生物物理学发展史与分支

合集下载

生物物理学研究现状及未来发展趋势

生物物理学研究现状及未来发展趋势

生物物理学研究现状及未来发展趋势生物物理学是研究生物学中的物理问题的学科,是生命科学中的重要分支之一。

随着科技的不断进步,生物物理学从过去的摸索和相对难以深入研究的状态逐渐发展到了今天成为高科技研究的重要领域。

本文将从生物物理学研究现状、生物物理学在生命科学中的作用、以及生物物理学未来的发展趋势等方面展开探讨。

一、生物物理学研究现状1.1 经典生物物理学经典生物物理学是从20世纪初开始发展的,主要关注生命现象的基本原理和生命系统的性质。

在经典生物物理学中,建立了许多对生物系统的描述和解释,如扩散和化学反应、光场和光激发、声波和压力影响等,这些描述和解释也极大地丰富了生命科学的知识体系。

1.2 结构生物物理学结构生物物理学是指以分子结构为基础的生物物理学研究方法。

自20世纪50年代中期以来,结构生物物理学逐渐发展壮大,主要通过胶体电泳、质谱法、X射线晶体学、核磁共振等手段研究生物分子之间的相互作用以及结构特征。

1.3 生物光子学生物光子学是生物物理学的一个快速发展的新兴领域,主要关注光对生物体的影响和光对生物体进行研究的各种光学技术。

如光谱学、光显微镜、光诱导断裂等。

二、生物物理学在生命科学中的作用实际上,生物物理学是通过物理和数学等知识,为生命科学提供了可靠的模型和手段,从而提高了研究生物学过程的效率和精度。

这里简单介绍一下生物物理学在生命科学中的作用:2.1 研究分子结构与生物功能的关系分子生物学是生物物理学的重要分支,在这个领域中,我们可以通过一系列的生物物理学工具和方法探索分子结构与生物功能之间的关系。

分子生物学研究的重点包括分子结构、动力学和功能。

2.2 解决生物学中的关键问题生命科学中的许多关键问题都与生物物理学的知识有关。

例如,水的结构和动力学,传统生物学中的力学和光学,光合作用和化学死亡等都是生物物理学所关注的问题。

此外,生物物理学还可以用来解决传染病和遗传疾病等生物学中的重要问题。

生物学

生物学

研究方法
观察描述法 比较法
实验法 系统法
在17世纪,近代自然科学发展的早期,生物学的研究方法同物理学研究方法大不相同。物理学研究的是物体 可测量的性质,即时间、运动和质量。物理学把数学应用于研究物理现象,发现这些量之间存在着相互关系,并 用演绎法推算出这些关系的后果。生物学的研究则是考察那些将不同生物区别开来的、往往是不可测量的性质。 生物学用描述的方法来记录这些性质,再用归纳法,将这些不同性质的生物归并成不同的类群。18世纪,由于新 大陆的开拓和许多探险家的活动,生物学记录的物种几倍、几十倍地增长,于是生物分类学首先发展起来。生物 分类学者搜集物种进行鉴别、整理,描述的方法获得巨大发展。要明确地鉴别不同物种就必须用统一的、规范的 术语为物种命名,这又需要对各种各样形态的器官作细致的分类,并制定规范的术语为器官命名。这一繁重的术 语制定工作,主要是C.von林奈完成的。人们使用这些比较精确的描述方法收集了大量动、植物分类学材料及形 态学和解剖学的材料。
主干课程
形态学 生理学
遗传学 胚胎学
生物物理学 生物数学
分子 细胞
形态学形态学是生物学中研究动、植物形态结构的学科。在显微镜发明之前,形态学只限于对动、植物的宏 观的观察,如大体解剖学、脊椎动物比较解剖学等。比较解剖学是用比较的和历史的方法研究脊椎动物各门类在 结构上的相似与差异,从而找出这些门类的亲缘关系和历史发展。显微镜发明之后,组织学和细胞学也就相应地 建立起来,电子显微镜的使用,使形态学又深入到超微结构的领域。但是形态结构的研究不能完全脱离机能的研 究,形态学早已跳出单纯描述的圈子,而使用各种先进的实验手段了。
早期的生物学仅仅是对生物的形态和结构作宏观的描述。1665年英国R.胡克用他自制的复式单孔反射显微镜, 观察软木片,看到软木是由他称为细胞的盒状小室组成的。从此,生物学的观察和描述进入了显微领域。但是在 17世纪,人们还不能理解细胞这样的显微结构有何等重要意义。那时的显微镜未能消除使影像失真的色环,因而 还不能清楚地辨认细胞结构。19世纪30年代,消色差显微镜问世,使人们得以观察到细胞的内部情况。1838~ 1839年施莱登和施万的细胞学说提出:细胞是一切动植物结构的基本单位。比较形态学者和比较解剖学者多年来 苦心探求生物的基本结构单元,终于有了结果。

20世纪物理学发展的现状和展望解析

20世纪物理学发展的现状和展望解析

20世纪物理学发展的现状和展望20世纪,物理学在众多领域得到了长足的发展,老的学科新芽满枝,新的学科蓬勃发展;并且开拓出广阔的应用领域。

下面就这几个分支:即统计物理学、低温物理学、生物物理、原子分子和光物理学、受控热核聚变、宇宙线物理学、引力物理学等领域的进展作一些综述和展望。

1、统计物理学的发展统计物理学的概念已有一百多年历史,它可以追溯到19与20世纪转折时期的玻尔兹曼,吉布斯以及许多其他现代物理学家的贡献。

统计物理学它把原子尺度(埃的尺度)的物理性质与宏观尺度的物理性质,以及所有有关的介观与宏观现象联系起来。

如果知道了原子之间的相互作用力,要计算所有感兴趣的宏观物理量,就需要处理涉及大数量的相互作用的问题。

倘若这一任务能够完成,我们不仅理解了热力学的原理,而且具备了应用于许多其他领域,如工程、材料科学以及物理化学等的理论基础。

我们知道,在基本粒子和原子尺度描述系统随时间演化的基本方程已是熟知的了。

在经典极限情况下,量子力学的运动方程还原为经典力学的牛顿方程,它们描述系统的态随时间的演化。

因此,很自然的是把宏观系统的任何可观察量看成是相应的微观量沿着相空间中系统的相轨道的时间平均。

根据统计力学的遍历性假设,时间平均可以代之以适当的统计系综的平均。

例如,完全与其环境隔绝的孤立系统的能量是守恒的,因此系统的相轨道必定落在相空间的能量超曲面上。

按照统计力学的微正则系综,在此能量超曲面上的所有区域是等几率的。

由此可以建立统计力学定义的摘,并由熵极大原理导出相应的可观察量的系综平均值。

当然,沿相轨道的时间平均与在能量超曲面上的系综平均的等价性,是高度非平庸的。

因为它意味着能量超曲面上的相轨道是充分的混饨,以致于它能在足够短的时间内充分接近超曲面上的任意点。

要使这些条件尽可能精确地实现,并认识到系统的哪些性质保证了遍历性假设得以满足,以及对少数几个相当特殊的反例,为什么遍历性假设不满足,这些都是长期以来具有挑战性的问题。

生物化学与生物物理进展

生物化学与生物物理进展

生物化学与生物物理进展生物化学与生物物理是生命科学领域中的两个重要分支,它们研究生命体系中的物质和能量转化以及相互作用的规律,为探索生物世界的奥秘提供了重要的理论基础和科学手段。

本文将从生物化学和生物物理的基本概念入手,通过介绍相关研究进展,阐述它们在生命科学中的重要性。

一、生物化学1、概念生物化学是研究生命体系中发生的化学反应,包括分子结构、代谢途径、酶和基因的功能等。

生物化学研究的对象跨越了从原子到生物分子和细胞的层次。

生物化学研究的重点在于发现分子之间的相互作用在生命活动中的关键作用。

2、近年来的进展(1)基因组学基因组学是生物化学领域的一个重要研究方向,它研究整个基因组的结构、功能与调控。

随着现代分子生物学技术的不断发展,特别是高通量测序技术的引入,人们已经获得了许多生物体的全基因组序列,并对它们进行了全面的注释。

这样,基因组学为我们揭示了基因组的演化、结构、功能和表达调控等方面的秘密,推动了生物学研究的快速发展。

(2)代谢组学代谢组学研究的是生物体内代谢产物的组成和变化规律,通过系统地检测和分析代谢产物来获取生物体内代谢状态的信息。

代谢组学不仅可以用于疾病诊断和治疗的研究,还可以用于食品和药物的研发等领域。

例如,代谢组学技术已经被应用于体外诊断、癌症筛查和新药研发等方面。

(3)蛋白质组学蛋白质组学是生物化学的重要分支,它研究的是生物体内蛋白质的分布、结构、功能和相互作用等问题。

蛋白质组学可以对蛋白质进行大规模的分析和鉴定,为发现新的生物分子以及研究它们的功能和动态过程提供了有效手段。

近年来,蛋白质组学已经成为现代生物学研究的重要组成部分,为研究生命的基本问题提供了新的思路和方法。

二、生物物理1、概念生物物理是研究生命体系中的物理现象和力学规律的科学,它将物理学和生物学的原理相结合,研究生物体的结构、动力学和功能等问题。

生物物理研究的重点在于揭示生命过程中的物理基础和动力学机制。

2、近年来的进展(1)生物大分子结构研究生物物理学的重要研究方向之一是生物大分子结构研究,包括蛋白质、核酸和多糖等生物分子的空间结构、分子间相互作用、折叠和解折叠过程等。

生物力学

生物力学

生物力学生物力学 biomechanics shengwu lixue生物力学是应用力学原理和方法对生物体中的力学问题进行定量研究的生物物理学分支。

生物力学的研究范围从生物整体到系统、器官(包括血液、体液、脏器、骨骼等),从鸟飞、鱼游、鞭毛和纤毛运动到植物体液的输运等。

生物力学的基础是能量守恒、动量定律、质量守恒三定律,并加上描写物性的本构方程。

生物力学重点是研究与生理学、医学有关的力学问题。

生物力学依据研究对象的不同,可细分为生物流体力学、生物固体力学和运动生物力学等。

生物力学的发展简史生物力学一词虽然在20世纪60年代才出现,但它所涉及的一些内容,却是古老的课题。

例如,1582年前后伽利略得出摆长与周期的定量关系,并利用摆来测定人的脉搏率,用与脉搏合拍的摆长来表达脉搏率等。

1616年,英国生理学家哈维根据流体力学中的连续性原理,从理论上论证了血液循环的存在;到1661年,马尔皮基在解剖青蛙时,在蛙肺中看到了微循环的存在,证实了哈维的论断;博雷利在《论动物的运动》一书中讨论了鸟飞、鱼游和心脏以及肠的运动;欧拉在1775年写了一篇关于波在动脉中传播的论文;兰姆在1898年预言动脉中存在高频波,现已得到证实;材料力学中著名的扬氏模量就是英国物理学家托马斯·扬为建立声带发音的弹性力学理论而提出的。

1733年,英国生理学家黑尔斯测量了马的动脉血压,并寻求血压与失血的关系,解释了心脏泵出的间歇流如何转化成血管中的连续流,他在血液流动中引进了外周阻力概念,并正确指出:产生这种阻力的主要部位在细血管处。

其后泊肃叶确立了血液流动过程中压降、流量和阻力的关系;夫兰克解释了心脏的力学问题;斯塔林提出了透过膜的传质定律,并解释了人体中水的平衡问题。

克罗格由于在微循环力学方面的贡献获得1920年诺贝尔奖金。

希尔因肌肉力学的工作获得1922年诺贝尔奖金。

他们的工作为60年代开始的生物力学的系统研究打下基础。

到了20世纪60年代,一批工程科学家同生理学家合作,对生物学、生理学和医学的有关问题,用工程的观点和方法,进行了较为深入的研究,使生物力学逐渐成为了一门独立的学科。

生物物理学导论-01

生物物理学导论-01

②膜与细胞生物物理
• 细胞是最基本的生命单位,细胞中的膜系统是 其中普遍存在的结构,把分子生物物理的研究 成果应用于细胞与膜的结构及其功能研究,推 动生命现象深入到分子水平,是当前主要方向 之一。其内容包括膜的分子动力学,如膜脂运 动、构象,特别是脂多型性的生物学意义的研 究;膜蛋白运动与构象的研究;膜脂与膜蛋白 相互作用的研究;细胞识别作用机制与信息跨 膜转导关系的研究;通道蛋白构象及其离子通 透机制的研究;
Байду номын сангаас
• 经过40年的发展,这一状况已经有很大 改变。从最近l0年来国际纯料与应用生物 物理学联合会(IUPAB)召开的(三年一次) 的大会内容,以及美国、日本等每年都 召开的年会内容分析,生物物理学已经 逐渐形成了它自己的基本内容和研究途 径。
当前 生物物理学的主要发展方向
• • • • 1)分子生物物理 2)膜与细胞生物物理 3)感官与神经生物物理 4)生物物理新技术
生物物理学是一门交叉学科
• 生物物理学是一门交叉学科,它的发展将同时 促进物理学和生物学本身的进一步深化。 • 现有的物理理论与技术还不足以说明与了解生 命现象的全部复杂性。生命现象的深入研究, 向物理学提出了诸如进化、分化、发育、调控、 思维活动、信息处理等高层次的问题,以及为 解决上述问题急需发展的新技术,这也为物理 学的今后发展显示了广阔的前景。
⑥光生物物理
• 光生物物理作为光生物学的一个重要组 成部分,应着重研究其物理机制,包括 光合作用原初过程的研究,茵紫质的质 子泵机制的研究,视紫质光原初过程及 其与菌紫质的比较研究,自由基与单线 态氧在光生物学作用中的意义的研究, 激光生物物理的研究,以及根据光合作 用原理应用于新能源的研究等。
⑦环境辐射的生物物理

生物学的定义及其分支学科

生物学的定义及其分支学科

二、生物学中的基本概念
(七)有机体与环境的统一
1、生命的起源。四个阶段:从无机小分子物质生成有机小分子物质,从有机小分子物质形成蛋白 质,核酸等有机高分子物质,从有机高分子物质组成多分子体系,从多分子体系演变为原始生命。
2、生命的进化。三个基本步骤:从无到有的起源,由少到多的分化发展,从低到高级的复化发展。 3、生物与环境的统一。
三、生物学的发展简史及其趋势和生物学与医学的关系
(三)生物学与人口、食物、环境、能源问题关系密切
1、人口问题。 2、食物问题。 3、环境问题。 4、能源问题。
(二)生物学与医学的关系
1、医学源于生物学。 2、生物学的发展推动医学的发展。 3、生物学是其他医学课程的基础。
三、生物学的发展简史及其趋势和生物学与医学的关系
2015年治疗疟疾
2014年大脑里的“定位系统
2013年囊泡运输
谢谢观看

(一)发展简史
1、描述性生物学阶段:20世纪以前。 2、实验生物学阶段:1900年孟德尔遗传规律的重新发现——1953年。 3、分子生物学阶段:1953年以后。
(二)发展趋势
1、与物理、化学科学结合。 2、与技术科学结合。 3、与社会科学相结合。
四、近五年诺贝尔生理学或医学奖
2017年生物 钟
2016年自噬
二、生物学中的基本概念
(一) 生物大分子是生命的物质基础
水(75%~80%)
无机物
生 命
无机盐



蛋白质


有机物 核酸
多糖等
二、生物学中的基本概念ห้องสมุดไป่ตู้
(二) 细胞是生命活动的基本单位
细胞是生物体结构和功能的基本单位,是最基本的生命系统 (病毒除外),代表人物有罗伯特·虎克、列文·虎克

生物物理学和生物化学的研究进展

生物物理学和生物化学的研究进展

生物物理学和生物化学的研究进展生物物理学和生物化学是生物学研究的两个重要分支。

生物物理学是研究生物大分子的结构和功能,从物理学角度探究生命的本质;而生物化学则是探究生物大分子的化学组成和反应,研究生命的化学基础。

这两个学科领域的发展为我们认识和探究生命提供了重要的途径。

一、生物物理学的研究进展生物物理学以物理学和化学的方法研究生物大分子的结构和功能,主要研究生物分子的电磁学、热学、力学等基本性质,以及生物分子的组装、动力学和稳定性等特殊性质。

在生命科学研究中,生物物理学为人类揭开了生物学领域的一系列秘密。

例如,第一张肝脏X射线衍射图像的诞生,揭示了蛋白质的三维结构,是生物物理学的杰作。

近年来,生物物理学领域的技术和方法不断发展,新一代的生物物理学研究技术不仅在刻画生物分子结构、动力学和相互作用方面有着不可替代的作用,同时也对药物研究与开发、生物制品的生产与质量控制等方面带来了全新的机遇。

二、生物化学的研究进展生物化学主要研究生物大分子的化学组成和反应过程,该领域与生物学、化学和医学等多个学科领域有着重要联系。

生物化学的研究范围广泛,涉及生命起源演化、生物大分子的合成和降解、生物反应的调控与信号转导等多个方面。

在现代科技的推动下,生物化学的研究进展极为迅速,不断推动人类对于生命科学的认识。

生物芯片、蛋白质分离技术、基因工程、生物计算等技术的应用,拓展了生物化学在生命科学中的应用范围,使得生物化学成为了生命科学的重要骨干。

三、生物物理学和生物化学的结合生物物理学和生物化学是生命科学的重要分支。

他们之间有着密切的联系和互动,生物化学和生物物理学可以通过描绘生物分子的化学组成和物理特性,来解释生命现象和所涉及的基本生命过程。

而生物物理学则是探究生物分子的物理性质,加深了对于生物分子结构和相互作用的理解。

生物物理学和生物化学的结合,为人类提供了丰富的生命科学研究手段。

例如,先进的光学显微技术可以观察到生命分子的局部结构,蛋白物质在生物化学反应中的结构、运动和重要功能的发现,为生命科学的研究提供了重要的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物物理学的发展史17世纪A.考伯提到发光生物荧火虫。

1786年L.伽伐尼研究了肌肉的静电性质。

1796年T.扬利用光的波动学说、色觉理论研究了眼的几何光学性质及心脏的液体动力学作用。

H.von亥姆霍兹将能量守恒定律应用于生物系统,认为物质世界包括生命在内都可以归结为运动。

他研究了肌肉收缩时热量的产生和神经脉冲的传导速度E.H.杜布瓦-雷蒙德第一个制造出电流表并用以研究肌肉神经,1848年发现了休止电位及动作电位。

1895年W.C.伦琴发现了 X射线后,几乎立即应用到医学实践。

1899年K.皮尔逊在他写的《科学的文法》一书中首次提到:“作为物理定律的特异事例来研究生物现象的生物物理和生物物理学……”,并列举了当时研究的血液流体动力学、神经传导的电现象、表面张力和膜电位、发光与生物功能、以及机械应激、弹性、粘度、硬度与生物结构的关系等问题。

1910年A.V.希尔把电技术应用于神经生物学,并显示了神经纤维传递信息的特征是一连串匀速的电脉冲,脉冲是由膜内外电位差引起的。

19世纪显微镜的应用导致细胞学说的创立。

以后从简单显微镜发展出紫外、暗视野、荧光等多种特殊用途的显微镜。

电子显微镜的发展则提供了生物超微结构的更多信息。

早在1920年 X射线衍射技术就已列入蛋白质结构研究。

W.T.阿斯特伯里用 X射线衍射技术研究毛发、丝和羊毛纤维结构、α-角蛋白的结构等,发现了由氨基酸残基链形成的蛋白质主链构象的α-螺旋空间结构;20世纪50年代J.D.沃森及F.H.C.克里克提出了遗传物质 DNA双螺旋互补的结构模型。

1944年的《医学物理》介绍生物物理内容时,涉及面已相当广泛,包括听觉、色觉、肌肉、神经、皮肤等的结构与功能(电镜、荧光、X射线衍射、电、光电、电位、温度调节等技术),并报道了应用电子回旋加速器研究生物对象。

物理概念对生物物理发展影响较大的则是1943年E.薛定谔的讲演:“生命是什么”和N.威纳关于生物控制论的论点;前者用热力学和量子力学理论解释生命的本质引进了“负熵”概念,试图从一些新的途径来说明有机体的物质结构、生命活动的维持和延续、生物的遗传与变异等问题(见耗散结构和生物有序)。

后者认为生物的控制过程,包含着信息的接收、变换、贮存和处理。

他们论述了生命物质同样是物质世界的一个组成部分,既有它的特殊运动规律,也应该遵循物质运动的共同的一般规律。

这就沟通了生物学和物理学两个领域。

现已在生物的各个层次,以量子力学和统计力学的概念和方法进行微观和宏观的系统分析。

生物物理学的分支生物物理学研究的内容十分广泛,涉及的问题则几乎包括生物学的所有基本问题。

由于生物物理学是一门正在成长着的边缘学科,其具体内容和发展方向也在不断变化和完善,它和一些关系特别密切的学科(生化、生理等)的界限也不是很明确。

现阶段,生物物理的研究领域主要有以下几个方面:
1、分子生物物理。

分子生物物理是本学科中最基本、最重要的一个分支。

它运用物理学的基本理论与技术研究生物大分子、小分子及分子聚集体的结构、动力学,相互作用和其生物学性质在功能过程中的变化,目的在于从分子水平阐述生命的基本过程,进而通过修饰、重建和改造生物分子,为实践服务。

生物大分子及其复合物的空间结构与功能的关系是分子生物物理的核心问题。

自从50
年代X射线衍射晶体分析法应用于核酸与蛋白质获得成功,奠定了分子生物学发展的基础,至今已有40余年历史。

在这段时期中,有关结构的研究大体上经历了3个主要阶段:①晶体结构的研究;②溶液中生物分子构象的研究;③分子动力学的研究。

分子构象随时间变化的动力学,分子问的特异相互作用,生物水的确切作用等是分子生物物理今后的重要课题。

2、膜与细胞生物物理。

膜及细胞生物物理是仅次于分子生物物理的一个重要部分。

要研究膜的结构与功能,细胞各种活动的分子机制;膜的动态认识,膜中脂类的作用,通道的结构及其启闭过程,受体结构及其与配体的特异作用,信息传递机制,电子传递链的组分结构及其运动与能量转换机制都是膜生物物理的重要课题。

细胞生物物理目前研究的深度还不够,随着分子与膜生物物理的进展,细胞各种活动的分子机制也必将逐步阐明。

3、感官与神经生物物理。

生命进化的漫长历程中出现了能对内、外环境作出反应的神经系统。

神经系统连同有关的感觉器官在高等动物特别是在人体内已发展到了高度复杂的程度,其结构上的标志是出现了大脑皮层,功能上大脑是最有效的信息处理、存贮和决策机构。

因此感官和脑的问题已经成为神经生物学注意的中心。

研究的主要问题有:①离子通道;②感受器生物物理;③神经递质及其受体;④神经通路和神经回路研究;⑤行为神经科学。

这是生物物理最早发展,但仍很活跃的一个领域,特别应该指出的是目前“神经生物物理”受到极大重视,因为这是揭开人类认识、学习、记忆以至创造性活动的基础。

4、生物控制论与生物信息论。

主要用控制论的理论与方法研究生物系统中信息的加工、处理,从而实现调节控制机制。

它从综合的、整体的角度出发,研究不同水平的生物系统各部分之间的相互作用,或整个系统与环境之间的相互作用,神经控制论和生物控制系统的分析和模拟是其两个重点。

5、理论生物物理。

是运用数学和理论物理学研究生命现象的一个领域,既包括量子生物学和分子动力学等微观研究,也包括对进化、遗传、生命起源、脑功能活动及生物系统复杂性等宏观研究。

目前已从药物、毒物等简单分子逐步向复杂体系过渡,试图从电子水平说明生命现象的本质,涉及各种生命活动的基础。

但在方法上还必须不断发展以适应需要。

6、光生物物理。

光生物物理是研究光生物学中的光物理与原初光化学过程,即研究光的原初过程的学科。

主要研究问题有:①光合作用;②视觉;③嗜盐菌的光能转换;④植物光形态建成:⑤光动力学作用;③生物发光与化学发光。

7、自由基与环境辐射生物物理。

研究各种波长电磁波(包括电离辐射)对机体和生物分子的作用机制及其产生效应的利用与防护基础研究。

主要内容有:①自由基;②电离辐射的生物物理研究;③生物磁学与生物电磁学。

8、生物力学与生物流变学。

它的兴起是由于人们对认识生命运动规律、保护人类健康、生物医学工程和生物化学工程的需要。

主要内容有:①生物流体力学;②生物固体力学;③其它生物力学问题;④生物流变学。

其中血液流变学占主导地位,这是因为它与临床密切结合,所以发展特别迅速。

9、生物物理技术。

生物物理技术在生物物理中占有特殊的地位,以致成为该学科中不可缺少的一个重要组成部分。

这是因为每一项重要技术的出现常常使生物物理的研究进到一
个新的水平,推动学科迅速发展。

X射线衍射分析、核磁共振技术及常规波谱分析都是很典型的例子。

生物物理技术和仪器的另一重要任务就是根据研究课题的需要设计新的仪器。

如为了研究细胞膜上的脂和蛋白分子的侧向扩散运动而设计的荧光漂白恢复技术(FPR)等。

相关文档
最新文档