2ω=,所以sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移()0m m >个单位后,得到sin[2()]sin(22)33y x m x m ππ=++=++,因为其图像关于原点对称,所以函数为奇函数,有2,3m k k Z ππ+=∈,则62k m ππ=-+,故m 的最小值为3π.【点睛】本题主要考查三角函数的性质以及图像变换,以及sin()y A x ωϕ=+ 型的函数奇偶性判断条件.一般地sin()y A x ωϕ=+为奇函数,则k ϕπ=;为偶函数,则2k πϕπ=+;cos()y A x ωϕ=+为奇函数,则2k πϕπ=+;为偶函数,则k ϕπ=.16.18【解析】应从丙种型号的产品中抽取件故答案为18点睛:在分层抽样的过程中为了保证每个个体被抽到的可能性是相同的这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比即ni解析:18 【解析】应从丙种型号的产品中抽取30060181000⨯=件,故答案为18. 点睛:在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即n i ∶N i =n ∶N .17.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6 【解析】 【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6. 【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.18.2n+1【解析】由条件得且所以数列是首项为4公比为2的等比数列则解析:2n+1 【解析】由条件得111112222222111n n n n n n n n a a a b b a a a ++++++++====---,且14b =,所以数列{}n b 是首项为4,公比为2的等比数列,则11422n n n b -+=⋅=.19.【解析】【分析】【详解】试题分析:试题分析:由得平移直线由图象可知当过时目标函数的最大值为即则当且仅当即时取等号故的最小值为考点:1利用可行域求线性目标函数的最值;2利用基本不等式求最值【方法点晴】 解析:9【解析】 【分析】 【详解】试题分析:试题分析: 由()0,0z ax by a b =+>>得a zy x b b=-+,平移直线,a z y x b b =-+由图象可知,当a zy x b b=-+过()1,1A 时目标函数的最大值为1,即1z a b =+=,则1414()a b a b a b ⎛⎫+=++ ⎪⎝⎭4145549b a a b =+++≥+=+=,当且仅当4b a a b =,即122b a ==时,取等号,故14a b+的最小值为9.考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值. 【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题.含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键.20.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:…… 解析:112π【解析】 【分析】 由2x k πωπ=+可求得n A 的横坐标,进而得到n A 的坐标;由正弦函数周期特点可知只需分析以1A ,2n A ,41n A -为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得n ω的通项公式,代入6n =即可得到结果. 【详解】由2x k πωπ=+,k Z ∈得:()212k x πω+=,k Z ∈1,12A πω⎛⎫∴ ⎪⎝⎭,23,12A πω⎛⎫- ⎪⎝⎭,35,12A πω⎛⎫ ⎪⎝⎭,47,12A πω⎛⎫- ⎪⎝⎭,…… 若123A A A ∆为等腰直角三角形,则212232,2,240A A A A πππωωω⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭u u u u r u u u u r解得:2πω=,即12πω=同理若147A A A ∆为等腰直角三角形,则14470A A A A ⋅=u u u u r u u u u u r 232πω∴= 同理若1611A A A ∆为等腰直角三角形,则166110A A A A ⋅=u u u u r u u u u u r 352πω∴= 以此类推,可得:()212n n πω-= 6112πω∴=故答案为:112π【点睛】本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.三、解答题21.(1)的平均数为8,标准差为2,乙的平均数为8,标准差为305;(2)乙 【解析】 【分析】 【详解】(1)根据题中所给数据,则甲的平均数为,乙的平均数为,甲的标准差为,乙的标准差为,故甲的平均数为8,标准差为2,乙的平均数为8,标准差为30; (2),且,乙的成绩较为稳定, 故选择乙参加射箭比赛. 考点:平均数与方差 22.(1)对称轴方程为()212k x k Z ππ=+∈(2)单调递增区间为[0,]12π和7[,]12ππ【解析】 【分析】(1)由二倍角公式和辅助角公式对函数进行整理,可得()sin(2)3f x x π=+,令2()32x k k Z πππ+=+∈即可求出对称轴.(2)由(1)知,令222()232k x k k Z πππππ-+++∈剟,即可求出函数的单调递增区间,令0k =和1可求得函数在[0,]π上的单调递增区间. 【详解】解:(1)已知2()sin cos f x x x x =+1sin 2cos 2)2x x =+ sin(2)3x π=+,令2()32x k k Z πππ+=+∈,解得:()212k x k Z ππ=+∈, 所以函数()f x 的对称轴方程为()212k x k Z ππ=+∈. (2)由(1)得:令:222()232k x k k Z πππππ-+++∈剟,整理得:5()1212k x k k Z ππππ-++∈剟,当0k =和1时, 函数在[0,]π上的单调递增区间为[0,]12π和7[,]12ππ. 【点睛】本题考查了二倍角公式,考查了辅助角公式,考查了三角函数的对称轴求解,考查了三角函数单调区间的求解.本题的关键是对函数解析式的化简.本题的易错点是在求单调区间时,解不等式求错. 23.(1)()1122n n T n +=-⋅+(2)证明见解析,n a n =【解析】 【分析】(1)令n =1,即可求出11a =,计算出2nn b n =•,利用错位相减求出n T 。
【压轴卷】高一数学下期末模拟试题(附答案)

【压轴卷】高一数学下期末模拟试题(附答案)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b= ABC .2D .32.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元3.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,54.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,sin B =,ABC S =△b =( ) A .B .C D 5.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( ) A .53B .103C .56D .1166.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 28.要得到函数223cos sin 23y x x =+-的图象,只需将函数2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 9.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .10.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-11.函数2ln ||y x x =+的图象大致为( )A .B .C .D .12.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=二、填空题13.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________. 14.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________. 15.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .16.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为__________. 17.函数2cos 1y x =+的定义域是 _________.18.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f(2|a-1|)>f (2-),则a 的取值范围是______.19.函数f(x)为奇函数,且x>0时,f(x)x +1,则当x<0时,f(x)=________.20.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩若()()10f a f +=,则实数a 的值等于________.三、解答题21.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程.22.已知向量(3,2)a =-r,(2,1)=r b ,(3,1)c =-r ,,m t ∈R .(1)求||a tb +r r的最小值及相应的t 的值;(2)若a mb -r r 与c r共线,求实数m .23.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项.数列{}n b 中,12b =,点()1,n n P b b +在直线2y x =+上. (1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项公式;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .24.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .25.已知平面向量a r ,b r满足1a b ==r r .(1)1a b -=r r ,求a r 与b r的夹角;(2)若对一切实数x ,不等式a xb a b +≥+r r r r 恒成立,求a r 与b r的夹角θ.26.已知数列{}n a 满足()*112112n n n n na a a n Nb a a +==∈=+,,,. ()1证明数列{}n b 为等差数列;()2求数列{}n a 的通项公式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.3.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C4.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c ,由sin 4B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC V中,sin 4B =,4ABC S =△1sin 24ABC S ac B ==V ,联立521sin 2sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin 4B =,所以3cos 4B ==所以在ABC V 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.5.A解析:A 【解析】 【分析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,可得345127()a a a a a ++=+,5100S =,求出3a ,根据等差数列的通项公式,得到关于d 关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为{}n a ,设公差为d , 依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A. 【点睛】本题以数学文化为背景,考查等差数列的前n 项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.6.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.7.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2,故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.8.C解析:C 【解析】 【分析】化简函数223cos sin 23y x x =+-,然后根据三角函数图象变换的知识选出答案. 【详解】依题意2ππ23cos sin 232sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+-=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.9.D解析:D 【解析】 【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
【压轴卷】高一数学下期末试卷及答案(1)

【压轴卷】高一数学下期末试卷及答案(1)一、选择题1.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .102.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.6 10.0 11.3 11.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元3.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .05.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-6.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或 C .{}21x x -<<D .{}21x x x <->或7.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 8.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .49.设函数()sin()cos()f x x x ωϕωϕ=+-+0,||2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且f x f x -=()(),则( )A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增B .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递减C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减D .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增10.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭11.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.在ABC ∆中,根据下列条件解三角形,其中有一解的是( )A .7a =,3b =,30B =o B .6b =,52c =,45B =oC .10a =,15b =,120A =oD .6b =,63c =,60C =o二、填空题13.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 14.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________15.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.16.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 17.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.18.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.19.若两个向量a v 与b v 的夹角为θ,则称向量“a b ⨯v v”为向量的“外积”,其长度为sin a b a b θ⨯=v v v v .若已知1a =v ,5b =v ,4a b ⋅=-v v ,则a b ⨯=v v .20.已知()()2,3,4,3A B -,点P 在直线AB 上,且32AP PB =u u u v u u u v,则点P 的坐标为________三、解答题21.已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围. 22.已知函数()sin()(0,0)3f x A x A πωω=+>>的部分图象如图所示.(1)求A 和ω的值;(2)求函数()y f x =在[0,]π的单调增区间;(3)若函数()()1g x f x =+在区间(,)a b 上恰有10个零点,求b a -的最大值. 23.如图所示,为美化环境,拟在四边形ABCD 空地上修建两条道路EA 和ED ,将四边形分成三个区域,种植不同品种的花草,其中点E 在边BC 的三等分点处(靠近B 点),3BC =百米,BC CD ⊥,120ABC ∠=o ,21EA =百米,60AED ∠=o . (1)求ABE △区域的面积;(2)为便于花草种植,现拟过C 点铺设一条水管CH 至道路ED 上,求水管CH 最短时的长.24.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围. 25.已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23xa a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.26.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)0,0.5,0.5,1,...,[)4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由; (3)若该市政府希望使85%的居民每月的用水量不超过标准x (吨),估计x 的值,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.2.B解析:B 【解析】 试题分析:由题,,所以.试题解析:由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.B【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛⎫ ⎪ ⎪⎝⎭,22,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.5.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--u u u r u u u r u u u r,所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【解析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122ba a⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.7.C解析:C 【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列8.B解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.9.A解析:A 【解析】 【分析】将f(x)化简,求得ωφ,,再进行判断即可. 【详解】()πf x ωx φ,4⎛⎫=+- ⎪⎝⎭∵最小正周期为2ππ,π,ω∴=得ω2=,又f x f x ()()-=为偶函数,所以ππφk π42-=+, k Z ∈∵πφ2<,∴k=-1,()πππφ,f x 2x 444⎛⎫=-∴=--= ⎪⎝⎭,当2k π2x 2k ππ≤≤+,即πk πx k π2≤≤+,f(x)单调递增,结合选项k=0合题意, 故选A. 【点睛】本题考查三角函数性质,两角差的正弦逆用,熟记三角函数性质,熟练计算f(x)解析式是关键,是中档题.10.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示, 从图象知:33022f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.11.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.12.D解析:D 【解析】 【分析】根据三角形解的个数的判断条件得出各选项中对应的ABC ∆解的个数,于此可得出正确选项. 【详解】对于A 选项,17sin 722a B =⨯=,sin a B b ∴>,此时,ABC ∆无解; 对于B 选项,2sin 5252c B ==,sin c B b c ∴<<,此时,ABC ∆有两解; 对于C 选项,120A =o Q ,则A 为最大角,由于a b <,此时,ABC ∆无解;对于D 选项,60C =o Q ,且c b >,此时,ABC ∆有且只有一解.故选D. 【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.二、填空题13.【解析】【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数【解析】 【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-.又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos6-=.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如: 若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈;若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 14.【解析】【分析】【详解】由题意则解得-1<a <7经检验当a=-1时的两个根分别为所以符合题目要求时在区间无实根所以解析:17a -≤<【解析】 【分析】 【详解】由题意,2()34f x x x a '=+-,则(1)(1)0f f ''-<,解得-1<a <7,经检验当a=-1时,2()3410f x x x '=++=的两个根分别为121,13x x=-=-,所以符合题目要求,7a =时,2()3410f x x x '=++=,在区间无实根,所以17a -≤<.15.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60o【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DE DF DD DC ==Q,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠.易知11A BC ∆为等边三角形,1160BA C ∴∠=o.故答案为:60o . 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.17.或【解析】【分析】根据不等式恒成立化简命题为根据一元二次方程有解化简命题为或再根据且命题的性质可得结果【详解】若命题:为真;则解得:若命题:为真则解得:或若命题是真命题则或故答案为或【点睛】解答非命解析:2a ≤-或1a = 【解析】 【分析】根据不等式恒成立化简命题p 为1a ≤,根据一元二次方程有解化简命题q 为2a ≤-或1a ≥,再根据且命题的性质可得结果.【详解】若命题p :“[]1,2x ∀∈,20x a -≥”为真; 则10a -≥, 解得:1a ≤,若命题q :“x ∃∈R ,2220x ax a ++-=”为真, 则()24420a a ∆=--≥,解得:2a ≤-或1a ≥,若命题“p q ∧”是真命题,则2a ≤-,或1a =, 故答案为2a ≤-或1a = 【点睛】解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.18.2x﹣4y+3=0【解析】【分析】要∠ACB最小则分析可得圆心C到直线l的距离最大此时直线l与直线垂直即可算出的斜率求得直线l的方程【详解】由题得当∠ACB最小时直线l与直线垂直此时又故又直线l过点解析:2x﹣4y+3=0【解析】【分析】要∠ACB最小则分析可得圆心C到直线l的距离最大,此时直线l与直线CM垂直,即可算出CM的斜率求得直线l的方程.【详解】由题得,当∠ACB最小时,直线l与直线CM垂直,此时102 112CMk-==-- ,又1CM lk k⋅=-,故12lk=,又直线l过点1(,1)2M,所以11:1()22l y x-=-,即2430x y-+= .故答案为:2430x y-+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.19.3【解析】【分析】【详解】故答案为3【点评】本题主要考查以向量的数量积为载体考查新定义利用向量的数量积转化是解决本题的关键解析:3【解析】【分析】【详解】44155a ba b a b cos cosa bθθ⋅-⋅∴-⨯vvv vv vvvQ====33[0sin15355sin a b a bθπθθ∈∴⨯=⨯⨯v vQvv,),=,==故答案为3. 【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,20.【解析】【分析】设点得出向量代入坐标运算即得的坐标得到关于的方程从而可得结果【详解】设点因为点在直线且或即或解得或;即点的坐标是【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题意解析:(8,-15), 163,55⎛⎫- ⎪⎝⎭【解析】 【分析】设点(),P x y ,得出向量33,22AP BP AP BP ==-u u u r u u u r u u u r u u ur ,代入坐标运算即得P 的坐标,得到关于,x y 的方程,从而可得结果. 【详解】设点(),P x y ,因为点P 在直线,且3||||2AP PB =u u u r u u u r,33,22AP BP AP BP ∴==-u u u r u u u r u u u r u u u r ,3(2,3)(4,3)2x y x y ∴--=-+或, 3(2,3)(4,3)2x y x y ∴--=--+,即243122639x x y y -=-⎧⎨-=+⎩或243122639x x y y -=-+⎧⎨-=--⎩, 解得815x y =⎧⎨=-⎩或16535x y ⎧=⎪⎪⎨⎪=-⎪⎩; 即点P 的坐标是(8,-15),163,55⎛⎫- ⎪⎝⎭. 【点睛】本题考查了平面向量的线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.三、解答题21.(1)[)1,+∞;(2)5,4⎛⎤-∞ ⎥⎝⎦. 【解析】【分析】(1)由于f(x)=|x+1|﹣|x﹣2|31211232xx xx--⎧⎪=--≤≤⎨⎪⎩,<,,>,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max54=,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|31211232xx xx--⎧⎪=--≤≤⎨⎪⎩,<,,>,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)22231311232x x xx x xx x x⎧-+-≤-⎪=-+--⎨⎪-++≥⎩,,<<,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x12=->1,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x32=∈(﹣1,2),∴g(x)≤g(32)9942=-+-154=;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x12=<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max54 =,∴m的取值范围为(﹣∞,54 ].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.22.(1)2A =,2ω=;(2)[0,]12π和7[,]12ππ;(3)173π. 【解析】【试题分析】(1)直接依据图像中所提供的数据信息可得2243124TA πππω==-=,,进而求出2ω=;(2)依据正弦函数的单调区间解不等式222232k x k πππππ-≤+≤+求出单调增区间51212x k ππππ-≤≤+,(k Z ∈),然后求出函数()y f x =在[]0,π的单调增区间为0,12π⎡⎤⎢⎥⎣⎦和7,12ππ⎡⎤⎢⎥⎣⎦.(3)先求出函数()2sin 213f x x π⎛⎫=+=- ⎪⎝⎭中的512x k ππ=+或34x k ππ=+(k Z ∈),进而借助周期性求出b a -的最大值为217533T ππ+=。
【压轴题】高一数学下期末模拟试卷(附答案)

【压轴题】高一数学下期末模拟试卷(附答案)一、选择题1.若,则( )A .B .C .D .2.函数()23sin 23f x x π⎛⎫=-⎪⎝⎭的一个单调递增区间是 A .713,1212ππ⎡⎤⎢⎥⎣⎦ B .7,1212ππ⎡⎤⎢⎥⎣⎦C .,22ππ⎡⎤-⎢⎥⎣⎦D .5,66ππ⎡⎤-⎢⎥⎣⎦3.当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)4.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭5.要得到函数23sin 23y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 6.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π7.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 8.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .609.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)210.已知二项式2(*)nx n N x ⎛∈ ⎝的展开式中第2项与第3项的二项式系数之比是2︰5,则3x 的系数为( ) A .14B .14-C .240D .240-11.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4512.在ABC ∆中,根据下列条件解三角形,其中有一解的是( ) A .7a =,3b =,30B =o B .6b =,52c =,45B =o C .10a =,15b =,120A =o D .6b =,63c =60C =o二、填空题13.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________14.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b -…,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______. 15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =___.16.已知圆的方程为x 2+y 2﹣6x ﹣8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为17.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 18.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有________个. 19.若a 10=12,a m =22,则m =______. 20.若1tan 46πα⎛⎫-= ⎪⎝⎭,则tan α=____________. 三、解答题21.在中角所对的边分别是,,,.求的值; 求的面积.22.a b c 分别为ABC ∆内角A 、B 、C 的对边,已知tan 3sin a B b A =. (1)求cos B ;(2)若3a =,17b =ABC ∆的面积.23.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值; (2)当ABC ∆的面积为3时,求a+c 的值.24.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值. 25.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值. 26.如图,平行四边形ABCD 中,E ,F 分别是BC ,DC 的中点,G 为BF 与DE 的交点,若AB a =u u u v v ,AD b =u u u v v ,试以a v ,b v 为基底表示DE u u u v 、BF u u u v 、CG u u u v.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.2.A解析:A 【解析】 【分析】首先由诱导公式对函数的解析式进行恒等变形,然后求解其单调区间即可. 【详解】 函数的解析式即:()223sin 23sin 233f x x x ππ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,其单调增区间满足:()23222232k x k k Z πππππ+≤-≤+∈, 解得:()7131212k x k k Z ππππ+≤≤+∈, 令0k =可得函数的一个单调递增区间为713,1212ππ⎡⎤⎢⎥⎣⎦. 故选A . 【点睛】本题主要考查诱导公式的应用,三角函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.3.C解析:C 【解析】当0k =时,不等式210kx kx -+>可化为10>,显然恒成立;当0k ≠时,若不等式210kx kx -+>恒成立,则对应函数的图象开口朝上且与x 轴无交点,则240k k k >⎧⎨=-<⎩V 解得:04k <<,综上k 的取值范围是[)0,4,故选C.4.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.5.C解析:C 【解析】 【分析】化简函数223sin 23y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.6.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.8.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.9.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)e 2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.10.C解析:C 【解析】 【分析】由二项展开式的通项公式为()12rn rr r nT C x -+⎛= ⎝及展开式中第2项与第3项的二项式系数之比是2︰5可得:6n =,令展开式通项中x 的指数为3,即可求得2r =,问题得解. 【详解】二项展开式的第1r +项的通项公式为()12rn rr r nT Cx -+⎛= ⎝由展开式中第2项与第3项的二项式系数之比是2︰5,可得:12:2:5n n C C =. 解得:6n =.所以()()366216221rr n rr rr r r n T C x C x---+⎛==- ⎝ 令3632r -=,解得:2r =, 所以3x 的系数为()2262621240C --=故选C 【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题.11.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.12.D解析:D 【解析】 【分析】根据三角形解的个数的判断条件得出各选项中对应的ABC ∆解的个数,于此可得出正确选项. 【详解】对于A 选项,17sin 722a B =⨯=,sin a B b ∴>,此时,ABC ∆无解; 对于B 选项,2sin 525c B ==,sin c B b c ∴<<,此时,ABC ∆有两解; 对于C 选项,120A =o Q ,则A 为最大角,由于a b <,此时,ABC ∆无解; 对于D 选项,60C =o Q ,且c b >,此时,ABC ∆有且只有一解.故选D. 【点睛】本题考查三角形解的个数的判断,解题时要熟悉三角形个数的判断条件,考查推理能力,属于中等题.二、填空题13.【解析】【分析】先还原几何体再根据柱体体积公式求解【详解】空间几何体为一个棱柱如图底面为边长为的直角三角形高为的棱柱所以体积为【点睛】本题考查三视图以及柱体体积公式考查基本分析求解能力属基础题解析:32【解析】【分析】先还原几何体,再根据柱体体积公式求解【详解】 空间几何体为一个棱柱,如图,底面为边长为1,3的直角三角形,高为3的棱柱,所以体积为1313322⨯⨯⨯=【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题14.【解析】【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有 解析:725【解析】【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -„所有可能情况,代入公式得到结果。
高一数学下学期期末押题试卷01(测试范围:平面向量、解三角形、复数、立体几何、统计概率)含参考答案

2023-2024学年高一数学下学期期末押题试卷01本套试卷根据九省联考题型命制,题型为8+3+3+5模式考试时间:120分钟 满分:150分 测试范围:平面向量+解三角形+复数+立体几何+统计概率一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.上海市实验学校艺术节举行弹钢琴比赛,现有21位选手报名参赛,初赛成绩各不相同,取前10名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道21名同学成绩的( ) A .平均数B .中位数C .众数D .方差2.已知i 为虚数单位,(,)z a bi a b R =+∈,若(1)[(1)]2z a z b i ai +−+−=−,则复数z 在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知a ,b 为单位向量,且(4)(3)a b a b −⊥+ ,则a,b 夹角的余弦值为( ) A .711−B .111−C .111D .7114.设函数()sin()(0)4f x x πωω+>的最小正周期为T .若23T ππ<<,且对任意x R ∈,()()03f x f π+ 恒成立,则(ω= )A .23B .34C .45D .565.已知正方体1111ABCD A B C D −的边长为2,M 是1BB 的中点,点P 在正方体内部或表面上,且//MP 平面11AB D ,则动点P 的轨迹所形成的区域面积是( ) AB.C.D.6.在ABC ∆中,45,3,tan 3AB AC A===,点M ,N 分别在边AB ,BC 移动,且MN BN =,沿MN 将BMN ∆折起来得到棱锥B AMNC −,则该棱锥的体积的最大值是( )ABCD .309128 7.已知0m >,函数(2)(1),1()cos(3),4x ln x x m f x x m x ππ−+−<= +< 恰有3个零点,则m 的取值范围是( ) A .53[,)[2,)12124πππB .53[,)[2,]12124πππC .53(0,)[2,)124ππ D .53(0,)[2,]124ππ8.如图,三棱锥P ABC −中,PA ⊥平面ABC ,且ABC ∆为等边三角形,若3AB =,2PA =,则三棱锥P ABC −的外接球的表面积为( )A .4πB .16πC .8πD .32π二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.为了得到函数sin(2)3yx π−的图像,只需将函数sin y x =的图像所有点( )A .横坐标缩短到原来的12(纵坐标不变),再将所得图像向右平移6π个单位长度B .横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向右平移3π个单位长度C .向右平移3π个单位长度,再把所得图像各点横坐标缩短到原来的12(纵坐标不变)D .向右平移6π个单位长度,再把所得图像各点横坐标伸长到原来的2倍(纵坐标不变)10.ABC ∆中,下列说法不正确的是( ) A .sin sin a A b B =B .若222a b c +>,则ABC ∆为锐角三角形 C .若A B >,则sin sin A B >D .若2sin sin sin B C A +=,则2b c a +=11.如图,在边长为2的正方形123SG G G 中,E 、F 分别是12G G 、23G G 的中点.若沿SE 、SF 及EF 把这个正方形折成一个四面体,使1G 、2G 、3G 三点重合,重合后的点记为G ,则( )A .GS EF ⊥B .点G 到平面SEF 的距离为34C .三棱锥G SEF −的外接球表面积为6πD .二面角E GSF −−等于45°三、填空题:本题共3小题,每小题5分,共15分.12.某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所对学生进行视力调查,则应从75所中学中抽取 所学校.13.已知正四棱台的上、下底面边长分别是1和2,所有顶点都在球O 的球面上,若球O 的表面积为8π,则此正四棱台的侧棱长为 .14.在平行四边形ABCD 中,2,3,2,1AB AD AM MD MB MC ===⋅=,则BAD ∠= :点P 是线段BC 上的一个动点,当PA PB ⋅ 最小时,||BP =.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2B bC c =. (1)求角B ;(2)若b =3c a =,求ABC ∆的面积.16.为了解某市家庭用电量的情况,统计部门随机调查了200户居民去年一年的月均用电量(单位:)kW h ⋅,将全部数据按区间[0,50),[50,100),…,[350,400]分成8组,得到如下的频率分布直方图:(1)求图中a 的值;并估计这200户居民月用电量的平均值(同一组中的数据用该组区间的中点值为代表);(2)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,使75%的居民缴费在第一档,20%的居民缴费在第二档,其余5%的居民缴费在第三档,试基于统计数据确定各档月均用电量的范围(计算百分位数时,结果四舍五入取整数).17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:25(3),02()5050,251x x W x x x += −< + ,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 函数关系式;(218.如图,在正三棱柱111ABC A B C −中,D 为AB 的中点,2AB =,13AA =. (1)求证:平面1A CD ⊥平面11ABB A ; (2)求点A 到平面1A CD 的距离.19.如图,已知四棱锥P ABCD −的底面ABCD 为梯形,//AB CD ,PA PD PB ==,1BC CD ==,2AB =,3BCD π∠=,直线PA 与底面ABCD 所成角为4π. (1)若E 为PD 上一点且2PE =,证明://PB 平面ACE ; (2)求二面角P AD B −−的余弦值.2023-2024学年高一数学下学期期末押题试卷01本套试卷根据九省联考题型命制,题型为8+3+3+5模式考试时间:120分钟满分:150分测试范围:平面向量+解三角形+复数+立体几何+统计概率一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.上海市实验学校艺术节举行弹钢琴比赛,现有21位选手报名参赛,初赛成绩各不相同,取前10名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道21名同学成绩的()A.平均数B.中位数C.众数D.方差【分析】根据题意,21位选手成绩的中位数是第11名的成绩,结合中位数的定义分析可得答案.【解答】解:根据题意,21位选手成绩的中位数是第11名的成绩,取前10名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道21名同学成绩的中位数.故选:B.【点评】本题考查众数、中位数、平均数的定义,注意中位数的计算公式,属于基础题.2.已知i为虚数单位,(,)z a bi a b R=+∈,若(1)[(1)]2z a z b i ai+−+−=−,则复数z在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据已知条件,结合共轭复数的定义,复数的四则运算,复数相等的条件,求出z,再结合复数的几何意义,即可求解.【解答】解:z a bi=+,∴z a bi=−,(1)[(1)](1)[](1)()(1)2z a z b i a bi a a bi i bi bi a i a b ab i ai+−+−=−+−++−=−+=++−=−,∴12a bab a+=−=−,解得11ab=−=,1z i∴=−+,∴复数z在复平面上对应的点(1,1)−位于第二象限.故选:B.【点评】本题主要考查复数的四则运算,以及复数的性质,属于基础题.3.已知a,b 为单位向量,且(4)(3)a b a b −⊥+ ,则a ,b 夹角的余弦值为( ) A .711−B .111−C .111D .711【分析】利用向量的垂直关系,求解向量的数量积,然后求解向量的夹角即可.【解答】解:a,b 为单位向量,且(4)(3)a b a b −⊥+ ,可得22(4)(3)411341130a b a b a a b b a b −⋅+=+⋅−=+⋅−= ,解得111a b ⋅=−,可得1||||cos ,11a b a b <>=−,所以1cos ,11a b <>=−,故选:B .【点评】本题考查向量的数量积的求法,向量的夹角的求法,考查转化思想以及计算能力,是中档题.4.设函数()sin()(0)4f x x πωω+>的最小正周期为T .若23T ππ<<,且对任意x R ∈,()()03f x f π+ 恒成立,则(ω= )A .23B .34C .45D .56【分析】由题意,根据23T ππ<<,求得213ω<<.再根据()sin()1334f πωππ=+=−为最小值,求出ω的值.【解答】解:函数()sin()(0)4f x x πωω+>的最小正周期为2T πω=,若23T ππ<<,则223πππω<<,即213ω<<,故排除A . 对任意x R ∈,()()03f x f π+ 恒成立,即()sin()1334f πωππ=+=−为最小值,故有2342k ωππππ+=+,k Z ∈,即334k ω=+,k Z ∈. 则ω可以为34,但不可为45和56. 故选:B .【点评】本题主要考查正弦函数的周期性和最小值,属于中档题.5.已知正方体1111ABCD A B C D −的边长为2,M 是1BB 的中点,点P 在正方体内部或表面上,且//MP 平面11AB D ,则动点P 的轨迹所形成的区域面积是( )A B . C .D .【分析】分别取11B C 、11C D 、1DD 、DA 、AB 的中点E 、F 、G 、H 、N ,根据题意可得点P 的轨迹为正六边形MEFGHN ,由此求得该正六边形MEFGHN 的面积即可.【解答】解:如图所示,E ,F ,G ,H ,N 分别为11B C ,11C D ,1DD ,DA ,AB 的中点, 则11////EF B D NH ,1////MN B A FG , ∴平面//MEFGHN 平面11AB D ,∴动点P 的轨迹是六边形MEFGHN 及其内部.正方体1111ABCD A B C D −的边长为2,EF FG GH HN NM ME ∴======,即六边形EFGHNM则其面积162S =×故选:C .【点评】本题考查动点的轨迹所形成的区域面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.6.在ABC ∆中,45,3,tan 3AB AC A===,点M ,N 分别在边AB ,BC 移动,且MN BN =,沿MN 将BMN ∆折起来得到棱锥B AMNC −,则该棱锥的体积的最大值是( )A B C D .309128【分析】根据题意,可得ABC ∆的具体形状,可得当面MNB ⊥面AMNC 时,此时的点B 到底面AMNC的距离最大,设2BM x =,将四棱锥中底面积和高,都用x 表示出来,整理出体积的函数,利用导数求最值,可得答案. 【解答】解:由4tan 3A =得3cos 5A =,由余弦定理得4CB =,则ABC ∆是直角三角形,C 为直角,对MN 的任何位置,当面MNB ⊥面AMNC 时,此时的点B 到底面AMNC 的距离最大,此时NMB ∠即为MB 与底面AMNC 所成的角, 设2BM x =, 在MNB ∆中,23133tan ,2tan ,sin sin 4245MNB B S x x B x NMB B ∆==⋅⋅⋅=∠==, 点B 到底面AMNC 的距离6sin 5xh MB NMB =∠=, 则3211362435()(6)(0)3345102B AMNC ABC MNB x x x V S S h x x −∆∆−=−=−⋅=< ,29249(1010B AMNCx V x x −−+′==−+,令0B AMNC V −′=,解得x =,可得下表: 故选:C .【点评】本题考查了棱锥体积的最值计算,属于中档题.7.已知0m >,函数(2)(1),1()cos(3),4x ln x x mf x x m x ππ−+−<= +< 恰有3个零点,则m 的取值范围是( ) A .53[,)[2,)12124πππB .53[,)[2,]12124πππC .53(0,)[2,)124ππD .53(0,)[2,]124ππ【分析】分别求出两段函数各自的零点,作出图像利用数形结合即可得出答案. 【解答】解:0m >,函数(2)(1),1()cos(3),4x ln x x mf x x m x ππ−+−<= +< 恰有3个零点, 设()(2)(1)g x x ln x =−+,()cos(3)4h x x π=+,求导23()(1)(1)111x g x ln x ln x x x −′=++=++−++ 由反比例函数及对数函数性质知()g x ′在(1−,]m ,0m >上单调递增, 且1()02g ′<,g ′(1)0>,故()g x ′在1(,1)2内必有唯一零点0x ,当0(1,)x x ∈−时,()0g x ′<,()g x 单调递减; 当0(x x ∈,]m 时,()0g x ′>,()g x 单调递增; 令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(0,]π之间解得12x π=或512π或34π, 作出图像如图:数形结合可得:53[,)[2,)12124πππ.故选:A .【点评】8.如图,三棱锥P ABC −中,PA ⊥平面ABC ,且ABC ∆为等边三角形,若3AB =,2PA =,则三棱锥P ABC −的外接球的表面积为( )A .4πB .16πC .8πD .32π【分析】根据题给信息,可以将直三棱锥补形成为直棱柱问题,即可用直棱柱外接球问题的求解方法求解.【解答】解:因为是直三棱锥,底面是正三角形,所以可以将图补形成为正三棱柱,如图所示,此时三棱锥四个点的外接球,与三棱柱6个点的外接球是同一个,所以问题转化为求解正三棱柱外接球的问题,设球心为O ,作OO ′⊥平面ABC ,连接O A ′,OA ,则112OO PA ′==,设ABC ∆的外接圆半径为r ,由正弦定理,得,23sin 60AB r ==°,所以r =,在Rt △OO A ′中,222O A OO OA ′′+=,所以231R +=,解得2R =, 所以2416S R ππ==. 故选:B .【点评】本题考查球的表面积,考查直棱柱外接球问题,属于中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.为了得到函数sin(2)3yx π−的图像,只需将函数sin y x =的图像所有点( )A .横坐标缩短到原来的12(纵坐标不变),再将所得图像向右平移6π个单位长度B .横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向右平移3π个单位长度C .向右平移3π个单位长度,再把所得图像各点横坐标缩短到原来的12(纵坐标不变)D .向右平移6π个单位长度,再把所得图像各点横坐标伸长到原来的2倍(纵坐标不变)【分析】直接利用函数的图象的平移变换和伸缩变换求出结果. 【解答】解:为了得到函数sin(2)3y x π−的图像,只需将函数sin y x =的图像所有横坐标缩短到原来的12(纵坐标不变),再将所得图像向右平移6π个单位长度;或将函数sin y x =的图像所有点向右平移3π个单位长度,再把所得图像各点横坐标缩短到原来的12(纵坐标不变), 故选:AC .【点评】本题考查的知识要点:三角函数的关系式的平移变换和伸缩变换,主要考查学生的理解能力和计算能力,属于基础题.10.ABC ∆中,下列说法不正确的是( ) A .sin sin a A b B =B .若222a b c +>,则ABC ∆为锐角三角形 C .若A B >,则sin sin A B >D .若2sin sin sin B C A +=,则2b c a +=【分析】根据正弦定理化简A ,C ,D 中的条件,可以判定其错误,利用余弦定理可判断B 错误. 【解答】解:对于A ,根据正弦定理知, 2sin a R A =,2sin b R B =,代入sin sin a A b B =得,22sin sin A B =, 显然A 不成立;对于B ,根据余弦函数可知,222cos 02a b c C ab +−=>, 又(0,)C π∈ ,C ∴为锐角,但无法确定A ,B 的大小,无法判断ABC ∆是否为锐角三角形,故B 错误; 对于C ,若A B >a b >, 再由正弦定理可得,2sin 2sin R A R B >, sin sin A B ∴>,故C 正确;对于D ,根据正弦定理知,2sin sin sin B C A +=可化为,22sin 2sin 2sin R B R C R A +=, 即sin b c a A +=,故D 不正确. 故选:ABD .【点评】本题主要考查正弦定理,三角形内角和定理,勾股定理和余弦函数的单调性等知识的综合应用,属于中档题.11.如图,在边长为2的正方形123SG G G 中,E 、F 分别是12G G 、23G G 的中点.若沿SE 、SF 及EF 把这个正方形折成一个四面体,使1G 、2G 、3G 三点重合,重合后的点记为G ,则( )A .GS EF ⊥B .点G 到平面SEF 的距离为34C .三棱锥G SEF −的外接球表面积为6πD .二面角E GSF −−等于45°【分析】选项A ,结合线面垂直的判断定理与性质定理可判断; 选项B ,利用等体积法求点到面的距离,即可;选项C ,将三棱锥补成长方体,求出长方体外接球的半径,即可得解; 选项D ,根据二面角的定义分析即可.【解答】解:由题意得,GS GE ⊥,GS GF ⊥,GE GF ⊥,222GS GE GF ===, 故可以GS ,GE ,GF 为相邻的边,构造出长方体,如图所示,对于选项A :因为GS GE ⊥,GS GF ⊥,GE GF G = ,GE 、GF ⊂平面GEF , 所以GS ⊥平面GEF ,又EF ⊂平面GEF ,所以GS EF ⊥,即选项A 正确;对于选项B :在SEF ∆中,有SE SF ==EF ,所以EF , 设点G 到平面SEF 的距离为h , 因为S GEF G SEF V V −−=,所以11112113232h ××××=××,解得23h =,所以点G 到平面SEF 的距离为23,即选项B 错误;对于选项C :将三棱锥G SEF −补成的长方体的外接球即为三棱锥G SEF −的外接球,所以外接球的半径R =,所以外接球的表面积22446S R πππ==×=,即选项C 正确; 对于选项D :因为GS GE ⊥,GS GF ⊥,所以二面角E GS F −−的平面角为90EGF ∠=°,即选项D 错误. 故选:AC .【点评】本题考查空间几何体的综合应用,熟练掌握线面垂直的判定定理与性质定理,等体积法,棱锥的外接球问题,二面角的定义等是解题的关键,考查空间立体感,逻辑推理能力和运算能力,属于中档题.三、填空题:本题共3小题,每小题5分,共15分.12.某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所对学生进行视力调查,则应从75所中学中抽取 9 所学校. 【分析】根据分层抽样的定义建立比例关系即可.【解答】解:根据分层抽样的定义可得,从75所中学中抽取753091507525×=++.故答案为:9.【点评】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键,属于基础题. 13.已知正四棱台的上、下底面边长分别是1和2,所有顶点都在球O 的球面上,若球O 的表面积为8π,则此正四棱台的侧棱长为【分析】根据题意可得球O 的半径,结合外接球的性质可得外接球心在底面的中心,再根据几何关系求解侧棱长即可.【解答】解:设上下底面互相平行的两对角线分别为DC ,AB ,则由球O 的表面积为8π,可得球O的半径R =,又正四棱台的上下底面边长分别是1和2,故DC =,AB =,所以球O 的球心正好在AB 中点,故OA OB OC OD ====,所以ODC ∆是正三角形,故60ODC DOC ∠=∠=°,所以ODA ∆是正三角形,故此正四棱台的侧棱长AD OA ==..【点评】本题考查棱台的结构特征和棱台的外接球,属于基础题.14.在平行四边形ABCD 中,2,3,2,1AB AD AM MD MB MC ===⋅= ,则BAD ∠ :点P 是线段BC 上的一个动点,当PA PB ⋅ 最小时,||BP =.【分析】用AB 和AM 表示MB 和MC,根据1MB MC ⋅= 即可求出BAD ∠;设(01)PB CB λλ= ,根据()PA PB PB BA PB ⋅=+⋅用λ表示PA PB ⋅ ,根据二次函数性质即可求出PA PB ⋅ 最小时λ的值,从而求出||BP.【解答】解: ()()()(2)MB MC AB AM DC DM AB AM AB AM ⋅=−⋅−=−⋅+22||2||||||cos 4221cos 22cos AB AM AB AM BAD BAD BAD =−+⋅∠=−+×⋅∠=+∠ . ∴122cos 1cos 1202BAD BAD BAD +∠=⇒∠=−⇒∠=°;设(01)PB CB λλ=,//AD BC ,60ABC ∴∠=°,则22()||||||||cos PA PB PB BA PB PB BA BP CB BA BP ABC λ⋅=+⋅=−⋅=−⋅⋅∠293λλ−, ∴当16λ=时,PA PB ⋅ 取最小值,则11||362BP =×= . 故答案为:21;32π. 【点评】本题考查平面向量的数量积运算,考查学生的运算能力,属于中档题. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且sin sin 2Bb Cc =. (1)求角B ;(2)若b =3c a =,求ABC ∆的面积. 【分析】(1)由正弦定理及二倍角公式可得2B的余弦值,再由B 角的范围,可得2B 的大小,进而求出B 角的大小;(2)由(1)和余弦定理可得a ,c 边的值,代入三角形的面积公式,可得该三角形的面积. 【解答】解:(1)sin sin 2B b C c =由正弦定理可得sin sin sin sin 2BB C C =,在三角形中可得sin 0C ≠,sin 2sincos 22B BB =, 可得1cos22B =,(0,)B π∈,可得23B π=,可得23B π=;(2)因为b =3c a =,23B π=,由余弦定理可得2222cos b a c ac B =+−,即22211396()2a a a =+−⋅−,解得21a =,即1a =,3c =,所以11sin 1322ABC S ac B ∆==××=,所以ABC ∆. 【点评】本题考查正余弦定理及三角形的面积公式的应用,属于基础题.16.为了解某市家庭用电量的情况,统计部门随机调查了200户居民去年一年的月均用电量(单位:)kW h ⋅,将全部数据按区间[0,50),[50,100),…,[350,400]分成8组,得到如下的频率分布直方图:(1)求图中a 的值;并估计这200户居民月用电量的平均值(同一组中的数据用该组区间的中点值为代表);(2)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯电价,使75%的居民缴费在第一档,20%的居民缴费在第二档,其余5%的居民缴费在第三档,试基于统计数据确定各档月均用电量的范围(计算百分位数时,结果四舍五入取整数).【分析】(1)由题意,利用频率之和为1,列出等式即可求出a 的值,结合频率分布直方图所给信息,列出等式即可求解;(2)利用频率分布直方图所给信息以及百分位数的定义,列出等式即可求解. 【解答】解:(1)易知50(240.00632)1a a a a a a a +++++++=, 解得0.001a =,此时样本落在[0,50),[50,100),[100,150),[150,200),[200,250),[250,300),[300,350),[350,400]的频率分别为0.05,0.1,0.2,0.3,0.15,0.1,0.05,0.05, 则月用电量的平均值050501001001501502002002502503003003503504000.050.10.20.30.150.10.050.05182.522222222x ++++++++=×+×+×+×+×+×+×+×=; (2)要使75%的居民缴费在第一档,需要确定月用电量的75%分位数; 要使20%的居民缴费在第二档,还需要确定月用电量的95%分位数, 因为0.050.10.20.30.65+++<,0.050.10.20.30.150.80.75++++=>, 所以要使75%的居民缴费在第一档,月用电量的75%分位数位于[200,250)区间内, 则0.750.65200502330.80.65−+×≈−,又0.050.10.20.30.150.10.050.95++++++=, 所以95%对应的用电量为350,故第一档的范围是[0,233],第二档的范围是(233,350],第三档的范围是(350,)+∞. 【点评】本题考查频率分布直方图的应用以及百分位数的定义,考查了逻辑推理和运算能力. 17.某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:25(3),02()5050,251x x W x x x += −<+,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 【分析】(1)利用()15()30f x W x x =×−,即可求解;(2)对()f x 进行化简,得到2175()222,02,52578030[(1)],251x x x x x−+ = −++< +,分类在02x 和25x < 时,求解()f x 的最大值,进而得到答案.【解答】解:(1)因为肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且25(3),02()5050,251x x W x x x += −<+, 所以22155(3)30,027530225,02()15()201015()305075015(50)30,2575030,2511x x x x x x f x W x x x W x x x x x x x x ×+−−+=−−=−== ×−−<−−<++, 即()f x函数关系式为27530225,02()75030,25x x x f x x x −+= −< ; (2)由(1)得22175()222,027530225,02,5()7502575030,2578030[(1)],2511x x x x x f x x x x x x x−+−+==−−<⋅ −++<++, 当02x 时,()max f x f =(2)465=(元);当25x <时,25()78030[(1)]780304801f x x x =−++−×+ (元),当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()480max f x =(元).所以当施用肥料为4千克时,种植该果树获得的最大利润是480元 【点评】本题考查了函数模型在实际问题中的应用,属于中档题.18.如图,在正三棱柱111ABC A B C −中,D 为AB 的中点,2AB =,13AA =.(1)求证:平面1A CD ⊥平面11ABB A ; (2)求点A 到平面1A CD 的距离.【分析】(1)因为1AA CD ⊥,AB CD ⊥,所以CD ⊥平面11ABB A ,再利用面面垂直的判断定理即可证得平面1A CD ⊥平面11ABB A ;(2)根据勾股定理求出1A D ,CD 的长,进而得到△1A DC 的面积,再利用等体积法即可求出点A 到平面1A CD 的距离.【解答】证明:(1)由正三棱柱111ABC A B C −的结构特征可得,1AA ⊥平面ABC , 又因为CD ⊂平面ABC ,所以1AA CD ⊥,在正三角形ABC 中,D 为AB 的中点,所以AB CD ⊥, 又因为1AA AB A = ,1AA ,AB ⊂平面11ABB A , 所以CD ⊥平面11ABB A ,又因为CD ⊂平面1A CD ,所以平面1A CD ⊥平面11ABB A .解:(2)由(1)可知,CD ⊥平面11ABB A ,又因为1A D ⊂平面11ABB A , 所以1CD A D ⊥,在正三角形ABC 中,CD =,在正三棱柱111ABC A B C −中,1AA ⊥平面ABC ,又因为AD ⊂平面ABC ,所以1AA AD ⊥,所以1A D =, 因为11A ACD A A CD V V −−=,所以点A 到平面ACD的距离111313ACD A CD S AA hS ∆⋅=【点评】本题主要考查了面面垂直的判断定理,考查了等体积法求点到平面的距离公式,属于中档题.19.如图,已知四棱锥P ABCD −的底面ABCD 为梯形,//AB CD ,PA PD PB ==,1BC CD ==,2AB =,3BCD π∠=,直线PA 与底面ABCD 所成角为4π. (1)若E 为PD 上一点且2PE ED =,证明://PB 平面ACE ; (2)求二面角P AD B −−的余弦值.【分析】(1)连接AC ,BD ,设AC BD M = ,连接EM ,利用12DM DE BM PE ==,可得//EM PB ,从而可证//PB 平面ACE ;(2)过P 作PF AB ⊥于点F ,则PF ⊥底面ABCD ,过F 作FO AD ⊥于点O ,连接PO ,可证F 是AB 的中点,利用二面角平面角的定义可知FOP ∠为二面角P AD B −−的平面角,在POF ∆中,求出三条边长,利用余弦定理求cos FOP ∠即可.【解答】解:(1)证明:连接AC ,BD ,设AC BD M = ,因为//AB CD ,1CD =,2AB =,所以12DM BM =, 又因为2PE ED =, 所以12DE PE =, 所以//EM PB ,又因为EM ⊂平面ACE ,PB ⊂/平面ACE ,所以//PB 平面ACE ;(2)过P 作PF AB ⊥于点F ,则PF ⊥底面ABCD ,过F 作FO AD ⊥于点O ,连接PO ,因为PA PD =,所以DF AF =,又因为OF AD ⊥,所以O 是AD 中点,1BC CD == ,3BCD π∠=, BCD ∴∆是等边三角形.60ABD ∴∠=°, 又2AB =,1BD =,AD ∴=222AD BD AB ∴+=,AD BD ∴⊥,//OF BD ∴,O 是AD 中点,F ∴是AB 的中点,PO AD ∴⊥,OF AD ⊥,FOP∴∠为二面角P AD B−−的平面角,在POF∆中,PO1122OF BD==,1PF=,所以cos FOP∠=.所以二面角P AD B−−.【点评】本题主要考查了线面平行的判断,以及二面角的求解,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若 在 上是单调函数,求 的取值范围.
22.如图,在四棱锥 中,PA⊥平面ABCD,CD⊥AD,BC∥AD, .
(Ⅰ)求证:CD⊥PD;
(Ⅱ)求证:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在点M,使CM∥平面PAB,若存在,确定点M的位置,若不存在,请说明理由.
23.已知四点A(-3,1),B(-1,-2),C(2,0),D( )
在 中,令 ,可得:
在 中,令 ,可得:
所以
故选C
【点睛】
本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.
6.C
解析:C
【解析】
试题分析:将此问题转化为等差数列的问题,首项为 , ,求公差, ,解得: 尺,故选C.
考点:等差数列
7.C
解析:C
【解析】
当 时,不等式 可化为 ,显然恒成立;当 时,若不等式 恒成立,则对应函数的图象开口朝上且与 轴无交点,则 解得: ,综上 的取值范围是 ,故选C.
解析:A
【解析】
试题分析:由程序框图知第一次运行 ,第二次运行 ,第三次运行 ,第四次运行 ,输出 ,所以判断框内为 ,故选C.
考点:程序框图.
3.C
解析:C
【解析】
分类讨论:当 时, ,
当 时, ,
且当 时:
据此可得,数列的通项公式为: .
本题选择C选项.
4.D
解析:D
【解析】
试题分析: , , .
12.A
解析:A
【解析】
【分析】
由题意,取AC的中点O,连结 ,求得 是 与侧面 所成的角,在 中,即可求解.
【详解】
由题意,取AC的中点O,连结 ,
因为正三棱柱 中,侧棱长为 ,底面三角形的边长为1,
所以 ,
因为 ,所以 平面 ,
所以 是 与侧面 所成的角,
因为 ,
所以 ,
所以 , 与侧面 所成的角 .
解析:-1或2
【解析】
【分析】
根据函数值的正负,由 ,可得 ,求出 ,再对 分类讨论,代入解析式,即可求解.
【详解】
当 时, ,
,
当 ,
当 ,
所以 或 .
故答案为: 或 .
【点睛】
本题考查求复合函数值,认真审题理解分段函数的解析式,考查分类讨论思想,属于中档题.
18.【解析】【分析】由函数的解析式得到关于x的不等式求解不等式即可确定函数的定义域【详解】函数有意义则:即求解三角不等式可得:则函数的定义域为【点睛】求函数的定义域其实质就是以函数解析式有意义为准则列出
由题意知 .
. .故D正确.
考点:1向量的加减法;2向量的数量积;3向量垂直.
5.C
解析:C
【解析】
【分析】
利用 是定义域为 的奇函数可得: 且 ,结合 可得:函数 的周期为 ;再利用赋值法可求得: , , ,问题得解.
【详解】
因为 是定义域为 的奇函数,
所以 且
又
所以
所以
所以函数 的周期为 ,
在 中,令 ,可得:
由图可知:
即 的最大值为 .
故答案为:
【点睛】
本题主要考查了复数的几何意义的应用,属于中档题.
三、解答题
21.(1)0;(2) .
【解析】
【分析】
(1)首先化简 解析式,然后求得左移 个单位后函数 的解析式,根据 的奇偶性求得 的值,进而求得 的值.
(2)根据(1)中求得的 ,求得 的取值范围,根据 的取值范围,求得 的取值范围,根据 在 上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得 的取值范围.
C.f(x+π)的一个零点为x= D.f(x)在( ,π)单调递减
10.已知 ,并且 成等差数列,则 的最小值为( )
A.2B.4C.5D.9
11.定义在 上的奇函数 满足 ,且当 时, ,则下列结论正确的是(在正三棱柱 中,侧棱长为 ,底面三角形的边长为1,则 与侧面 所成角的大小为( )
【详解】
∵f(x)是奇函数;∴f(x+2)=f(-x)=-f(x);∴f(x+4)=-f(x+2)=f(x);
∴f(x)的周期为4;∴f(2018)=f(2+4×504)=f(2)=f(0), , ∵x∈[0,1]时,f(x)=2x-cosx单调递增;∴f(0)< < ∴ ,故选C.
【点睛】
本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.
20.【解析】【分析】根据复数z的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为:
解析:
【解析】
【分析】
根据复数z的几何意义以及 的几何意义,由图象得出最大值.
【详解】
复数 且 ,复数z的几何意义是复平面内以点 为圆心, 为半径的圆 . 的几何意义是圆上的点与坐标原点连线的斜率
(1)求证: ;
(2) ,求实数m的值.
24.已知数列 的前 项和 ,且 ;
(1)求它的通项 .
(2)若 ,求数列 的前 项和 .
25. 中,三个内角 的对边分别为 ,若 , ,且 .
(1)求角 的大小;
(2)若 , ,求 的面积.
26. 中,D是BC上的点,AD平分∠BAC, 面积是 面积的2倍.
解析:2x﹣4y+3=0
【解析】
【分析】
要∠ACB最小则分析可得圆心C到直线l的距离最大,此时直线l与直线 垂直,即可算出 的斜率求得直线l的方程.
【详解】
由题得,当∠ACB最小时,直线l与直线 垂直,此时 ,又 ,故 ,又直线l过点 ,所以 ,即 .
故答案为:
【点睛】
本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.
解析:
【解析】
【分析】
由函数的解析式得到关于x的不等式,求解不等式即可确定函数的定义域.
【详解】
函数有意义,则: ,即 ,
求解三角不等式可得: ,
则函数的定义域为 .
【点睛】
求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.
19.2x﹣4y+3=0【解析】【分析】要∠ACB最小则分析可得圆心C到直线l的距离最大此时直线l与直线垂直即可算出的斜率求得直线l的方程【详解】由题得当∠ACB最小时直线l与直线垂直此时又故又直线l过点
A. 尺B. 尺C. 尺D. 尺
7.当 时,不等式 恒成立,则k的取值范围是( )
A. B. C. D.(0,4)
8.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
A.20B.10C.30D.60
9.设函数f(x)=cos(x+ ),则下列结论错误的是
A.f(x)的一个周期为−2πB.y=f(x)的图像关于直线x= 对称
解析:
【解析】
【分析】
利用两角和与差的正弦函数化简两个函数的表达式为同名函数,然后利用左加右减的原则确定平移的方向与单位.
【详解】
分别把两个函数解析式化简为:
,
,
可知只需把函数 的图象向右平移 个单位长度,
得到函数 的图象,
故答案是: .
【点睛】
该题考查的是有关函数图象的平移变换的问题,在解题的过程中,注意正确化简函数解析式,把握住平移的原则是左加右减,以及自变量本身的变化量.
A. B. C. D.
二、填空题
13. _____
14.函数 的图象可由函数 的图象至少向右平移_______个长度单位得到。
15.如图是抛物线形拱桥,当水面在 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.
16.直线 与圆 相交于两点 , ,弦 的中点为 ,则直线 的方程为__________.
【点睛】
本题主要考查了直线与平面所成的角的求解,其中解答中空间几何体的线面位置关系,得到 是 与侧面 所成的角是解答的关键,着重考查了推理与运算能力,以及转化与化归思想,属于中档试题.
二、填空题
13.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二
4. 是边长为 的等边三角形,已知向量 , 满足 , ,则下列结论正确的是()
A. B. C. D.
5.已知 是定义域为 的奇函数,满足 ,若 ,则 ( )
A.50B.2C.0D.
6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为
考点:抛物线的应用
16.【解析】【分析】【详解】设圆心直线的斜率为弦AB的中点为的斜率为则所以由点斜式得
解析: .
【解析】
【分析】
【详解】
设圆心 ,直线 的斜率为 ,弦AB的中点为 , 的斜率为 , 则 ,所以 由点斜式得 .
17.-1或2【解析】【分析】根据函数值的正负由可得求出再对分类讨论代入解析式即可求解【详解】当时当当所以或故答案为:或【点睛】本题考查求复合函数值认真审题理解分段函数的解析式考查分类讨论思想属于中档题