江苏省南京市、盐城市2021届高三数学第二次模拟考试试题.doc

合集下载

江苏省南京市、盐城市2021届高三地理第二次模拟考试试题(含解析).doc

江苏省南京市、盐城市2021届高三地理第二次模拟考试试题(含解析).doc

江苏省南京市、盐城市2021届高三地理第二次模拟考试试题(含解析)一、选择题(共60分)(一)单项选择题:本大题共18小题,每小题2分,共计36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

下图分别为某日同一时刻太阳高度沿某经线和某纬线分布图,读图完成下面小题。

1. 此时()A. 北京时间为2时B. a+c=90°C. 左图经线90°WD. 右图纬线为23°26′N2. 以下叙述正确的是()A. 该日北极圈上出现极昼B. 该日后太阳直射点将向南移C. 次日右图纬线昼长夜短D. 次日南京日出东北方向【答案】1. B 2. D【解析】【分析】试题考查区时计算、太阳高度变化规律【1题详解】从左图中看,此时太阳直射点在赤道以北,90°N太阳高度为c,则太阳直射点的纬度为c,D 错。

从右图中看,90°E太阳高度为最大,最大的太阳高度为a,可判断出太阳直射点在90°E,90°E地方时为12点,北京时间为14时,左图中的经线为90°E ,A、C错。

右图中昼长为12小时,可判断出该纬线为赤道,正午太阳高度与直射点纬度和为90°,因此a+c=90°,B 正确。

【2题详解】从左图中看,此时太阳直射点在赤道以北,90°N太阳高度为c,则太阳直射点的纬度为c,(90°-c)纬线圈上出现极昼,A错。

太阳直射点可能向北移,也可能向南移,B错。

右图纬线昼长为12小时,可判断出该纬线为赤道,赤道上全年昼夜平分,C错。

从左图中看,此时太阳直射点在赤道以北,次日南京日出东北方向,D正确。

【点睛】太阳直射点位于北半球时,全球除极昼极夜地区外都东北日出、西北日落;太阳直射点位于南半球时,全球除极昼极夜地区外都东南日出、西南日落;太阳直射点位于赤道上时,全球正东日出,正西日落。

2021年1月6日-7日,全国迎来了冬至后的首次大范围降水,下图为“1月6日-7日全国降水量分布图”,读图完成下面小题。

2022年3月江苏省南京市、盐城市普通高中2022届高三毕业班第二次高考联合模拟考试数学试题及答案

2022年3月江苏省南京市、盐城市普通高中2022届高三毕业班第二次高考联合模拟考试数学试题及答案

绝密★启用前江苏省南京市、盐城市普通高中2022届高三毕业班第二次高考联合模拟考试数学试题2022年3月注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.第I卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|y=ln(x-2)},B={x|x2-4x+3≤0},则A∪B=A.[1,3] B.(2,3] C.[1,+∞) D.(2,+∞) 2.若(2+i)z=i,其中i为虚数单位,则复数z在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.已知a,b为单位向量.若|a-2b|=5,则|a+2b|=A. 3 B. 5 C.7 D.54.利用诱导公式可以将任意角的三角函数值转化为0°~90°之间角的三角函数值,而这个范围内的三角函数值又可以通过查三角函数表得到.下表为部分锐角的正弦值,则tan1600°的值为(小数点后保留2位有效数字)α10°20°30°40°50°60°70°80°sinα0.1736 0.3420 0.5000 0.6427 0.7660 0.8660 0.9397 0.98485.已知圆锥的顶点和底面圆周均在球O的球面上.若该圆锥的底面半径为23,高为6,则球O的表面积为A.32πB.48πC.64πD.80π6.泊松分布是统计学里常见的离散型概率分布,由法国数学家泊松首次提出.泊松分布的概率分布列为P(X=k)=λkk!e-λ(k=0,1,2,…),其中e为自然对数的底数,λ是泊松分布的均值.已知某种商品每周销售的件数相互独立,且服从参数为λ(λ>0)的泊松分布.若每周销售1件该商品与每周销售2件该商品的概率相等,则两周共销售2件该商品的概率为A.2e4B.4e4C.6e4D.8e47.已知椭圆C:x2a2+y2b2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,过点F与x轴垂直的直线与直线AB交于点P.若线段OP的中点在椭圆C上,则椭圆C的离心率为A.7-12B.7-13C.5-12D.5-138.已知实数a,b∈(1,+∞),且2(a+b)=e2a+2ln b+1,e为自然对数的底数,则A.1<b<a B.a<b<2a C.2a<b<e a D.e a<b<e2a 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.2017年~2021年某市城镇居民、农村居民年人均可支配收入比上年增长率如下图所示.根据下面图表,下列说法一定正确的是A.该市农村居民年人均可支配收入高于城镇居民B.对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C.对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大D.2021年该市城镇居民、农村居民年人均可支配收入比2020年有所上升(第9题图)。

2021年江苏省南京市盐城市高考数学二模试卷

2021年江苏省南京市盐城市高考数学二模试卷

2021年江苏省南京市、盐城市高考数学二模试卷一、填空题(本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上) 1.(5分)设集合A={x|��2<x<0},B={x|��1<x<1},则A∪B= . 2.(5分)若复数z=(1+mi)(2��i)(i是虚数单位)是纯虚数,则实数m的值为. 3.(5分)将一骰子连续抛掷两次,至少有一次向上的点数为1的概率是. 4.(5分)如图所示,一家面包销售店根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为.5.(5分)执行如图所示的流程图,则输出的k的值为.6.(5分)设公差不为0的等差数列{an}的前n项和为Sn.若S3=a2,且S1,S2,S4成等比数列,则a10等于. 7.(5分)如图,正三棱柱ABC��A1B1C1中,AB=4,AA1=6.若E,F分别是棱BB1,CC1上的点,则三棱锥A��A1EF的体积是.2第1页(共27页)8.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<图象过点(��,��),则φ的值为.)的最小正周期为π,且它的9.(5分)已知f(x)=,不等式f(x)≥��1的解集是.10.(5分)在平面直角坐标系xOy中,抛物线y=2px(p>0)的焦点为F,双曲线2��=1(a>0,b>0)的两条渐近线分别与抛物线交于A、B两点(A,B异于坐标原点).若直线AB恰好过点F,则双曲线的渐近线方程是.11.(5分)在△ABC中,A=120°,AB=4.若点D在边BC上,且则AC的长为.12.(5分)已知圆O:x+y=1,圆M:(x��a)+(y��a+4)=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围为.213.(5分)已知函数f(x)=ax+x��b(a,b均为正数),不等式f(x)≥0的解集记为P,集合Q={x|��2��t<x<��2+t},若对于任意正数t,P∩Q≠?,则��的最大值是. 14.(5分)若存在两个正实数x、y,使得等式x+a(y��2ex)(lny��lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围为.二、解答题(本大题共6小题,计90分).解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(14分)已知α为锐角,cos(α+(1)求tan(α+(2)求sin(2α+)的值;)的值.)=.2222=2,AD=,16.(14分)如图,在三棱锥P��ABC中,平面PAB⊥平面ABC,PA⊥PB,M,N分别为AB,PA的中点.(1)求证:PB∥平面MNC;第2页(共27页)(2)若AC=BC,求证:PA⊥平面MNC.17.(14分)如图,某城市有一块半径为1(单位:百米)的圆形景观,圆心为C,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处(图中阴影部分)只有一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C相切的小道AB.问:A,B两点应选在何处可使得小道AB最短?18.(16分)在平面直角坐标系xOy中,点C在椭圆M:+=1(a>b>0)上,若点A(��a,0),B(0,),且=.(1)求椭圆M的离心率;(2)设椭圆M的焦距为4,P,Q是椭圆M上不同的两点.线段PQ的垂直平分线为直线l,且直线l不与y轴重合.①若点P(��3,0),直线l过点(0,��),求直线l的方程;②若直线l过点(0,��1),且与x轴的交点为D.求D点横坐标的取值范围.*19.(16分)对于函数f(x),在给定区间[a,b]内任取n+1(n≥2,n∈N)个数x0,x1,x2,…,xn,使得a=x0<x1<x2<…<xn��1<xn=b,记S=|f(xi+1)��f(xi)|.若存在与n及xi(i≤n,i∈N)均无关的正数A,使得S≤A恒成立,则称f(x)在区间[a,b]上具有性质V.(1)若函数f(x)=��2x+1,给定区间为[��1,1],求S的值;(2)若函数f (x)=,给定区间为[0,2],求S的最大值;2(3)对于给定的实数k,求证:函数f(x)=klnx��x 在区间[1,e]上具有性质V.第3页(共27页)20.(16分)已知数列{an}的前n项和为Sn,且对任意正整数n都有an=(��1)Sn+p(p为常数,p≠0).(1)求p的值;(2)求数列{an}的通项公式;(3)设集合An={a2n��1,a2n},且bn,cn∈An,记数列{nbn},{ncn}的前n项和分别为Pn,Qn,若b1≠c1,求证:对任意n∈N,Pn≠Qn.三、数学附加题【选做题】在以下四小题中只能选做2题,每小题10分,共计20分.请在答卷纸指定区域内作答.解答应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲] 21.(10分)如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接AE交⊙O于点F,求证:BE?CE=EF?EA.nn[选修4-2:矩阵与变换]22.(10分)已知a,b是实数,如果矩阵A=(3,4).(1)求a,b的值.(2)若矩阵A的逆矩阵为B,求B.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线l的极坐标方程为ρsin(��θ)=,椭圆C的参数方程为(t为参数).2所对应的变换T把点(2,3)变成点(1)求直线l的直角坐标方程与椭圆C的普通方程;(2)若直线l与椭圆C交于A,B两点,求线段AB的长.[选修4-5:不等式选讲]24.解不等式:|x��2|+x|x+2|>2.[必做题]第25题、第26题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.25.(10分)甲、乙两人投篮命中的概率为别为与,各自相互独立,现两人做投篮游戏,共比赛3局,每局每人各投一球.(1)求比赛结束后甲的进球数比乙的进球数多1个的概率;(2)设ξ表示比赛结束后,甲、乙两人进球数的差的绝对值,求ξ的概率分布和数学期望E(ξ).第4页(共27页)26.(10分)设(1��x)=a0+a1x+a2x+…+anx,n∈N,n≥2.(1)设n=11,求|a6|+|a7|+|a8|+|a9|+|a10|+|a11|的值;(2)设bk=|的值.ak+1(k∈N,k≤n��1),Sm=b0+b1+b2+…+bm(m∈N,m≤n��1),求|n2n*第5页(共27页)感谢您的阅读,祝您生活愉快。

南京市、盐城市届高三年级第二次模拟考试有答案

南京市、盐城市届高三年级第二次模拟考试有答案

南京市、盐城市2021 届高三年级第二次模拟考试数学2021. 03考前须知:1.本试卷共 4 页,包括填空题〔第1 题~第 14 题〕、解答题〔第 15 题~第 20 题〕两局部.本试卷总分值为 160 分,考试时间为120 分钟....2.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡 上对应题目的答案空格内.考试结束后,交答复题卡........一、填空题:本大题共14 小题,每题 5 分,共 70 分.请把答案填写在答题卡相应位置 上.1的定义域为▲ .1.函数 f(x)= ln 1- x-- ▲.2.假设复数 z 满足 z(1- i)= 2i 〔 i 是虚数单位〕, z 是 z 的共轭复数,那么z ·z =3.某校有三个兴趣小组,甲、乙两名学生每人选择其中一个参加,且每人参加每个兴趣小组的可能性相同,那么甲、乙不在同一兴趣小组的概率为▲.4.下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众 4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取 n 个人做进一步的调研,假设在“不喜欢戏剧的男性青年观众〞的人中抽取了 8 人,那么 n 的值为▲.5.根据如下图的伪代码,输出S 的值为▲.S ← 1I ← 16.记公比为正数的等比数列 { a n } 的前 n 项和为 S n .假设 a 1= 1, S 4- 5S 2=0,WhileI ≤8S ← S + I那么 S 5 的值为▲.I ← I + 2 πEnd While 7.将函数 f(x)= sinx 的图象向右平移y = g(x)的图象,PrintS个单位后得到函数3那么函数 y = f(x)+g(x)的最大值为 ▲.〔第 5 题图〕8.在平面直角坐标系xOy 中,抛物线 y 2= 6x 的焦点为 F ,准线为 l ,P 为抛物线上一点, PA ⊥ l , Aπ 3π ,那么 cos α的值为 ▲ .9.假设 sin(α- )= 5 , α∈ (0, )6 210. α, β为两个不同的平面, m , n 为两条不同的直线,以下命题中正确的选项是▲〔填上所有正确命题的序号〕 .①假设 α∥ β, m α,那么 m ∥β;②假设 m ∥α, nα,那么 m ∥n ;③假设 α⊥ β, α∩ β= n , m ⊥ n ,那么 m ⊥ β; ④假设 n ⊥ α, n ⊥ β, m ⊥ α,那么 m ⊥ β.11.在平面直角坐标系xOy 中,直线 l 1: kx - y +2= 0 与直线 l 2: x + ky - 2= 0 相交于点 P ,那么当实数 k 变化时,点 P 到直线 x -y - 4= 0 的距离的最大值为▲ .12.假设函数 f(x)=x2-mcosx +m 2+ 3m - 8 有唯一零点,那么满足条件的实数 m 组成的集合为▲.13.平面向量→ → → →▲.AC =(1 ,2), BD = (- 2, 2),那么 AB ?CD 的最小值为14.函数 f(x)= lnx + (e - a)x - b ,其中 e 为自然对数的底数.假设不等式b的最f(x)≤ 0 恒成立,那么 a 小值为 ▲ .........二、解答题:本大题共6 小题,共计 90 分.请在答题卡指定区域内 作答,解答时应写出文字说 明、证明过程或演算步骤.15.〔本小题总分值 14 分〕如图,在△ ABC 中, D 为边 BC 上一点, AD = 6, BD =3, DC = 2.〔1〕假设 AD ⊥ BC ,求∠ BAC 的大小;AAπ〔2〕假设∠ ABC=4,求△ ADC 的面积.BD CBDC〔第 15 题图 1〕 〔第 15 题图 2〕数学试卷第 2 页共16 页如图,四棱锥P-ABCD 中, AD ⊥平面 PAB, AP⊥ AB.(1〕求证: CD ⊥ AP;(2〕假设 CD ⊥PD,求证: CD∥平面 PAB;D CABP〔第 16 题图〕17.〔本小题总分值14 分〕在一张足够大的纸板上截取一个面积为3600 平方厘米的矩形纸板ABCD ,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒〔如图〕.设小正方形边长为x 厘米,矩形纸板的两边AB, BC 的长分别为 a 厘米和 b 厘米,其中a≥ b.(1〕当 a= 90 时,求纸盒侧面积的最大值;(2〕试确定 a, b, x 的值,使得纸盒的体积最大,并求出最大值.D CA B〔第 17 题图〕22如图,在平面直角坐标系xOy 中,焦点在x 轴上的椭圆 C : x+ y=1 经过点 (b , 2e),其中 e 8 b 2为椭圆 C 的离心率.过点 T(1, 0)作斜率为 k(k > 0)的直线 l 交椭圆 C 于 A , B 两点 (A 在 x 轴下方 ).〔1〕求椭圆 C 的标准方程;〔2〕过点 O 且平行于 l 的直线交椭圆C 于点 M , N ,求AT · BT 的值;MN 2→ 2 →〔3〕记直线 l 与 y 轴的交点为 P .假设 AP = 5 TB ,求直线 l 的斜率 k .yMBOT xPNA19.〔本小题总分值 16 分〕〔第 18 题图〕函数 f (x)= e x - ax - 1,其中 e 为自然对数的底数, a ∈ R .( 1〕假设 a = e ,函数 g (x)= (2-e)x .①求函数 h(x)= f (x)- g (x)的单调区间;②假设函数F(x)=f (x),x ≤m ,的值域为 R ,求实数m 的取值范围;g (x), x >m( 2〕假设存在实数 x 1, x 2∈ [0, 2],使得 f(x 1)= f(x 2),且 | x 1-x 2| ≥ 1,求证: e - 1≤ a ≤e 2-e .20.〔本小题总分值16 分〕数列 { a n } 的前 n 项和为 S n ,数列 { b n } , { c n } 满足 (n + 1) b n = a n + 1-S n,n(n + 2) c n =a n +1+a n +2 S n,其中 n ∈ N* .- n2〔1〕假设数列 { a n } 是公差为 2 的等差数列,求数列 { c n } 的通项公式;〔 2〕假设存在实数 λ,使得对一切n ∈N* ,有 b n ≤ λ≤ c n ,求证:数列{ a n } 是等差数列.南京市、盐城市2021 届高三年级第二次模拟考试数学附加题2021.03考前须知:1.附加题供选修物理的考生使用.2.本试卷共40 分,考试时间30 分钟.3.答题前,请务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交答复题卡.21.【选做题】在 A 、B、C 、D 四小题中只能选做 2 题,每题 10 分,共计卷卡指20 分.请在答....定区域内作答.解容许写出文字说明、证明过程或演算步骤.....A.选修 4— 1:几何证明选讲如图,△ ABC 的顶点 A, C 在圆 O 上, B 在圆外,线段AB 与圆 O 交于点 M.(1〕假设 BC 是圆 O 的切线,且 AB= 8,BC= 4,求线段 AM 的长度;(2〕假设线段 BC 与圆 O 交于另一点 N,且 AB= 2AC,求证: BN= 2MN .CC NOOA M BA M B〔第 21(A) 图〕B.选修 4— 2:矩阵与变换3 0设 a, b∈R.假设直线l :ax+ y- 7=0 在矩阵A=-1b对应的变换作用下,得到的直线为l ′:9x+ y- 91= 0.求实数a, b 的值.C .选修 4— 4:坐标系与参数方程3在平面直角坐标系x=1+5t,x= 4k2,xOy 中,直线 l :(t 为参数 ),与曲线 C:y=4k(k 为参数 )交4y=5t于 A, B 两点,求线段AB 的长.数学试卷第 5 页共16 页D . 修 4— 5:不等式a ≠b ,求 : a 4+ 6a 2b 2+ b 4> 4ab( a 2+ b 2).【必做 】第22 、第 23 ,每 10 分,共20 分. 在答 卷卡指定区域内作答.解答 写出........文字 明、 明 程或演算步 .22.〔本小 分10 分〕如 ,在直四棱柱ABCD -A 1B 1C 1D 1 中,底面四 形ABCD 菱形, A 1A = AB = 2,π∠ABC = ,E , F 分 是 BC , A 1C 的中点.3( 1〕求异面直 EF , AD 所成角的余弦 ;( 2〕点 M 在 段 A 1D 上,A 1M= λ.假设 CM ∥平面 AEF ,求 数 λ的 . A 1DA 1D 1B 1C 1FMADBEC〔第 22 题图〕23.〔本小 分10 分〕n(n + 1)有〔 n ≥2, n ∈ N* 〕个 定的不同的数随机排成一个下 所示的三角形数 :* ⋯⋯⋯⋯⋯⋯⋯ 第 1 行**⋯⋯⋯⋯⋯⋯⋯第 2 行 * * *⋯⋯⋯⋯⋯⋯⋯第 3 行⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯** ⋯⋯⋯⋯ * * ⋯⋯⋯⋯⋯⋯⋯ 第 n 行M k 是第 k 行中的最大数,其中 1≤ k ≤ n , k ∈ N* . M 1< M 2<⋯< M n 的概率 p n .( 1〕求 p 2 的 ;2( 2〕 明: p n >C n+1 .(n + 1)!南京市、盐城市2021 届高三年级第二次模拟考试数学参考答案及评分标准一、填空 〔本大 共14 小 ,每小5 分, 70 分 .〕21. (-∞, 1) 2. 2 3. 34. 30 5.17 6. 31 7. 38. 64 3- 3 10.①④11. 3 212. {2}9. 109113.- 414.- e二、解答 〔本大 共6 小 ,90 分.解答 写出必要的文字 明, 明 程或演算步 〕15.〔本小 分14 分〕解:〔 1〕 ∠ BAD = α,∠ DAC = β.因 AD ⊥ BC , AD = 6, BD = 3,DC = 2,所以 tan α=1, tan β= 1,⋯⋯⋯⋯⋯⋯⋯2 分231 1所以 tan ∠ BAC = tan(α+β)=tan α+tan β= 2+3= 1.⋯⋯⋯⋯⋯⋯⋯4 分1- tan αtan β111-×32π⋯⋯⋯⋯⋯⋯⋯ 6 分又∠ BAC ∈ (0, π),所以∠ BAC = .4〔 2〕 ∠ BAD =α.π在△ ABD 中,∠ ABC = , AD = 6,BD =3.4由正弦定理得AD = BD, 解得 sin α= 2.⋯⋯⋯⋯⋯⋯⋯ 8 分π sin α4sin 4因 AD > BD ,所以 α 角,从而cos α= 1- sin 2α=14. ⋯⋯⋯⋯⋯⋯⋯10 分4πππ因此 sin ∠ADC = sin(α+ )= sin αcos +cos αsin 44 42 2 14 1+ 712 分= 2 ( 4 + 4 )=4.⋯⋯⋯⋯⋯⋯⋯△ADC 的面 S = 1×AD × DC · sin ∠ ADC2= 1× 6× 1+ 7 3 7).⋯⋯⋯⋯⋯⋯⋯14 分2 2× = (1+4 216.〔本小分 14 分〕明:〔1〕因 AD⊥平面 PAB ,AP? 平面 PAB,所以 AD⊥ AP.⋯⋯⋯⋯⋯⋯⋯ 2 分又因 AP⊥ AB , AB∩ AD = A, AB? 平面 ABCD ,AD? 平面 ABCD ,所以 AP⊥平面 ABCD .⋯⋯⋯⋯⋯⋯⋯ 4 分因 CD? 平面 ABCD ,所以 CD⊥ AP.⋯⋯⋯⋯⋯⋯⋯ 6 分(2〕因 CD⊥ AP, CD⊥ PD,且 PD∩ AP=P, PD ? 平面 PAD,AP ? 平面 PAD ,所以 CD⊥平面 PAD.①⋯⋯⋯⋯⋯⋯⋯8 分因 AD⊥平面 PAB, AB?平面 PAB,所以 AB⊥ AD .又因 AP⊥ AB, AP∩ AD = A, AP? 平面 PAD, AD ? 平面 PAD ,所以 AB⊥平面 PAD .②⋯⋯⋯⋯⋯⋯⋯10 分由①②得 CD ∥AB,⋯⋯⋯⋯⋯⋯⋯12 分因 CD / 平面 PAB, AB? 平面 PAB,所以 CD∥平面 PAB.⋯⋯⋯⋯⋯⋯⋯14 分17.〔本小分 14 分〕解:〔 1〕因矩形板 ABCD 的面 3600,故当 a= 90 , b= 40,从而包装盒子的面S= 2× x(90- 2x)+ 2× x(40-2x)=- 8x2+260x, x∈ (0,20).⋯⋯⋯⋯⋯⋯⋯ 3 分因 S=- 8x2+260x=- 8(x-65)2+4225,42故当 x=65,面最大,最大4225平方厘米.42答:当 x=6542256 分4,盒的面的最大 2 平方厘米.⋯⋯⋯⋯⋯⋯⋯〔 2〕包装盒子的体2bV= (a- 2x)(b- 2x) x= x[ab-2(a+ b)x+ 4x ], x∈ (0,2), b≤60.⋯⋯⋯⋯⋯8 分V= x[ab- 2(a+b) x+ 4x2] ≤x(ab- 4abx+ 4x2)=x(3600- 240x+4x2)=4x 3- 240x 2+ 3600x .⋯⋯⋯⋯⋯⋯⋯ 10 分当且 当a =b = 60 等号成立.f (x)= 4x 3- 240x 2+ 3600x , x ∈ (0, 30).f ′(x)= 12(x - 10)(x - 30).于是当 0<x <10 , f ′(x)>0,所以 f (x)在 (0, 10)上 增;当 10<x < 30 , f ′(x)< 0,所以 f (x)在 (10, 30)上 减.因此当 x = 10 , f (x)有最大 f (10)= 16000, ⋯⋯⋯⋯⋯⋯12 分此 a = b =60, x = 10.答:当 a =b = 60, x =10 盒的体 最大,最大16000 立方厘米.⋯⋯⋯⋯⋯⋯14 分18.〔本小 分 16 分〕222 2解:〔 1〕因xyb 4e8 +b 2= 1 点 (b , 2e),所以8 + b 2= 1.2c 2 c 2b 2c 2因 e = a 2= 8 ,所以8+2b2= 1.2 2222b8- b因 a = b + c ,所以8+2b 2 = 1.⋯⋯⋯⋯⋯⋯⋯⋯2 分整理得 b 4- 12b 2 +32= 0,解得 b 2= 4 或 b 2= 8(舍 ).所以 C 的方程x22+y= 1.⋯⋯⋯⋯⋯⋯⋯⋯ 4 分84( 2〕 A(x 1, y 1),B(x 2, y 2) .因 T(1,0) , 直 l 的方程 y = k(x - 1).y = k(x - 1), 立直 l 与 方程x 2 y 28+4 = 1,消去 y ,得(2k 2+1)x 2- 4k 2 x +2k 2 -8= 0,x 1 +x 2 =4k 2,2所以2k + 12k 2 -8x 1 x 2= 2 .2k + 1因 MN ∥ l ,所以直 MN 方程 y = kx ,y = kx , 立直 MN 与 方程x 2 y 28+4 = 1,2228消去 y 得 (2k + 1)x = 8,解得 x = 2k 2+ 1.因 MN ∥ l ,所以 AT · BT (1- x 1)· (x 2- 1)MN 2 = (x - x N ) 2.⋯⋯⋯⋯⋯⋯6 分⋯⋯⋯⋯⋯⋯⋯⋯8 分因 (1- x 1) ·(x 2- 1)=- [x 1x 2- (x 1+ x 2) + 1]=7,22k + 12232,(x M - x N ) = 4x =22k + 1AT · BT (1 -x 1)· (x 2- 1)72k 2+ 1710 分所以 MN 2 =(x M - x N )2= 2k 2+ 1· 32 = 32.⋯⋯⋯⋯⋯⋯⋯〔 3〕在 y = k(x - 1)中,令 x = 0, y =- k ,所以 P(0,- k),从而 → →AP = (- x 1,- k -y 1 ), TB = (x 2- 1, y 2).因→ 2 →22 2 12 分AP =5 TB ,所以- x 1= (x 2-1) ,即 x 1+x 2= .⋯⋯⋯⋯⋯⋯⋯⋯5 55x 1 +x 2 =4k 2,2由(2) 知,2k + 1x 1x 22k 2-8=2.2k +1x 1+ x 2=4k 2,2-2 16k 2-2由2k + 14k + 2,x 2 = . ⋯⋯⋯⋯⋯⋯ 14 分2 2 解得 x 1=2 1) 3(2k 2 +1)3(2k +x 1+ x 2= ,55因 x 1x 2=2k 2- 8- 4k 2+ 2 16k 2- 2 = 2k 2- 82, 所以 2 × 22 ,2k + 13(2k + 1) 3(2k + 1) 2k + 1整理得50k 4- 83k 2- 34= 0,解得 k 2= 2 或 k 2=-1750 (舍 ) .又因 k > 0,所以 k = 2.⋯⋯⋯⋯⋯⋯⋯⋯ 16 分19.〔本小 分 16 分〕解:〔 1〕当 a = e , f (x)= e x - ex - 1.① h (x)= f (x)- g (x)=e x - 2x -1, h ′(x)= e x -2.由 h ′(x)> 0 得 x > ln2,由 h ′(x)< 0 得 x < ln2 .所以函数 h(x)的 增区(ln2 ,+∞ ), 减区 (-∞, ln2) .⋯⋯⋯⋯⋯⋯⋯3 分② f ′(x)= e x - e .当 x < 1 , f ′(x)<0,所以 f (x)在区 (-∞, 1)上 减;当 x > 1 , f ′(x)>0,所以 f(x)在区 (1,+∞ )上 增.1°当 m ≤ 1 , f (x)在 (-∞, m]上 减, 域[e m -em -1,+∞ ),g(x)= (2 -e)x 在 (m ,+∞ )上 减, 域(-∞, (2- e)m),因 F(x)的 域R ,所以 e m - em - 1≤ (2- e)m ,即 e m - 2m - 1≤ 0.〔 * 〕由①可知当 m < 0 , h(m)= e m - 2m - 1> h(0)= 0,故〔 * 〕不成立.因 h(m)在 (0, ln2)上 减,在(ln2 , 1)上 增,且h(0) = 0, h(1)= e - 3< 0,所以当 0≤m ≤ 1 , h(m)≤0 恒成立,因此0≤ m ≤1.⋯⋯⋯⋯⋯⋯⋯ 6 分2°当 m > 1 , f (x)在 (-∞, 1)上 减,在(1, m]上 增,所以函数 f (x)= e x - ex -1 在 (-∞, m] 上的 域 [f (1) ,+∞ ),即 [- 1,+∞ ).g( x)= (2- e)x 在 (m ,+∞ )上 减, 域(-∞, (2- e)m).因 F(x)的 域 R ,所以- 1≤ (2- e)m ,即 1< m ≤ 1.e - 2合 1°, 2°可知, 数 m 的取 范 是 [0, 1⋯⋯⋯⋯⋯⋯⋯9 分e -2].〔 2〕 f ′(x)=e x - a .假设 a ≤ 0 , f ′(x)> 0,此 f(x)在 R 上 增.由 f(x 1)= f( x 2)可得 x 1= x 2,与 |x 1-x 2|≥ 1 相矛盾,所以 a > 0,且 f( x)在 (-∞, lna] 减,在 [ln a ,+∞ )上 增.⋯⋯⋯⋯⋯⋯⋯⋯11 分若 x 1,x 2∈ ( -∞, lna] , 由 f (x 1) =f (x 2)可得 x 1= x 2,与 |x 1- x 2|≥ 1 相矛盾,同不能有 x 1 ,x 2∈ [ln a ,+∞ ).不妨 0≤x 1<x 2≤2, 有 0≤ x 1< lna < x 2≤ 2.因 f( x)在 (x 1, lna)上 减,在(lna , x 2)上 增,且f (x 1)= f (x 2),所以当 x 1≤ x ≤ x 2 , f (x)≤f (x 1)= f (x 2).由 0≤ x 1< x 2≤ 2,且 |x 1- x 2 |≥ 1,可得 1∈ [x 1 , x 2],故 f (1)≤ f (x 1)= f (x 2) .⋯⋯⋯⋯⋯⋯⋯⋯ 14 分又 f (x)在 (-∞, ln a] 减,且 0≤ x 1< lna ,所以 f (x 1)≤ f (0),所以 f (1) ≤ f (0),同理 f (1)≤ f (2).e - a - 1≤ 0,2即e - a - 1≤ e 2- 2a - 2,解得 e -1≤ a ≤ e - e - 1,所以 e - 1≤a ≤ e 2- e .⋯⋯⋯⋯⋯⋯⋯⋯ 16 分20.〔本小 分16 分〕解:〔 1〕因 { a n } 是公差2 的等差数列,所以 a = a + 2(n - 1),S n=a +n - 1,⋯⋯⋯⋯⋯⋯⋯⋯2 分n1n 1从而 (n + 2) c n = a 1+ 2n +a 1+ 2(n + 1)4 分- (a 1+ n - 1)= n + 2,即 c n = 1. ⋯⋯⋯(2〕由 ( n+ 1)b n= a n+1-S n,n得n(n+ 1) b n= na n+1- S n,(n+ 1)(n+ 2) b n+1= (n+1)a n+2- S n+1,两式相减,并化得a n+2- a n+1= (n+ 2) b n+1-nb n.⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分从而a n+1+ a n+2n=a n+1+ a n+21- (n+ 1) b n](n+ 2) c n=-S- [a n+2n2=a n+2-an+1+(n+1) b n2=(n+ 2) b n+1-nbn+(n+1)b n 21=2(n+ 2)( b n+ b n+1).11).⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分因此 c n= ( b n+ b n+21因一切 n∈N*,有 b n≤ λ≤ c n,所以λ≤ c n= (b n+ b n+1 )≤ λ,2故 b n=λ, c n=λ.⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分所以 (n+ 1)λ= a +-S n,!未找到引用源。

江苏省南京市盐城市2021届高三3月第二次模拟考试化学试题(word含答案 )(1)

江苏省南京市盐城市2021届高三3月第二次模拟考试化学试题(word含答案 )(1)

盐城市、南京市2021届高三年级第二次模拟考试可能用到的相对原子质量:H-1 C-12 O-16 Na-23 S-32一、单项选择题:共13题,每题3分,共39分。

每题只有一个选项最符合题意。

1.2020年11月,“奋斗者”号载人潜水器成功进行万米海试。

下列说法正确的是A.从海水中提取镁的过程属于物理变化B.“铝-空气-海水”电池中用铝作正极C.电解从海水获得的饱和食盐水可制金属钠D.从海水中提取铀是海水利用的研究方向之一2.钠着火不能用水扑灭的原因是2Na+2H2O=2NaOH+H2↑,下列说法正确的是A.Na基态核外电子排布式为[Ne]3s1B.H2O为非极性分子C.O结构示意图为D.NaOH电子式为3.氯及其化合物在生产、生活中有广泛应用。

下列物质的性质与用途具有对应关系的是A.Cl2能溶于水,可用于工业制盐酸B.CIO2有强氧化性,可用于自来水消毒C.HCIO不稳定,可用作棉、麻的漂白剂D.FeCl3溶液呈酸性,可用于蚀刻印刷电路板阅读下列材料,完成4~6题:CO2是一种常见温室气体,也是巨大的碳资源。

CO2可转化为CO、H2等燃料:CO2(g)+CH4(g)=2CO(g)+2H2(g) ΔH1=+247 kJ·mol-1.实验室用块状碳酸钙与稀盐酸反应制取少量CO2.4.下列关于二氧化碳的说法正确的是A.CO2分子的空间构型为直线形B.CO2的水溶液不能导电C.干冰与SiO2的晶体类型相同D.呼吸面具中CO2与Na2O2反应利用了CO2的氧化性5.下列关于反应CO2(g)+CH4(g)=2CO(g)+2H2(g)ΔH1=+247 kJ·mol-1的说法正确的是A.该反应在任何温度下都可自发进行B.反应CO2(s)+CH4(g)==2CO(g)+2H2(g)ΔH2<+247kJ·mol-1C.反应中每生成1molH2,转移电子的数目为3×6.02×1023D.选择高效催化剂可以降低反应的焓变,提高化学反应速率6.实验室制取CO2时,下列装置不能达到相应实验目的的是7.下列关于Na、Mg、Al元素及其化合物的说法正确的是A.Mg在周期表中位于p区B.原子半径:r(Na)<r(Mg)<r(Al)C.第一电离能:I1(Na)<I1(Al)<11(Mg)D.最高价氧化物的水化物的碱性:NaOH<Mg(OH)2<Al(OH)38.用硫酸渣(主要成分为Fe2O3、SiO2)制备铁基颜料铁黄(FeOOH)的一种工艺流程如下。

江苏省南京市、盐城市届高三年级第二次模拟考试数学试题含附加题纯word解析版

江苏省南京市、盐城市届高三年级第二次模拟考试数学试题含附加题纯word解析版

江苏省南京市、盐城市 2021届高三年级第二次模拟考试数学试题2021.3一、填空题〔本大题共 14小题,每题5分,合计70分.不需要写出解答过程,请将答案填写在答题卡相应的地点上.〕.........1.会合A=xx2k1,k Z,B=xx(x5)0,那么AIB=.答案:{1,3}考点:会合交集运算分析:∵会合A=xx2k1,k Z,B=xx(x5)0,∴A I B={1,3}.2.复数z=1+2i,此中i为虚数单位,那么z2的模为.答案:5考点:复数分析:z214i4i234i,∴z25.3.如图是一个算法流程图,假定输出的实数y的值为﹣1,那么输入的实数x的值为.答案:1 4考点:算法与流程图分析:当x0时,log2(2x1)1,解得x 1切合题意,4当x0时,2x1,该等式无解.故x1.44.某校初三年级共有500名女生,为了认识初三女生1分钟“仰卧起坐〞工程训练状况,统计了全部女生1分钟“仰卧起坐〞测试数据(单位:个),并绘制了以下频次散布直方图,那么1分钟起码能做到30个仰卧起坐的初三女生个.1答案:325 考点:频次散布直方图0.01)分析:x2,∴++0.01)×10×500=325.5.从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,那么第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为 .答案:12考点:随机事件的概率 分析:先后取两次共有16种取法,此中第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除有8种,故P =81 .162a6.函数f(x)是定义在R 上的奇函数,且周期为2,当x(0,1]时,f(x)x ,3那么f(a)的值为 .答案:0考点:函数的奇偶性与周期性分析:当x(0,1]时,f(x)xa,∴f(1)1 a ,33a ,∵函数f(x)是定义在R 上的奇函数,∴f(1)f(1)13∵函数f(x)周期为 2,∴f( 1) f(1),解得a =﹣3,∴f( 1)f(1) 0,∴f(a)f(3)f( 3 2)f(1)0.7.假定将函数f(x)sin(2x)的图象沿 x 轴向右平移 ( >0)个单位后所得的图象与3f(x)的图象对于x 轴对称,那么的最小值为 .答案:2考点:三角函数的图像与性质2T分析:由题意知.228.在△ABC中,AB=25,AC=5,∠BAC=90°,那么△ABC绕BC所在直线旋转一周所形成的几何体的表面积为.答案:65考点:圆锥的侧面积分析:有题意可知该几何体是由底面半径为2,母线长分别为25,5的两个圆锥拼成的图形,故表面积=2(255)65.9.数列a n为等差数列,数列b n为等比数列,知足{a1,a2,a3}={b1,b2,b3}={a,b,﹣2},此中a>0,b>0,那么a+b的值为.答案:5考点:等差、等比中项分析:不如令a>b,那么ab4,2ba2,那么b=1,a=4,∴a+b=5.10.点P是抛物线x24y上动点,F是抛物线的焦点,点A的坐标为(0,﹣1),那么PFPA 的最小值为.答案:22考点:抛物线的性质分析:令直线l为:y=﹣1,作PG⊥l于点G,那么PFPG cosAPGcos PAF,PA PA当直线AP且抛物线与点P时,∠PAF最大,此时cos∠PAF最小,即PF最小,PA 令直线AP:y=kx﹣1,与抛物线联立:x24y,x24kx40,y kx1当(4k)2440,解得k=±1,进而有∠PAF=45°,即cos PAF=2.2 11.x,y为正实数,且xy+2x+4y=41,那么x+y的最小值为.答案:8考点:根本不等式分析:∵xy+2x+4y=41,∴(x4)(y2)49,∴(x4)(y2)2(x4)(y2)14,当且仅当x=3,y=5取“=〞,∴x+y≥8,即x+y的最小值为8.12.在平面直角坐标系xOy中,圆C:(x m)2y2r2(m>0).过原点O且互相垂3直的两条直线 l 1和l 2,此中l 1 与圆C 订交于A ,B 两点,l 2与圆C 相切于点D .假定AB =OD ,那么直线 l 1的斜率为 .25答案:5考点:直线与圆综合分析:作CE ⊥AB 于点E ,那么CE 2BC 2BE 2 BC 21AB 2 BC 2 1OD 24 4r 21(m 2 r 2)5r 2 m 2 ,44由OECD 是矩形,知CE 2=OD 2,∴5r 2m 2 m 2 r 2,化简得r5 ,4m3即cos ∠OCD =CD =r 5,tan ∠COB =tan ∠OCD =25,OCm 352 5.∴直线l 1的斜率为5.在△ 中, 为定长, uuuruuur uuurABC BC AB 2AC =3BC .假定△ABC 的面积的最大值为2,那么13边BC 的长为.答案:2考点:平面向量与解三角形分析:方法一:依据题意作图以下,且令在△ ABC 中,角A ,B ,C 所对的边分别为 a ,b ,c ,uuur uuuruuur此中C 是AD 中点,E 是BD 中点,那么AB 2AC2AE ,uuuruuur uuuruuur 3uuur3∴AB2AC =3BC 可转变为AEBCa ,22 依据三角形中线公式得,AE1 2(AD 2AB 2)BD 2,BC1 2(AB2 BD 2) AD 2,22即3a1 2(4b2 c 2) BD 2 ,a 1 2(c 2 BD 2)4b 2,消BD 2得,2 2211a 2 6b 2 3c 2,作AF ⊥BC 于点F ,设CF =x ,那么BF =ax ,AF =h ,411a 2 6b 2 3c 2 可转变为11a 2 6(x 2 h 2)3[h 22],ax化简得h 29x 26ax8a 2 a 22a ,,当x3 时,h 取最大值a,即h 的最大值为9∴S max1 aa 2,解得a =2,即BC 的长为2. 2方法二:14.函数f(x)e x x b (e 为自然对数的底数,b R),假定函数g(x)f(f(x)1 )恰有24个零点,那么实数b 的取值范围为.答案:(1,1ln2)2考点:函数与方程分析:∵f(x)e x x b ,∴f(x)e x1,当x <0,f (x)<0,那么f(x)在(,0)上单一递减,当x >0,f(x)>0,那么f(x)在(0,)上单一递加,∴f(x)的最小值为f(0) 1b ,简单知道当1b 0,函数g(x)f(f(x)1)没有零点;2当1b0 ,函数g(x)f(f(x)1)有且仅有两个零点;2要使函数g(x)f(f(x)1)恰有4个零点,一定1b0,即b >12此时f(x)恰有2个零点,令这两个零点为t 1,t 2,规定t 1<0<t 2,那么f(x)1 =t 或t 2,f(x)=1 t 或 1 t,易知f(x)=1 t 有两个不相等的2 12 1 2 22 2实根,那么f(x)=1t 1一定知足有且仅有两个不相等的实根,故1 t 11 b ,即t 112 12b ,由于函数 f(x)在( b ,t 1)上单一递减, 2 2∴f(11 b 11b)f(t 1)0,即e2 ( b)b0,解得bln2, 22251综上所述,1 bln2.2二、解答题〔本大题共 6小题,合计 90分.请在答题纸指定地区 内作答,解允许写出文字.......说明,证明过程或演算步骤. 〕 15.〔本题总分值 14分〕如图,三棱锥P —ABC 中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC . 〔1〕求证:AC ∥平面PDE ;〔3〕假定PD =AC =2,PE = 3,求证:平面 PBC ⊥平面ABC .( 解:〔1〕∵D ,E 分别为AB ,BC 的中点,( DE ∥AC , ( AC平面PDE ,DE 平面PDE ,∴AC ∥平面PDE( 2〕∵D ,E 分别为AB ,BC 的中点, ∴DE1AC12在△PDE 中,DE 2PE 2 PD 24,PE ⊥DE∵平面PDE ⊥平面ABC ,平面PDE I 平面ABC =DE ,PE 平面PDE PE ⊥平面ABC PE 平面PBC∴平面PBC ⊥平面ABC16.〔本题总分值14分〕在△ABC 中,角A ,B ,C 所对的边分别为 a ,b ,c ,且a =bcosC +csinB .〔1〕求B 的值;〔2〕设∠BAC 的均分线AD 与边BC 交于点D ,AD =17,cosA =7 ,求b7 25的值.解:〔1〕由正弦定理得sinA =sinBcosC +sinCsinB6Sin[﹣π(B +C)]=sinBcosC +sinCsinB sin(B +C)=sinBcosC +sinCsinB sinBcosC +sinCcosB =sinBcosC +sinCsinB sinCcosB =sinCsinB∵B 、C (0,),sinB >0,sinC >0,cosB =sinB ,tanB =1,由B(0,), 得B = .4 2〕记A =2 AD 是∠BAC 的角均分线∴∠BAD =∠CAD =∵cosA =7 ,A(0,),2524∴sinA =1 cos2 A =25sinC =sin(A +B)=17 250∵cosA =2cos 2112sin 2 ,A(0,),22∴sin =4,cos=355∴sin ∠ADC =sin(B +)=7210在△ADC 中,由正弦定理得:b AD , AD sinADC sinCADC=5∴bsinsinC17.〔本题总分值14分〕如图,湖中有一个半径为1千米的圆形小岛,岸边点 A 与小岛圆心C 相距3千米.为方便游人到小岛参观,从点A 向小岛建三段栈道 AB ,BD ,BE .湖面上的点B 在线段AC上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,此中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆 C 的优弧〔圆C 上实线局部〕上再修筑栈道?DE .记∠CBD 为.( 1〕用表示栈道的总长度f(),并确立sin 的取值范围;( 2〕求当为什么值时,栈道总长度最短.7解:〔1〕连结CD ,在Rt △CBD 中,CD =1,CB =1 ,BD = 1,sin tan?( 2)12DEf() 312 2tansin11,1),当B 与A 重合时,sin,∴sin[33〔2〕∵sin[1,1),∴cos(0,22 ],33求得f()cos (2cos1)sin2∴时,即cos1,f()minf() 35323318.〔本题总分值16分〕如图,在平面直角坐标系x 2 y 2 1(a >b >0)的离心率为1xOy 中,椭圆C :b 2,且过a 2 2点(0,3).〔1〕求椭圆C 的方程;〔2〕△BMN 是椭圆C 的内接三角形,①假定点B 为椭圆C 的上极点,原点O 为△BMN 的垂心,求线段MN 的长;②假定原点 O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.8解:〔1〕由题意得c1 ,b 3,b 2a 2 c 2,解得a =2,b 23a 2 椭圆方程为:x 2 y 2143〔2〕①B(0, 3),O 是△ABC 的垂心,设M(x 0,y 0)(y 0<0),那么N(x 0,﹣y 0)知足x2y 0 2 1,OM ⊥BN ,那么有y 0y 03 1,43x 0 x 0解得x 0 2 33,y 04 3377那么MN =433,7设M(x 1,y 1),N(x 2,y 2),B(x 0,y 0),O 是△ABC 的重心,那么x 1x 2x 0,y 1y 2 y 0,那么有(x 1x 2)2(y 1 y 2)212431,那么2x 1x 2 3y 1y 210,I 假定MN 斜率不存在,那么M(﹣1,3 3),N(﹣1, ),d =1,22II 假定MN 斜率存在,那么y kx m ,联立得(4k 23)x 28mkx 4m 2 120,3x 2 4y 21248(4k220,那么x 1 x 28km,x 1x 24m 22 m3) 4k 234k2,3整理得4k 23 4m 2,那么点O 到MN 的距离dm11,当k =0时,取d3k 22,14k 429综上,当k =0时,d min3 .219.〔本题总分值16分〕函数f(x)x 3x 2 (a16)x ,g(x)alnx ,aR .函数h(x)f(x) g(x)x的导函数h(x)在[5,4]上存在零点.2〔1〕务实数 a 的取值范围;〔2〕假定存在实数a ,当x[0,b]时,函数f(x)在x =0 时获得最大值,求正实数b 的最大值;〔3〕假定直线l 与曲线y f(x)和yg(x)都相切,且l 在y 轴上的截距为﹣12,务实数a 的值.解:〔1〕由题意,h(x)x 2 x (a16) alnx ,h(x)2x 1a在[5,4]上存在零点,5,4]上有解,ax2即2x 2x a0 在[2x 2x ,2x 2 x [10,28],因此a 的取值范围是[10,28]. 2〔2〕f(x)3x 2 2x(a 16),f (0) 0 a 16令f(x)=0,x 113a4713a 473,x 23,当0<b ≤x 2时,明显f(x)在x =0时取最大值当bx 2时,f(x)在[0,x 2]上单一递减,在 [x 2,b]上单一递加,因此只要f(b) f(0)0,即b 3b 2 (a16)bb 2 b a16,∵a max28,∴b 的最大值为 4,〔3〕设f(x)上切点为(x 1,f(x 1)),f(x)3x 2 2x(a 16) ,可得切线方程为y x 13 x 12 (a 16)x 1[3x 122x 1 (a 16)](x x 1),点(0,﹣12)在其上,可得(x 12)(2x 123x 1 6) 0,因此x 12设g(x)上切点为(x 2,g(x 2)),g(x)a ,x10可得切线方程为y alnx 2a(xx 2),点(0,﹣12)在其上,x 2可得12alnx 2 a ,由于公切线,因此 3x 122x 1(a 16)a,将x 12代入,可得24aax 2x 212 alnx 2ax 2 1由 a,因此a 的值为12.a,可得1224 x 2a20.〔本题总分值16分〕无量数列a n 的各项均为正整数,其前 n 项和为S n ,记T n 为数列a n 的前a n 项和,即T n a 1 a 2 Laa n.〔1〕假定数列 a n 为等比数列,且 a 1 1,S 45S 2,求T 3的值;〔2〕假定数列a nT n 2 ,求数列a n为等差数列,且存在独一的正整数n(n ≥2),使得a n的通项公式;〔3〕假定数列T n 的通项为T nn(n 1)a n 为等差数列.2,求证:数列a 11q2 TS 15;解:〔1〕S 4 5S 234〔2〕由于无量等差数列,因此d ≥0,且a 1 N ,d N ,当d =0时,a n 和T n 均为常数,故不存在独一的整数知足条件,舍去;2n1T ni1a iII 当d ≥2时,a n1 2(n1)2n12n 13,舍去a na na 1 n1故d =1,T ni1a in(n 1)n(n 1)a 11) 2 2 a 1 a n a 1n 12(a 1 n2(a 1 n 1) 假定a 12,那么没有知足条件的n ,因此a 12,此时 T n n(n 1)n2, n2 211故a n n〔3〕T11,T23,T36a11,a22,a33,又T n T n1a n a n1因此a n n;假定a n n,T n a1a2L a a n a1a2L a n12Ln(n1)n与原命题2矛盾,∴a n n,a n a n11为常数,因此数列a n为等差数列.12。

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

2020届江苏南京市、盐城市高三上学期第一次模拟考试数学(理)试题(解析版)

盐城市、南京市2020届高三年级第一次模拟考试数 学 理 试 题2020.01(总分160分,考试时间120分钟)一、填空题(本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡...相应的位置上.......) 1.已知集合A =(0,+∞),全集U =R ,则U A ð= . 答案:(-∞,0] 考点:集合及其补集解析:∵集合A =(0,+∞),全集U =R ,则U A ð=(-∞,0]. 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= . 答案:5 考点:复数解析:∵2z i =+,∴2(2)(2)45z z i i i ⋅=+-=-=.3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 . 答案:23考点:等可能事件的概率解析:所有基本事件数为3,包含甲的基本事件数为2,所以概率为23. 4.命题“θ∀∈R ,cos θ+sin θ>1 ”的否定是 命题(填“真”或“假”). 答案:真 考点:命题的否定解析:当θπ=-时,cos θ+sin θ=﹣1<1,所以原命题为假命题,故其否定为真命题. 5.运行如图所示的伪代码,则输出的I 的值为 .答案:6考点:算法(伪代码)解析:第一遍循环 S =0,I =1,第二轮循环S =1,I =2 ,第三轮循环S =3,I =3,第四轮循环S =6,I=4,第五轮循环S =10,I =5,第六轮循环S =15,I =6,所以输出的 I =6. 6.已知样本7,8,9,x ,y 的平均数是9,且xy =110,则此样本的方差是 . 答案:2考点:平均数,方差解析:依题可得x +y =21,不妨设x <y ,解得x =10,y =11,所以方差为22222210(1)(2)5+++-+-=2.7.在平面直角坐标系xOy 中,抛物线y 2=4x 上的点P 到其焦点的距离为3,则点P 到点O 的距离为 .答案:考点:抛物线及其性质解析:抛物线的准线为x =−1,所以P 横坐标为2,带入抛物线方程可得P(2,±),所以OP=8.若数列{}n a 是公差不为0的等差数列,ln 1a 、ln 2a 、ln 5a 成等差数列,则21a a 的值为 . 答案:3考点:等差中项,等差数列的通项公式 解析:∵ln 1a 、ln 2a 、ln 5a 成等差数列,∴2152a a a =,故2111(4)()a a d a d +=+,又公差不为0,解得12d a =,∴21111133a a d a a a a +===. 9.在三棱柱ABC —A 1B 1C 1中,点P 是棱CC 1上一点,记三棱柱ABC —A 1B 1C 1与四棱锥P —ABB 1A 1的体积分别为V 1与V 2,则21V V = . 答案:23考点:棱柱棱锥的体积解析:1111121123C ABB A C A B C V V V V V ==-=——,所以2123V V =.10.设函数()sin()f x x ωϕ=+ (ω>0,0<ϕ<2π)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 . 答案:7考点:三角函数的图像与性质解析:∵()f x 的图象与y轴交点的纵坐标为2,∴sin ϕ=,又0<ϕ<2π,∴3πϕ=, ∵y 轴右侧第一个最低点的横坐标为6π, ∴3632ππωπ+=,解得ω=7. 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),11AH AB AC 42=+u u u r u u u r u u u r,则 cos ∠BAC 的值为 .考点:平面向量解析:∵H 是△ABC 的垂心, ∴AH ⊥BC ,BH ⊥AC ,∵11AH AB AC 42=+u u u r u u u r u u u r,∴1131BH AH AB AB AC AB AB AC 4242=-=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r则11AH BC (AB AC)(AC AB)042⋅=+⋅-=u u u r u u u r u u ur u u u r u u u r u u u r ,31BH AC (AB AC)AC 042⋅=-+⋅=u u u r u u u r u u ur u u u r u u u r ,即22111AC AB AC AB 0244--⋅=u u u r u u u r u u u r u u u r ,231AC AB AC 042-⋅+=u u ur u u u r u u u r ,化简得:22111cos BAC 0244b c bc --∠=,231cos BAC+042bc b -∠=则2222 cos BAC3b c bbc c-∠==,得3b c=,从而3cos BAC∠=.12.若无穷数列{}cos()nω(ω∈R)是等差数列,则其前10项的和为.答案:10考点:等差数列解析:若等差数列公差为d,则cos()cos(1)n d nωω=+-,若d>0,则当1cos1ndω->+时,cos()1nω>,若d<0,则当1cos1ndω-->+时,cos()1nω<-,∴d=0,可得cos2cosωω=,解得cos1ω=或1cos2ω=-(舍去),∴其前10项的和为10.13.已知集合P={}()16x y x x y y+=,,集合Q={}12()x y kx b y kx b+≤≤+,,若P⊆Q,则1221b bk-+的最小值为.答案:4考点:解析几何之直线与圆、双曲线的问题解析:画出集合P的图象如图所示,第一象限为四分之一圆,第二象限,第四象限均为双曲线的一部分,且渐近线均为y x=-,所以k=−1,所求式为两直线之间的距离的最小值,所以1b=,2y kx b=+与圆相切时最小,此时两直线间距离为圆半径4,所以最小值为4.14.若对任意实数x∈(-∞,1],都有2121xex ax≤-+成立,则实数a的值为.答案:12-考点:函数与不等式,绝对值函数解析:题目可以转化为:对任意实数x ∈(-∞,1],都有2211xx ax e -+≥成立,令221()x x ax f x e -+=,则(1)[(21)]()xx x a f x e --+'=,当211a +≥时,()0f x '≤,故()f x 在(-∞,1]单调递减,若(1)0f ≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(1)0f >,要使()1f x ≥恒成立,则(1)f =121a e -≥,解得12ea ≤-与211a +≥矛盾.当211a +<时,此时()f x 在(-∞,21a +)单调递减,在(21a +,1)单调递增,此时min ()(21)f x f a =+,若(21)0f a +≤,则()f x 最小值为0,与()1f x ≥恒成立矛盾;若(21)0f a +>,要使()1f x ≥恒成立,则min 2122()(21)a a f x f a e ++=+=1≥. 接下来令211a t +=<,不等式21221a a e++≥可转化为10te t --≤, 设()1tg t e t =--,则()1tg t e '=-,则()g t 在(-∞,0)单调递减,在(0,1)单调递增,当t =0时,()g t 有最小值为0,即()0g t ≥,又我们要解的不等式是()0g t ≤,故()0g t =,此时210a +=,∴12a =-. 二、解答题(本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.) 15.(本题满分14分)已知△ABC 满足sin(B )2cos B 6π+=.(1)若cosC AC =3,求AB ; (2)若A ∈(0,3π),且cos(B ﹣A)=45,求sinA .解:16.(本题满分14分)如图,长方体ABCD —A 1B 1C 1D 1中,已知底面ABCD 是正方形,点P 是侧棱CC 1上的一点. (1)若A 1C//平面PBD ,求1PC PC的值; (2)求证:BD ⊥A 1P .证明:17.(本题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从⊙O 中剪裁出两块全等的圆形铁皮⊙P 与⊙Q 做圆柱的底面,剪裁出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A ,B 在⊙O 上,点P ,Q 在⊙O 的一条直径上,AB ∥PQ ,⊙P ,⊙Q 分别与直线BC 、AD 相切,都与⊙O 内切.(1)求圆形铁皮⊙P 半径的取值范围;(2)请确定圆形铁皮⊙P 与⊙Q 半径的值,使得油桶的体积最大.(不取近似值)解:18.(本题满分16分)设椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2,离心率是e ,动点P(0x ,0y ) 在椭圆C上运动.当PF 2⊥x 轴时,0x =1,0y =e .(1)求椭圆C 的方程;(2)延长PF 1,PF 2分别交椭圆于点A ,B (A ,B 不重合).设11AF FP λ=u u u r u u u r ,22BF F P μ=u u u r u u u r,求λμ+的最小值.解:19.(本题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“M(q )数列”.设数列{}n b 中11b =,37b =.(1)若2b =4,且数列{}n b 是“M(q )数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为“M(q )数列”,并说明理由;(3)若数列{}n b 是“M(2)数列”,是否存在正整数m ,n ,使得4039404020192019mn b b <<?若存在,请求出所有满足条件的正整数m ,n ;若不存在,请说明理由. 解:20.(本题满分16分)若函数()x xf x e aemx -=--(m ∈R)为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值; (2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围. 解:附加题,共40分21.【选做题】本题包括A ,B ,C 三小题,请选定其中两题作答,每小题10分共计20分,解答时应写出文字说明,证明过程或演算步骤.A .选修4—2:矩阵与变换已知圆C 经矩阵M = 33 2a ⎡⎤⎢⎥-⎣⎦变换后得到圆C ′:2213x y +=,求实数a 的值. 解:B .选修4—4:坐标系与参数方程在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.解:C .选修4—5:不等式选讲已知正实数 a ,b ,c 满足1231a b c++=,求23a b c ++的最小值. 解:【必做题】第22题、第23题,每题10分,共计20分,解答时应写出文字说明,证明过程或演算步骤.22.(本小题满分10分)如图,AA 1,BB 1是圆柱的两条母线,A 1B 1,AB 分别经过上下底面的圆心O 1,O ,CD 是下底面与AB 垂直的直径,CD =2.(1)若AA 1=3,求异面直线A 1C 与B 1D 所成角的余弦值;(2)若二面角A 1—CD —B 1的大小为3,求母线AA 1的长.解:23.(本小题满分10分)设22201221(12)n i n n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n nn n n n n n T S C S C S C S C =-+-++-L ,求证:36n T n ≥恒成立. 解:。

2021-2022学年江苏省盐城市响水中学高一年级下册学期第二次学情分析考试数学试题【含答案】

2021-2022学年江苏省盐城市响水中学高一年级下册学期第二次学情分析考试数学试题【含答案】

2021-2022学年江苏省盐城市响水中学高一下学期第二次学情分析数学试题一、单选题1.设复数z 满足(其中i 为虚数单位),则( )2i z =-z =ABC .5DA【分析】利用复数求模长公式进行计算.=故选:A2.已知样本9,10,11,x ,y 的平均数是10xy =( )A .93B .94C .95D .96D【分析】根据平均数和标准差列方程即可求解.【详解】由题意 ,91011105x y++++=,解得 或 ,()()222010108x y x y +=⎧⎪∴⎨-+-=⎪⎩812x y =⎧⎨=⎩128x y =⎧⎨=⎩∴ ;96xy=故选:D.3.设, ,)1cos 662a =22tan131tan 13b =-c =A .B .C.D .a b c >>a b c <<a c b<<b c a<<C【分析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小.,,a b c 【详解】,1cos 66sin 30cos 6cos30sin 6sin(306)sin 242a ==-=-= ,,22tan13tan 261tan 13b ==-sin 25c == 因为函数在上是增函数,,sin y x =()0,90 242526<<所以sin 24sin 25sin 26<<由三角函数线知:,,因为,sin 26MP = tan 26AT =MP AT <所以,所以sin 26tan 26<a c b<<故选:C.4.已知平面平面,直线平面,直线平面,,在下列说法α⊥βm ⊂αn ⊂βl αβ= 中,①若,则;②若,则;③若,则.m n ⊥m l ⊥m l ⊥m β⊥m β⊥m n ⊥正确结论的序号为( )A .①②③B .①②C .①③D .②③D【分析】由面面垂直的性质和线线的位置关系可判断①;由面面垂直的性质定理可判断②;由线面垂直的性质定理可判断③.【详解】平面平面.直线平面,直线平面,,α⊥βm ⊂αn ⊂βl αβ= ①若,可得,可能平行,故①错误;m n ⊥m l ②若,由面面垂直的性质定理可得,故②正确;m l ⊥m β⊥③若,可得,故③正确.m β⊥m n ⊥故选:D .本题考查空间线线和线面、面面的位置关系,主要是平行和垂直的判断和性质,考查推理能力,属于基础题.5.在中,内角A ,B ,C 的对边分别为a ,b ,c .若,则的形ABC 1cos cos b B a A -=ABC 状是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰直角三角形C【分析】通过正弦定理将边化为角,化简即可得结果.【详解】由正弦定理得,即,sin cos sin sin cos B A A A B =-sin sin C A =由于为三角形内角,所以.,A C C A =故选:C.6.如图正方体中,M ,N 分别是,的中点,则正确的是1111ABCD A B C D -1AD 1BD ( )A .且平面ABCD 11A D BD ⊥MN ∥B .且平面11A D BD ⊥MN ∥11BDD B C .与相交且平面ABCD 1A D 1BD MN ∥D .与异面且平面1A D 1BD MN ∥11BDD B A【分析】结合线线垂直、线面平行和直线相交、异面等知识正确答案.【详解】由于平面,所以与平交,由此排除BD 选项.1N BD ∈⊂11BDD B MN 11BDD B 由于平面,平面,且,1BD ⊂11BDD B 1A D ⋂11BDD B D =1D BD ∉根据异面直线的知识可知:与是异面直线.由此排除C 选项.1A D 1BD 对于A 选项,根据正方体的性质可知,1111,,A D AD A D AB AD AB A ⊥⊥= 所以平面,所以.1A D ⊥1ABD 11A D BD ⊥由于分别是的中点,所以,,M N 11,AD BD //MN AB由于平面平面,所以平面,所以A 选项正确.MN ⊂,ABCD AB ⊂ABCD //MN ABCD 故选:A7.在△中,,E 是上一点.若,则( )ABC 2BD DC =AD 12λ=+ CE CA CB λ=A .B .C .D .16121413A【分析】根据图形可设,从而得到,根据已知条件= AE m AD (1)3m CE m CA CB =-+,即可求出的值.12λ=+ CE CA CBλ【详解】如图所示,设,=AE m AD 则1()3⎛⎫=+=+=+-=+- ⎪⎝⎭CE CA AE CA mAD CA m CD CA CA m CB CA ,(1)3=-+m m CA CB又∵,∴,∴,12λ=+CE CA CB 12m =136λ==m 故选:.A 8.如图,在平行六面体中,点是棱上靠近的三等分点,点1111ABCD A B C D -E 1BB B 是棱的中点,且三棱锥的体积为2,则平行六面体的F 1CC 1A AEF -1111ABCD A B C D -体积为( )A .8B .12C .18D .20B【分析】首先设点到的距离为,点到平面的距离为,得到E 1AA dF 11ABB A h,11112△=A AE ABB A S S 再计算平行六面体的体积即可.1111ABCD A B C D -【详解】如图设点到的距离为,点到平面的距离为,E 1AA dF 11ABB A h 则,,1112△=⋅⋅A AE S AA d ,1=⋅ABB A S AA d 所以11112△=A AE ABB A S S ,111,1263△△-=⋅⋅=⇒⋅=A AEF A AE A AEV S h Sh 平行六面体的体积为1111ABCD A B C D -111111-=⋅ABCD A B C D ABB A S V h所以.11111212△-==⋅ABCD A A D AE B C S h V 故选:B本题主要考查几何体的体积,同时考查了三棱锥的体积,属于简单题.二、多选题9.为了了解参加运动会的名运动员的年龄情况,从中抽取了名运动员的年龄200020进行统计分析.就这个问题,下列说法中正确的有( )A .名运动员是总体;B .所抽取的名运动员是一个样本;200020C .样本容量为;D .每个运动员被抽到的机会相等.20CD【分析】根据总体、样本、总体容量、样本容量等概念及在整个抽样过程中每个个体被抽到的机会均等即可求解.【详解】由已知可得,名运动员的年龄是总体,名运动员的年龄是样本,总200020体容量为,样本容量为,在整个抽样过程中每个运动员被抽到的机会均为,2000201100所以A 、 B 错误,C 、D 正确.故选:CD.本题主要考查总体、样本、总体容量、样本容量等概念及抽样的公平性问题,属基础题.10.已知复数的实部为,则下列说法正确的是( )()()()32=-+∈z a i i a R 1-A .复数的虚部为B .复数的共轭复数z 5-z 15=-z iC .D .在复平面内对应的点位于第三象限z =z ACD首先化简复数,根据实部为-1,求,再根据复数的概念,判断选项.z a 【详解】,()()()()23232323223z a i i a ai i i a a i=-+=+--=++-因为复数的实部是-1,所以,解得:,321a +=-1a =-所以,15z i =--A.复数 的虚部是-5,正确;B.复数的共轭复数,不正确;z z 15z i =-+,正确;D.在复平面内对应的点是,位于第三象=z ()1,5--限,正确.故选:ACD11.下列命题中是真命题的是( )A .在四边形ABCD 中,若,且,则四边形ABCD 是菱形0AB CD +=0AC BD ⋅= B .若点G 为的外心,则ABC 0GA GB GC ++=C .向量,能作为平面内的一组基底1(2,3)e =-213,24e ⎛⎫=- ⎪⎝⎭ D .若O 为△所在平面内任一点,且满足,则△ABC ()(2)0OB OC OB OC OA -⋅+-=为等腰三角形ABC AD【分析】A 由相反向量的定义及向量数量积的垂直表示知ABCD 是菱形,B 根据钝角三角形外心即可判断命题的真假,C 由平面内基底的性质判断真假,D 利用向量加减法的几何含义及向量数量积的垂直表示即可判断真假.【详解】A :四边形ABCD 中,由知:线段、平行且相等,由0AB CD +=AB CD 知:对角线相互垂直,即ABCD 是菱形,真命题;0AC BD ⋅=B :以钝角△的外心为例,显然若点G 为外心时,,假命题;ABC 0GA GB GC ++≠C :由已知有,显然共线,所以不能作为平面内的一组基底,假命题;124e e =D : ,,若为中点,则,OB OC CB -=OB OA OC OA AB AC -+-=+ D BC 2AB AC AD += 由有,所以垂直平分,即,()(2)0OB OC OB OC OA -⋅+-= 0CB AD ⋅= AD BC AB AC =故△为等腰三角形.ABC 故选:AD.关键点点睛:利用相反向量的定义、向量数量积的垂直表示、平面中基底的性质、几何图形中向量加减法表示判断各选项所描述命题的真假.12.在正方体中,分别为的中点,则下列结论中1111ABCD A B C D -,,E F G 11,,BC CC BB 正确的是( )A .1D D AF⊥B .二面角F AEC --C .异面直线与1A G EFD .点到平面的距离是点到平面的距离的2倍G AEF C AEF BCD【分析】由于在正方体中,,与不垂直,故与不垂直,判11//D D A A 1A A AF 1D D AF 断选项A ;过点作,交的延长线于,连接,设正方体的棱长为C CM AE ⊥AE M FM 2,,判断选项B ;取的中点,连接,则,tan FCFMC CM ∴∠=11B C H 1,A H GH //GH EF 与所成角即为直线与所成角,在中用余弦定理,判断1A GEF 1A G GH 1A GH ∠11AC G △选项C ;连接交于点,则点到平面的距离与点到平面的距离CG EF N G AEF C AEF 之比为,而∽,判断选项D.GNCN GNF △CNE 【详解】在正方体中,显然有,且在正方体1111ABCD A B C D -11//D D A A中,与不垂直,1111ABCD A B C D -1A A AF 故与不垂直,选项A 错误;1D DAF 过点作,交的延长线于,连接,由二面角的定义可知,C CM AE ⊥AE M FM 即为二面角的平面角,不妨设正方体的棱长为2,则FMC ∠F AE C --1,CF CM === ,选项B 正确;tan FC FMC CM ∴∠===取的中点,连接,则,11B C H 1,A H GH //GH EF 故异面直线与所成角即为直线与所成角1A G EF 1A G GH 1A GH∠而,1A H =1A G ==GH ==故在中,由余弦定理可得11AC G △,选项C 正确;2221111cos 2A G GH A H A GH A G GH +-∠===⋅⋅连接交于点,则点到平面的距离与点到平面的距离之比为CG EF N G AEF C AEF ,而∽ GNCN GNF △CNE 故, 选项D 正确.2GN GFCN CE ==故选:BCD.三、填空题13.一组数据从小到大排列,依次为,若它们的中位数与平均数相等,则2,3,4,,9,10x______.x =8【分析】先计算平均数和中位数,根据题意得出关于x 的方程,解方程得到x 的值.【详解】因为数据2,3,4,,9,10的中位数与平均数相等,所以x ,解得.423491026x x ++++++=8x =主要考查了平均数,中位数的概念和方程求解的方法.要掌握这些基本概念才能熟练解题.14.如图,某人在高出海平面方米的山上P 处,测得海平面上航标A 在正东方向,俯角为,航标B 在南偏东,俯角,且两个航标间的距离为200米,则30°60︒45︒__________米.h =200【分析】根据题意利用方向坐标,根据三角形边角关系,利用余弦定理列方程求出的值.h 【详解】航标在正东方向,俯角为,由题意得,.A 30°60APC ∠=︒30PAC ∠=︒航标在南偏东,俯角为,则有,.B 60︒45︒30ACB ∠=︒45CPB ∠=︒所以,;BC PC h ==tan 30PCAC ==︒由余弦定理知,2222cos AB BC AC BC AC ACB =+-∠即,224000032h h h =+-可求得(米.200h =)故200.本题考查方向坐标以及三角形边角关系的应用问题,考查余弦定理应用问题,是中档题.15.在 中.已知,为线段上的一点,且满ABC ∆2CD DB =P AD足.若的面积为,则的最小值为12CP CA mCB =+ ABC ∆3ACB π∠=CP_______.2【分析】利用A ,P ,D 三点共线可求出m ,并得到.再利用平面13=1123CP CA CB =+ 向量的基本性质和基本不等式即可求出的最小值.CP【详解】解∵12CP CA mCB=+13(2)22CA m CD CD DB=+⋅=∵A ,P ,D 三点共线,∴,即m .13122m +=13=∴131223CP CA CD=+⨯ 1122CA CD=+ 112223CA CB =+⨯,1123CA CB =+又∵.3ABC S ACB π=∠=∴,即CA •CB =8.12CA CBsin ACB ⋅∠=∴8ab =∴CP ==)CA b CB a ===令,=≥.2==故答案为2.本题考查平面向量共线定理,是中档题,解题时要认真审题,注意平面向量线性运算的运用.四、双空题16.若正三棱台中上底的边长为1,下底的边长为2,侧棱长为1,则它111ABC A B C -的表面积为_________,与所成角的余弦值为_______________.1AA 1BC【分析】根据题目所给边长,直接求表面积即可得解,延长交于点,111,,AA BB CC P 作中点,中点,连接, ,则与1PC N AB M 11,,MN B N MB 1111//,//MB AA B N BC 1AA 所成角即为和所成角,在中解三角形,即可得解.1BC 1MB 1B N1MB N【详解】根据题意正三棱台的上下底面为等边三角形,111ABC A B C -上底面为边长为1的等边三级形,下底为边长为2的等边三角形,侧面为等腰梯形上底边长为1,下底边长为2,腰长为1,所以高h=所以面积,111122322S =⨯⨯⨯⨯延长交于点,111,,AA BB CC P 由上底的边长为1,下底的边长为2,所以分别为中点,111,,A B C ,,PA PB PC 作中点,中点,连接,1PC N AB M 11,,MN B N MB ,则与所成角即为和所成角,1111//,//MB AA B N BC 1AA 1BC 1MB 1B N 连接,在底面的投影为,为底面的中心且在上,MC P O O MC 作于,显然NH MC ⊥H //NH PO 由,23CO ==2PC=所以PO ===所以,34NHPO ==MH MOOH =+==所以,,32MN ==212APMB ==在等腰梯形上底边长为1,下底边长为2,腰长为1,11BCC B 所以,1BC =1B N =在中,,1MB N222111211cos 2MB B N MN MB N MB B N +-∠===⋅根据线线所成角的范围,则与1AA 1BC 故.本题考查了求空间几何体的表面积,考查了异面直线所成角,计算量较大,属于较难题.本题的关键点为:(1)通过平移把异面直线平移到同一平面中;(2)通过空间线面关系进行计算,是本题的核心能力.五、解答题17.已知复数满足(a >0,a ∈R ),且,其中为虚数单位.z i 1i ⋅=-+z a 2z z +∈R i (1)求复数;z (2)若复数,,在复平面内对应的点分别为A ,B ,C ,求cos ∠ABC .z 2z 2z z -(1)1iz =+【分析】(1)根据,得到,进而得到为实数求解.i 1i ⋅=-+z a i z a =+2z z +(2)化简得到复数所对应的点,进而得到向量 和的坐标,然后利用向量的夹BA BC 角公式求解.【详解】(1)解:因为,i 1i ⋅=-+z a 所以,()i 1i i=--+=+z a a 则,22i i +=+++z a z a ,()22i i 1-=+++a a a ,22221i 11⎛⎫=++-∈ ⎪++⎝⎭a a Ra a 所以,22101a -=+所以,21a =又,所以,0a >1a =所以.1i z =+(2),,()221i 2iz =+=21i z z -=-所以,,,()1,1A ()0,2B ()1,1C -所以,,()1,1BA =-()1,3BC =-.cos cos ,BA BC ABC BA BC BA BC⋅∠=<>==18.某企业员工人参加“抗疫”宣传活动,按年龄分组:第组,第组x 1[)25,302,第组,第组,第组,得到的频率分布直方图如图[)30,353[)35,404[)40,455[]45,50所示.区间[)25,30[)30,35[)35,40[)40,45[]45,50频数5050a 150b(1)上表是年龄的频数分布表,结合此表与频率分布直方图,求正整数、、的值;x a b (2)现在要从年龄较小的第、、组中用分层抽样的方法抽取人,问:这三组应各12330取多少人?(3)若同组中的每个数据用该组区间的右端点值代替,根据频率分布直方图估计该企业员工的平均年龄.(1),,500x =200a =50b =(2)这三组中抽取的人数分别为、、5520(3)41【分析】(1)计算出第组的频率,结合频率、频率和总人数之间的关系可求得的值,1x 再利用频率、频率和总人数之间的关系可求得、的值;a b (2)计算出第、、组的人数之比,结合分层抽样可计算出这三组所抽取的人数;123(3)将每个矩形底边的右端点值乘以对应矩形的面积,将所得结果全加可得结果.【详解】(1)解:第组的频率为,所以,,150.020.1⨯=505000.1x ==,50050.08200a =⨯⨯=.5000.02550b =⨯⨯=(2)解:第、、组的人数之比为,12350:50:2001:1:4=现在要从年龄较小的第、、组中用分层抽样的方法抽取人,12330第组抽取的人数为人,第组所抽取的人数为人,113056⨯=213056⨯=第组所抽取的人数为人.3430206⨯=(3)解:,300.025350.025400.085450.065500.02541x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=所以估计该企业员工的平均年龄为.4119.在中,角 ,,所对边分别为,,,且.ABC A B C a b c ()tan 2tan b A c b B=-(1)求角;A (2)若向量,,求的取值范围.()cos ,2cos m B A =20,cos 2C n ⎛⎫= ⎪⎝⎭ 2m n -(1);(2).60︒【分析】(1)首先,利用正弦定理,正切化为正弦和余弦,化简得,求角;1cos 2A =(2)根据(1)的结果,得的坐标,再化简,根据角2m n - 121sin 226m n B π⎛⎫-=-- ⎪⎝⎭ 的范围求模的范围.B 【详解】解:(1)由,及正弦定理,()tan 2tan b A c b B=-得,()sin sin sin 2sin sin cos cos A BBC B A B =-即,sin cos cos sin 2sin cos A B A B C A +=即,()sin 2sin cos A B C A+=所以,.1cos 2A =3A π=(2),()222cos ,12cos cos ,cos cos ,cos 23C m n B B C B B π⎛⎫⎛⎫⎛⎫-=-==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 所以,22241cos 221cos 232cos cos 322B B m n B B ππ⎛⎫+- ⎪+⎛⎫⎝⎭-=+-=+⎪⎝⎭ 11sin 226B π⎛⎫=-- ⎪⎝⎭由于,得,203B π<<1sin 2,162B π⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦所以.2m n -∈ 20.如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PA ⊥底面ABCD ,PA =2,E 是线段PC 上的一点,.PC =()RPE EC λλ=∈(1)试确定实数,使平面BED ,并给出证明;λ//PA (2)当时,证明:PC ⊥平面BED .2λ=(1),证明见解析1λ=(2)证明见解析【分析】(1)作辅助线,连接AC ,可证明当E 为PC 中点时,使平面BED ,即//PA 得答案.(2)证明平面PAC ,即证明,再通过证明△PAC 与△OEC 相似,证明BD ⊥BD PC ⊥,根据线面垂直的判定定理,即可证明PC ⊥平面BED .PC OE ⊥【详解】(1)连接AC ,且,AC BD O =若平面BED ,因为平面PAC ,平面平面,PA ∥PA ⊂PAC BED EO =所以,又因为O 为AC 中点,PA EO ∥所以E 为PC 中点,即.1λ=当时,E 为PC 中点,又因为O 为AC 中点,1λ=所以,平面BED ,平面BED ,PA OE ∥PA ⊂OE ⊂所以平面BED .PA ∥(2)连接OE ,因为平面ABCD ,平面ABCD ,PA ⊥BD ⊂所以,在菱形ABCD 中,,PA BD ⊥AC BD ⊥又因为,PA AC A = 所以平面PAC ,平面PAC ,BD ⊥PA ⊂所以,BD PC ⊥在直角三角形PCA 中,,2PA =PC =AC =所以OC =因为,所以,所以2λ=CE =CE OC=又,故△PAC 与△OEC 相似,AC PC=CE AC OC PC =所以,PC OE ⊥又因为,,OE ,平面BED ,PC BD ⊥OE BD O = BD ⊂所以平面BED .PC ⊥21.如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD ,AD =2,PA =PD E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面PAB ;(2)若二面角P -AD -B 为60°.①证明:平面PBC ⊥平面ABCD ;②求直线EF 与平面PBC 所成角的正弦值.(1)证明见解析;(2)①证明见解析;.【详解】试题分析:(1)要证明平面,可以先证明平面,利用线//EF PAB //EF MA 面平行的判定定理,即可证明平面;(2)①要证明平面平面//EF PAB PBC ⊥,可用面面垂直的判定定理,即只需证明平面即可;②由①ABCD PB ⊥ABCD平面,所以为直线与平面所成的角,由BE ⊥PBC FEB ∠EF PBC PB 为直角,即可计算的长度,在中,即计算直线与平面ABP ∠,AM EF Rt EBF ∆EF 所成的角的正弦值.PBC 试题解析:(1)证明:如图,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,故MF ∥BC 且MF =BC .由已知有BC ∥AD ,BC =AD .12又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面PAB ,而EF ⊄平面PAB ,所以EF ∥平面PAB .(2)①证明:如图,连接PE ,BE .因为PA =PD ,BA =BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P -AD -B 的平面角.在△PAD 中,由PA =PD AD =2,可解得PE =2.在△ABD 中,由BA =BD AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PB 从而∠PBE =90°,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以平面PBC ⊥平面ABCD .②连接BF .由①知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB∠ABP 为直角.而MB =PBAMEF12又BE =1,故在Rt △EBF 中,sin ∠EFB =.BE EF 所以直线EF 与平面PBC 直线与平面平行的判定及直线与平面垂直的判定与性质;直线与平面所成角的求解.【方法点晴】本题主要考查了直线与平面平行的判定及直线与平面垂直的判定与性质,直线与平面所成角的求解,熟练掌握线面位置关系的判定定理与性质定理是解答基础,同时根据题设条件确定直线与平面所成的角是解答的关键,本题的第二问的解答中,根据平面,可以确定为直线与平面所成的角,可放置在BE ⊥PBC FEB ∠EF PBC 中,即计算直线与平面所成的角的正弦值.Rt EBF ∆EF PBC 22.如图所示,四边形OAPB 中,OA ⊥OB ,PA +PB =10,∠PAO =∠PBO ,∠APB =,56π设∠POA =α,△AOB 的面积为.S (1)用α表示OA 和OB ;(2)求△AOB 面积S 的最大值.(1),;,;(2)π10sin()3sin cos OA ααα+=+π(0,)2α∈π10sin()6sin cos OB ααα+=+π(0,)2α∈【分析】(1)在和中分别利用正弦定理可求得,从而AOP BOP △10sin sin cos AP ααα=+得,在和中再一次分别利用正弦定理可求得OA 和10cos sin cos BP ααα=+AOP BOP △OB ;(2)由(1)表示出,50AOB S = sin cos t αα=+将上式转化为可求出结果25AOB S=π4t α=+∈【详解】解:(1)在中,由正弦定理得.AOP sin sin AP OPPAO α=∠在中,由正弦定理得.BOP △πsin sin()2BP OPPBOα=∠-因为∠PAO =∠PBO ,PA +PB =10,所以,10sin cos AP APαα-=则,.10sin sin cos AP ααα=+10sin 10cos 10sin cos sin cos BP αααααα=-=++因为四边形OAPB 内角和为2,可得∠PAO =∠PBO =,π3π在中,由正弦定理得,AOP sin sin AP OAAPO α=∠即,10πsin cos sin()3OAααα=++所以,π10sin()3sin cos OA ααα+=+π(0,)2α∈在中,由正弦定理得即,BOP △sin sin BP OBBOP BPO =∠∠cos sin BP OB BPO α=∠则,10πsin cos sin()6OBααα=++所以,.π10sin()6sin cos OB ααα+=+π(0,2α∈(2)的面积AOB ππ10sin()10sin()113622sin cos sin cos S OA OB αααααα++=⋅=⋅⋅++=.50=设,.sin cos t αα=+π)4t α+∈则50S ==150(252=当时,即时,t =π4α=S 25=所以AOB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京市、盐城市2021届高三数学第二次模拟考试试题(满分160分,考试时间120分钟)2021.4参考公式:圆锥的侧面积公式:S =πrl ,其中r 为圆锥底面圆的半径,l 为圆锥的母线长. 一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={x|x =2k +1,k ∈Z },B ={x|x(x -5)<0},则A∩B=________.2. 已知复数z =1+2i ,其中i 为虚数单位,则z 2的模为________. 3. 如图是一个算法流程图,若输出的实数y 的值为-1,则输入的实数x 的值为________.(第3题)(第4题)4. 某校初三年级共有500名女生,为了了解初三女生1分钟“仰卧起坐”项目训练情况,统计了所有女生1分钟“仰卧起坐”测试数据(单位:个),并绘制了如图频率分布直方图,则1分钟至少能做到30个仰卧起坐的初三女生有________个.5. 从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,则第二次抽得的卡片上数字能被第一次抽得的卡片上的数字整除的概率为________.6. 已知函敬f(x)是定义在R 上的奇函敷,且周期为2,当x ∈(0,1]时,f(x)=x +,则f(a)的值为________.7. 若将函数f(x)=sin(2x +π3)的图象沿x 轴向右平移φ(φ>0)个单位长度后所得的图象与f(x)的图象关于x 轴对称,则φ的最小值为________.8. 在△ABC 中,AB =25,AC =5,∠BAC =90°,则△ABC 绕BC 所在直线旋转一周所形成的几何体的表面积为________.9. 已知数列{a n }为等差数列,数列{b n }为等比数列,满足{a 1,a 2,a 3}={b 1,b 2,b 3}={a ,b ,-2},其中a >0,b >0,则a +b 的值为________.10. 已知点P 是抛物线x 2=4y 上动点,F 是抛物线的焦点,点A 的坐标为(0,-1),则PFPA的最小值为________. 11. 已知x ,y 为正实数,且xy +2x +4y =41,则x +y 的最小值为________.12. 在平面直角坐标系xOy 中,圆C :(x -m)2+y 2=r 2(m >0).已知过原点O 且相互垂直的两条直线l 1和l 2,其中l 1与圆C 相交于A ,B 两点,l 2与圆C 相切于点D.若AB =OD ,则直线l 1的斜率为________.13. 在△ABC 中,BC 为定长,|AB →+2AC →|=3|BC →|.若△ABC 面积的最大值为2,则边BC 的长为________.14. 已知函数f(x)=e x-x -b(e 为自然对数的底数,b ∈R ).若函数g(x)=f(f(x)-12)恰有4个零点,则实数b 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,在三棱锥PABC 中,点D ,E 分别为AB ,BC 的中点,且平面PDE 上平面ABC. (1) 求证:AC∥平面PDE ;(2) 若PD =AC =2,PE =3,求证:平面PBC⊥平面ABC.16. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =bcos C +csin B. (1) 求B 的值;(2) 设∠BAC 的平分线AD 与边BC 交于点D.已知AD =177,cos A =-725,求b 的值.如图,湖中有一个半径为1千米的圆形小岛,岸边点A 与小岛圆心C 相距3千米.为方便游人到小岛观光,从点A 向小岛建三段栈道AB ,BD ,BE ,湖面上的点B 在线段AC 上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,其中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆C 的优弧(圆C 上实线部分)上再修建栈道DE ︵,记∠CBD 为θ.(1) 用θ表示栈道的总长度f(θ),并确定sin θ的取值范围; (2) 求当θ为何值时,栈道总长度最短.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且过点(0,3).(1) 求椭圆C 的方程;(2) 已知△BMN 是椭圆C 的内接三角形.① 若点B 为椭圆C 的上顶点,原点O 为△BMN 的垂心,求线段MN 的长; ② 若原点O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.已知函数f(x)=x 3-x 2-(a -16)x ,g(x)=aln x ,a ∈R .函数h(x)=f (x )x -g(x)的导函数h′(x)在[52,4]上存在零点.(1) 求实数a 的取值范围;(2) 若存在实数a ,当x∈[0,b]时,函数f(x)在x =0时取得最大值,求正实数b 的最大值;(3) 若直线l 与曲线y =f(x)和y =g(x)都相切,且l 在y 轴上的截距为-12,求实数a 的值.已知无穷数列{a n }的各项均为正整数,其前n 项和为S n .记T n 为数列{a n }的前a n 项和,即T n =a 1+a 2+…+a n .(1) 若数列{a n }为等比数列,且a 1=1,S 4=5S 2,求T 3的值;(2) 若数列{a n }为等差数列,且存在唯一的正整数n(n≥2),使得T na n<2,求数列{a n }的通项公式;(3) 若数列{T n }的通项为T n =n (n +1)2,求证:数列{a n }为等差数列.2021届高三模拟考试试卷数学附加题(满分40分,考试时间30分钟)21. 【选做题】 在A ,B ,C 三小题中只能选做两题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修42:矩阵与变换)已知矩阵M =[1221],MN =[1001].(1) 求矩阵N ;(2) 求矩阵N 的特征值.B. (选修44:坐标系与参数方程)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2t ,y =12t 2(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos (θ-π4)= 2.若直线l 交曲线C 于A ,B 两点,求线段AB 的长.C. (选修45:不等式选讲)已知a >0,求证:a 2+1a 2-2≥a +1a-2.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某商场举行有奖促销活动,顾客购买每满400元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有1~6点数的正方体骰子1次,若掷得点数大于4,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖.已知抽奖箱中装有2个红球与m(m≥2,m∈N*)个白球,抽奖者从箱中任意摸出2个球,若2个球均为红球,则获得一等奖;若2个球为1个红球和1个白球,则获得二等奖;否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).(1) 若m=4,求顾客参加一次抽奖活动获得三等奖的概率;(2) 若一等奖可获奖金400元,二等奖可获奖金300元,三等奖可获奖金100元,记顾客一次抽奖所获得的奖金为X,若商场希望X的数学期望不超过150元,求m的最小值.23.已知集合A n={1,2,…,n},n∈N*,n≥2,将A n的所有子集任意排列,得到一个有序集合组(M1,M2,…,M m),其中m=2n.记集合M k中元素的个数为a k,k∈N*,k≤m,规定空集中元素的个数为0.(1) 当n=2时,求a1+a2+…+a m的值;(2) 利用数学归纳法证明:不论n(n≥2)为何值,总存在有序集合组(M1,M2,…,M m),满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1.2021届高三模拟考试试卷(南京、盐城)数学参考答案及评分标准1. {1,3}2. 53. -144. 3255. 126. 07. π28. 65π9. 5 10. 22 11.8 12. ±25513. 2 14. (1,12+ln 2)15. 证明:(1) 因为点D ,E 分别为AB ,BC 的中点,所以DE∥AC.(2分) 因为AC ⊄平面PDE ,DE ⊂平面PDE ,所以AC∥平面PDE.(4分) (2) 因为点D ,E 分别为AB ,BC 的中点,所以DE =12AC.因为AC =2,所以DE =1.因为PD =2,PE =3,所以PD 2=PE 2+DE 2, 因此在△PDE 中,PE ⊥DE.(8分)又平面PDE⊥平面ABC ,且平面PDE∩平面ABC =DE ,PE ⊂平面PDE , 所以PE⊥平面ABC.(12分)因为PE ⊂平面PBC ,所以平面PBC⊥平面ABC.(14分) 16. 解:(1) 因为a =bcos C +csin B , 由a sin A =b sin B =c sin C,得sin A =sin Bcos C +sin Csin B .(2分) 因为sin A =sin[π-(B +C)]=sin(B +C)=sin Bcos C +cos Bsin C , 所以sin Bcos C +cos Bsin C =sin Bcos C +sin Csin B , 即cos Bsin C =sin Csin B .(4分)因为0<C <π,所以sin C ≠0,所以sin B =cos B.又0<B <π,所以sin B ≠0,从而cos B ≠0,所以tan B =1,所以B =π4.(6分)(2) 因为AD 是∠BAC 的平分线,设∠BAD=θ,所以A =2θ.因为cos A =-725,所以cos 2θ=cos A =-725,即2cos 2θ-1=-725,所以cos 2θ=925. 因为0<A <π,所以0<θ<π2,所以cos θ=35,所以sin θ=1-cos 2θ=45.在△ABD 中,sin ∠ADB =sin(B +θ)=sin(π4+θ)=sin π4cos θ+cos π4sin θ=22×(35+45)=7210.(8分) 由AD sin B =AB sin ∠ADB ,所以AB =ADsin ∠ADB sin B =177×7210×2=175.(10分) 在△ABC 中,sin A =1-cos 2A =2425,所以sin C =sin(A +B)=sin Acos B +cos Asin B =22×(2425-725)=17250.(12分) 由b sin B =c sin C ,得b =csin B sin C =175×2217250=5.(14分) 17. 解:(1) 连结CD ,因为BD 与圆C 相切,切点为D ,所以△BCD 为直角三角形. 因为∠CBD=θ,且圆形小岛的半径为1千米,所以DB =1tan θ,BC =1sin θ. 因为岸边上的点A 与小岛圆心C 相距3千米,所以AB =AC -BC =3-1sin θ.(2分)因为BE 与圆C 相切,所以BE =DB =1tan θ,优弧DE ︵所对圆心角为2π-(π-2θ)=π+2θ,所以优弧DE ︵长l 为π+2θ.(4分)所以f(θ)=AB +BD +BE +l =3-1sin θ+1tan θ+1tan θ+π+2θ=3+π+2θ+2cos θ-1sin θ.(6分)因为0<AB <2,所以0<3-1sin θ<2,解得13<sin θ<1, 所以sin θ的取值范围是(13,1).(8分)(2) 由f(θ)=3+π+2θ+2cos θ-1sin θ,得f′(θ)=-2+cos θsin 2θ+2=cos θ(1-2cos θ)sin 2θ.(10分) 令f′(θ)=0,解得cos θ=12.因为θ为锐角,所以θ=π3.(12分) 设sin θ0=13,θ0为锐角,则0<θ0<π3.当θ∈(θ0,π3)时,f ′(θ)<0,则f(θ)在(θ0,π3)上单调递减;当θ∈(π3,π2)时,f ′(θ)>0,则f(θ)在(π3,π2)上单调递增.所以f(θ)在θ=π3时取得最小值.答:当θ=π3时,栈道总长度最短.(14分)18. 解:(1) 记椭圆C 的焦距为2c ,因为椭圆C 的离心率为12,所以c a =12.因为椭圆C 过点(0,3),所以b = 3.因为a 2-c 2=b 2,解得c =1,a =2, 故椭圆C 的方程为x 24+y23=1.(2分)(2) ① 因为点B 为椭圆C 的上顶点,所以B 点坐标为(0,3). 因为O 为△BMN 的垂心,所以BO⊥MN,即MN⊥y 轴. 由椭圆的对称性可知M ,N 两点关于y 轴对称.(4分) 不妨设M(x 0,y 0),则N(-x 0,y 0),其中-3<y 0< 3.因为MO⊥BN,所以MO →·BN →=0,即(-x 0,-y 0)·(-x 0,y 0-3)=0, 得x 20-y 20+3y 0=0.(6分)又点M(x 0,y 0)在椭圆上,则x 204+y 23=1.由⎩⎪⎨⎪⎧x 20-y 20+3y 0=0,x 204+y 203=1,解得y 0=-437或y 0=3(舍去),此时|x 0|=2337. 故MN =2|x 0|=4337,即线段MN 的长为4337.(8分)② (解法1)设B(m ,n),记线段MN 中点为D.因为O 为△BMN 的重心,所以BO →=2OD →,则点D 的坐标为(-m 2,-n 2).(10分)若n =0,则|m|=2,此时直线MN 与x 轴垂直,故原点O 到直线MN 的距离为⎪⎪⎪⎪⎪⎪m 2, 即为1.若n≠0,此时直线MN 的斜率存在.设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=-m ,y 1+y 2=-n.又x 214+y 213=1,x 224+y 223=1,两式相减得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0, 可得k MN =y 1-y 2x 1-x 2=-3m 4n.(12分)故直线MN 的方程为y =-3m 4n (x +m 2)-n 2,即6mx +8ny +3m 2+4n 2=0,则点O 到直线MN 的距离为d =|3m 2+4n 2|36m 2+64n2.将m 24+n 23=1,代入得d =3n 2+9.(14分) 因为0<n 2≤3,所以d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分) (解法2)设M(x 1,y 1),N(x 2,y 2),B(x 3,y 3),因为O 为△BMN 的重心,所以x 1+x 2+x 3=0,y 1+y 2+y 3=0, 则x 3=-(x 1+x 2),y 3=-(y 1+y 2).(10分)因为x 234+y 233=1,所以(x 1+x 2)24+(y 1+y 2)23=1.将x 214+y 213=1,x 224+y 223=1,代入得x 1x 24+y 1y 23=-12.(12分) 若直线MN 的斜率不存在,则线段MN 的中点在x 轴上,从而B 点位于长轴的顶点处. 由于OB =2,所以此时原点O 到直线MN 的距离为1. 若直线MN 的斜率存在,设为k ,则其方程为y =kx +n. 由⎩⎪⎨⎪⎧y =kx +n ,x 24+y 23=1,消去y 得(3+4k 2)x 2+8knx +4n 2-12=0 (*).则Δ=(8kn)2-4(3+4k 2)(4n 2-12)>0,即3+4k 2>n 2. 由根与系数关系可得x 1+x 2=-8kn 3+4k 2,x 1x 2=4n 2-123+4k2,则y 1y 2=(kx 1+n)(kx 2+n)=k 2x 1x 2+kn(x 1+x 2)+n 2=3n 2-12k23+4k2,代入x 1x 24+y 1y 23=-12,得14×4n 2-123+4k 2+13×3n 2-12k 23+4k 2=-12,即n 2=k 2+34.(14分)又3+4k 2>n 2,于是3+4k 2>k 2+34,即3k 2+94>0恒成立,因此k∈R .原点(0,0)到直线MN 的距离为d =|n|k 2+1=k 2+34k 2+1=1-14(k 2+1). 因为k 2≥0,所以当k =0时,d min =32. 又32<1,故原点O 到直线MN 距离的最小值为32.(16分) 19. 解:(1) 因为h(x)=f (x )x -g(x)=x 2-x -(a -16)-aln x ,所以h′(x)=2x -1-a x =2x 2-x -ax .令h′(x)=0,得2x 2-x -a =0.因为函数h′(x)在[52,4]上存在零点,即y =2x 2-x -a 在[52,4]上存在零点,又函数y =2x 2-x -a 在[52,4]上单调递增,所以⎩⎪⎨⎪⎧2×(52)2-52-a≤0,2×42-4-a≥0,解得10≤a≤28.因此,实数a 的取值范围是[10,28].(2分)(2) (解法1)因为当x∈[0,b]时,函数f(x)在x =0处取得最大值, 即存在实数a ,当x∈[0,b]时,f (0)≥f(x)恒成立,即x 3-x 2-(a -16)x≤0对任意x∈[0,b]都成立.(4分)当x =0时,上式恒成立;(6分)当x∈(0,b]时,存在a∈[10,28],使得x 2-x +16≤a 成立,(8分)所以x 2-x +16≤28,解得-3≤x≤4,所以b≤4. 故当a =28时,b 的最大值为4.(10分)(解法2)由f(x)=x 3-x 2-(a -16)x ,得f′(x)=3x 2-2x -(a -16). 设Δ=4+12(a -16)=4(3a -47).若Δ≤0,则f′(x)≥0恒成立,f(x)在[0,b]上单调递增,因此当x∈[0,b]时,函数f(x)在x =0时不能取得最大值,于是Δ>0,(4分) 故f′(x)=0有两个不同的实数根,记为x 1,x 2(x 1<x 2).若x 1>0,则当x∈(0,x 1)时,f ′(x)>0,f(x)在(0,x 1)上单调递增, 因此当x∈[0,b]时,函数f(x)在x =0时不能取得最大值, 所以x 1≤0.(6分)又x 1+x 2=23>0,因此x 2>0,从而当x∈(0,x 2)时,f ′(x)<0,f(x)单调递减; 当x∈(x 2,+∞)时,f ′(x)>0,f(x)单调递增,若存在实数a ,当x∈[0,b]时,函数f(x)在x =0处取得最大值,则存在实数a ,使得f(0)≥f(b)成立,即b 3-b 2-(a -16)b≤0.(8分)所以存在a∈[10,28],使得b 2-b +16≤a 成立,所以b 2-b +16≤28,解得-3≤b≤4, 故当a =28时,b 的最大值为4.(10分)(3) 设直线l 与曲线y =f(x)相切于点A(x 1,f(x 1)),与曲线y =g(x)相切于点B(x 2,g(x 2)),过点A(x 1,f(x 1))的切线方程为y -[x 31-x 21-(a -16)x 1]=[3x 21-2x 1-(a -16)](x -x 1),即y =[3x 21-2x 1-(a -16)]x -2x 31+x 21.过点B(x 2,g(x 2))的切线方程为y -aln x 2=a x 2(x -x 2),即y =ax 2x +aln x 2-a.因为直线l 在y 上的截距为-12,所以⎩⎪⎨⎪⎧3x 21-2x 1-(a -16)=ax 2①,-2x 31+x 21=-12 ②,aln x 2-a =-12 ③.(12分)由②解得x 1=2,则⎩⎪⎨⎪⎧24-a =a x 2,aln x 2-a =-12,消去a ,得ln x 2+1-x 22x 2=0.(14分)由(1)知10≤a≤28,且x 2>0,则x 2≥57.令p(x)=ln x +1-x 2x ,x ∈[57,+∞),则p′(x)=1x -12x 2=2x -12x 2.因为p′(x)>0,所以函数p(x)在[57,+∞)上为增函数.因为p(1)=0,且函数p(x)的图象是不间断的,所以函数p(x)在[57,+∞)上有唯一零点1,所以方程ln x 2+1-x 22x 2=0的解为x 2=1,所以a =12.所以实数a 的值为12.(16分)20. (1) 解:设等比数列{a n }的公比为q ,因为S 4=5S 2,所以a 1+a 2+a 3+a 4=5(a 1+a 2),即a 3+a 4=4(a 1+a 2),所以a 1q 2(1+q)=4a 1(1+q).因为数列{a n }的各项均为正整数,所以a 1,q 均为正数,所以q 2=4,解得q =2.又a 1=1,所以a n =2n -1,从而a 3=4,所以T 3=S 4=1+2+22+23=15.(2分)(2) 解:设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d. 因为数列{a n }的各项均为正整数,所以d∈Z .若d <0,令a n >0,得n <1-a 1d ,这与{a n }为无穷数列相矛盾,因此d≥0,即d∈N .(4分)因为S n =na 1+n (n -1)d 2,所以T n =a 1a n +a n (a n -1)d 2,因此T n a n =a 1+(a n -1)d2.由T n a n <2,得a 1+(a n -1)d2<2.(6分) 因为a 1∈N *,d ∈N ,所以2>a 1+(a n -1)d 2≥a 1≥1,因此a 1=1.于是1+(n -1)d 22<2,即(n -1)d 2<2.① 若d =0,则存在无穷多个n(n≥2),使得上述不等式成立,所以d =0不合题意;(8分)② 若d∈N *,则n <1+2d2,因为存在唯一的正整数n(n≥2),使得该不等式成立, 所以2<1+2d2≤3,即1≤d 2<2.又d∈N *,所以d =1,因此a n =1+(n -1)×1=n.(10分)(3) 证明:因为S n +1-S n =a n +1>0,所以S n +1>S n ,即数列{S n }单调递增. 又T n +1-T n =(n +1)(n +2)2-n (n +1)2=n +1>0,所以T n +1>T n ,即Sa n +1>Sa n ,因为数列{S n }单调递增,所以a n +1>a n .(12分)又a n ∈N *,所以a n +1≥a n +1,即a n +1-a n ≥1,所以a n +1-a 1=(a 2-a 1)+(a 3-a 2)+…+(a n +1-a n )≥n, 因此a n +1≥a 1+n≥1+n ,即a n ≥n (n≥2). 又a 1≥1,所以a n ≥n ①.(14分)由T n +1-T n =n +1,得aa n +1+aa n +2+…+aa n +1=n +1, 因此n +1≥a a n +1≥a n +1,即a n ≤n ②. 由①②知a n =n ,因此a n +1-a n =1,所以数列{a n}为等差数列.(16分)2021届高三模拟考试试卷(南京、盐城)数学附加题参考答案及评分标准21. A. 解:(1) 因为M =⎣⎢⎡⎦⎥⎤1221,MN =⎣⎢⎡⎦⎥⎤1001,所以N =M -1.(2分) 因为|M|=1×1-2×2=-3,(4分)所以N =M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-2-3-2-3-13=⎣⎢⎢⎡⎦⎥⎥⎤-13 23 23-13.(6分) (2) N 的特征多项式f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ+13-23-23λ+13=(λ+13)2-(-23)2=(λ-13)(λ+1).(8分)令f(λ)=0,解得λ=13或-1,所以N 的特征值是13和1.(10分)B. 解:曲线C 的普通方程为y =12(x 2)2=18x 2.(2分)由直线l 的极坐标方程ρcos (θ-π4)=2,得ρ(cos θcos π4+sin θsin π4)=2,即22x +22y =2,所以直线l 的方程为y =-x +2.(4分) 设A(x 1,y 1),B(x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =18x 2,y =-x +2,消去y ,得x 2+8x -16=0,(6分) 则x 1+x 2=-8,x 1x 2=-16,所以AB =1+(-1)2|x 1-x 2|=2×(x 1+x 2)2-4x 1x 2=2×(-8)2-4×(-16)=16.(10分)C. 证明:(证法1)因为a >0,所以a +1a ≥2,要证a 2+1a 2-2≥a +1a -2,只需证a 2+1a 2≥(a +1a)-(2-2).因为(a +1a )-(2-2)>0,所以只需证(a 2+1a 2)2≥⎣⎢⎡⎦⎥⎤(a +1a )-(2-2)2,(4分)即2(2-2)(a +1a )≥8-42,即证a +1a ≥2.(8分)因为a +1a ≥2成立,所以要证的不等式成立.(10分)(证法2)令t =a +1a ,因为a >0,所以a +1a ≥2,即t≥2.要证a 2+1a 2-2≥a +1a-2,即证t 2-2-2≥t -2, 即证t -t 2-2≤2-2,(4分)即证2t +t 2-2≤2- 2.(6分) 由于f(t)=t +t 2-2在[2,+∞)上单调递增,则f(t)≥f(2)=2+2,故2t +t 2-2≤22+2=2- 2. 所以要证的原不等式成立.(10分)22. 解:(1) 设“顾客参加一次抽奖活动获得三等奖”为事件A. 因为m =4,所以P(A)=46+26×C 24C 26=23+13×25=45.答:顾客参加一次抽奖活动获得三等奖的概率为45.(4分)(2) X 的所有可能取值为400,300,100. P(X =400)=26×C 22C 22+m =23(m +1)(m +2),P(X =300)=26×C 12C 1m C 22+m =4m3(m +1)(m +2),P(X =100)=46+26×C 2m C 22+m =23+m (m -1)3(m +1)(m +2),(7分)则E(X)=400×23(m +1)(m +2)+300×4m 3(m +1)(m +2)+100×[23+m (m -1)3(m +1)(m +2)]≤150,化简得3m 2-7m -6≥0.因为m≥2,m ∈N *,所以m≥3, 所以m 的最小值为3.(10分)23. (1) 解:当n =2时,A 2的子集为∅,{1},{2},{1,2},且m =4. 所以a 1+a 2+…+a m =0+1+1+2=4.(2分)(2) 证明:① 当n =2时,取一个集合组(M 1,M 2,M 3,M 4)=(∅,{1},{1,2},{2}),此时a 1=0,a 2=1,a 3=2,a 4=1,满足任意i∈N *,i ≤3,都有|a i -a i +1|=1, 所以当n =2时命题成立.(4分)② 假设n =k(k∈N *,k ≥2)时,命题成立,即对于A k ={1,2,…,k},存在一个集合组(M 1,M 2,…,M m )满足任意i∈N *,i ≤m -1,都有|a i -a i +1|=1,其中m =2k.当n =k +1时,则A k +1={1,2,…,k ,k +1},集合A k +1的所有子集除去M 1,M 2,…,M m 外,其余的子集都含有k +1.令M m+1=M m∪{k+1},M m+2=M m-1∪{k+1},…,M2m=M1∪{k+1},取集合组(M1,M2,…,M m,M m+1,M m+2,…,M2m),其中2m=2k+1,(6分)根据归纳假设知|a i-a i+1|=1,其中i∈N*,m+1≤i≤2m-1,(8分)所以此集合组满足|a i-a i+1|=1,其中i∈N*,i≤m-1或m+1≤i≤2m-1.又M m+1=M m∪{c},所以|a m-a m+1|=1,因此|a i-a i+1|=1,其中i∈N*,i≤2m-1,即当n=k+1时,命题也成立.综上,不论n为何值,总存在有序集合组(M1,M2,…,M m),满足任意i∈N*,i≤m-1,都有|a i-a i+1|=1.(10分)。

相关文档
最新文档