温度检测技术及发展现状

合集下载

论述室内环境监测的现状与发展

论述室内环境监测的现状与发展

论述室内环境监测的现状与发展随着技术的发展和人们对生态环境的关注越来越高,室内环境监测随之兴起并发展壮大,逐渐被重视。

它的任务是通过测量、分析和评估建筑物内部的环境参数,如温度、湿度、照明、空气质量等,以评估室内环境质量,从而提高人们的生活质量和健康水平。

本文就室内环境监测的现状与发展进行讨论。

一、室内环境监测现状1. 监测对象室内环境监测的对象可以是各种类型的建筑物,如住宅、办公大楼、医院、学校等。

其中,办公楼是室内环境监测的主要对象之一,因为办公楼是职业人士最长时间工作的地方之一,其环境质量直接影响着人们的生产效率和健康状况。

2. 监测参数室内环境监测需要监测的参数有很多,以下是一些常见的参数:(1) 温度温度是一个重要的测量参数,因为高温或低温都会对人体造成不良影响。

室内环境监测通常会对不同房间、不同位置的温度进行实时测量,以便建筑管理员可以及时调整温度控制系统。

(2) 湿度过高或过低的湿度都会对人体健康产生影响,因此监测室内湿度是必要的。

大多数情况下,室内湿度应保持在40%-60%之间。

(3) 空气质量室内空气质量对人体影响很大,其中PM2.5、TVOC、CO2等是比较重要的参数。

PM2.5是指大小小于等于2.5微米的颗粒物,TVOC是指揮發性有機化合物的總量,CO2是二氧化碳濃度。

这些参数的测量是通过室内空气检测仪来实现的。

(4) 照度针对不同的室内场所,应该选择相应的照度值,以确保舒适度和视觉质量。

照度值是通过测量室内环境中的光线强度来确定的。

3. 监测技术室内环境监测的技术逐渐发展和成熟,除了传统的模拟测量外,数字化技术也开始应用到室内环境监测中。

它们包括:(1) 现场监测仪包括温度计、湿度计、二氧化碳传感器等。

这些现场监测仪每天都会记录和存储环境数据,管理员可以根据需要查看这些数据以及根据数据做出具体的维护调整。

(2) 智能环境监测系统智能环境监测系统是指通过计算机技术、传感器技术、通信技术等手段专门针对建筑物内部环境实现的,具有更高的智能化和自动化水平。

检测技术的发展趋势

检测技术的发展趋势

检测技术的发展趋势
摘要: 随着世界各国现代化步伐的加快,对检测技术的要求越来越高。

而科学技术,尤其是大规模集成电路技术、微型计算机技术、机电一体化技术、微机械和新材料技术的不断进步,则大大促进了现代检测技术的发展。

目前,现代检测技术发展的...
随着世界各国现代化步伐的加快,对检测技术的要求越来越高。

而科学技术,尤其是大规模集成电路技术、微型计算机技术、机电一体化技术、微机械和新材料技术的不断进步,则大大促进了现代检测技术的发展。

目前,现代检测技术发展的总趋势大体有以下几个方面。

1.不断拓展测量范围,努力提高检测精度和可靠性
随着科学技术的发展,对检测仪器和检测系统的性能要求,尤其是精度、测量范围、可靠性指标的要求愈来愈高。

以温度为例,为满足某些科研实验的需求,不仅要求研制测温下限接近绝对零度(-273.15℃),且测温量程尽可能达到15 K(约-258℃)的高精度超低温检测仪表;同时,某些场合需连续测量液态金属的温度或长时间连续测量2 500~3 000℃的高温介质温度,目前虽然已能研制和生产最高上限超过2 800℃的热电偶,但测温范围一旦超过2 500℃,其准确度将下降,而且极易氧化从而严重影响其使用寿命与可靠性;因此,寻找能长时间连续准确检测上限超过2 000℃被测介质温度的新方。

现代自动检测技术的发展现状及趋势

现代自动检测技术的发展现状及趋势

现代自动检测技术的发展现状及趋势梁森,欧阳三泰,王侃夫.自动检测技术及应用.北京:机械工业出版社,2006.趋势:随着半导体和计算机技术的发展,新型或具有特殊功能的传感器出现,检测装置也向小型化、固体化及智能化发展,应用领域更加宽广。

1、不断提高监测系统的测量精度、量程范围、延长使用寿命、提高可靠性科学技术的发展要求测量系统有更高的精度。

近年来,人们研制出许多高精度的检测仪器以满足各种需求。

例如,用直线光栅测量直线位移时,测量范围可达二三十米,而分辨率可达到微米级;人们已经研制出测量低至几个帕的微压力和高达几千兆帕高压的;力传感器;开发了能够测出极微弱磁场的磁敏传感器等。

从20世纪60年代开始,人们对传感器的可靠性和故障率的数学模型进行了大量的研究,使得监测系统的可靠性和使用寿命大幅度提高。

2、应用新技术和新的物理效应,扩大检测领域检测原理大多以各种物理效应为基础,近代物理学的进展如纳米技术、激光、红外、超声波、微波、光纤、放射性同位素等新成就为检测技术的发展提供了更多的依据。

如图像识别、激光测距、红外测温、C型超声波无损探伤。

放射性测厚。

中子探测爆炸物等非接触测量得到迅速发展。

20世纪70年代以前,检测技术主要用于工业部门,如今,检测领域正扩大到整个社会需要的各个方面,不仅包括工程、海洋开发、航空航天等尖端科技和新兴工业领域,而且已涉及生物、医疗、环境污染监测、危险品和毒品的侦查、安全检测等方面,并且已经开始渗入到人们的日常生活设施之中。

3、发展集成化、功能化的传感器随着半导体集成电路技术的发展,硅和砷化镓电子元件的高度集成化大量向传感器领域渗透。

人们将传感技术与信号处理电路制作在同一块硅片上,从而研制体积更小、性能更好、功能更强的传感器。

例如,高精度的PN结测温集成电路;又如,将排成阵列的上千万个光敏元件及扫描放大电路制作在一块芯片上,制成彩色CCD数码照相机、摄像机以及可摄像的手机等。

今后还将在光、磁、温度、压力等领域开发出新型的集成度很高的传感器。

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展

浅谈精密测量技术现状及发展精密测量技术是一种广泛应用于各种工业和科学领域的技术,它主要用于实现对各种物理量的高精度测量,包括长度、角度、电流、压力、温度等。

随着科技的不断发展和进步,精密测量技术也在不断创新和突破,为各种领域的科研和生产提供了更准确、更可靠的测量手段。

本文将对精密测量技术的现状和发展进行浅谈。

一、精密测量技术的现状1. 高精度、高稳定性随着现代工业的发展,对于产品的精度和稳定性要求越来越高,而精密测量技术正是能够满足这种需求的技术之一。

现在的高精度测量设备,能够实现纳米级甚至亚纳米级的测量精度,可以满足微电子、微机械和其他高精度行业的要求。

这些设备的稳定性也得到了显著提高,可以长时间稳定地工作,满足生产线上的连续测量需求。

2. 宽泛的应用领域精密测量技术的应用领域非常广泛,涉及到机械制造、航空航天、汽车制造、电子电器、医疗器械、生物医药、环境监测等诸多领域。

与此随着科技的发展,精密测量技术也逐渐应用于新兴领域,如人工智能、无人机、智能制造等,为这些领域的发展提供了强有力的支撑。

3. 多元化的测量方法随着科技的发展,精密测量技术的方法也变得越来越多元化。

除了传统的机械测量、光学测量、精密电子测量等方法外,现在还出现了一些新的测量方法,如激光干涉测量、超声波测量、微纳米加工测量等,为不同领域的测量需求提供了更多的选择。

4. 发展的趋势1. 新材料的应用新材料的应用是精密测量技术发展的重要推动力。

随着新材料的不断涌现和应用,对于材料的精密测量需求也日益增加。

精密测量技术将会不断与新材料相结合,研发出更加适用于新材料测量的方法和设备,以更好地满足市场需求。

2. 智能化与自动化智能化与自动化是精密测量技术发展的重要趋势。

随着人工智能、互联网、大数据等新技术的不断应用,智能化和自动化将成为未来精密测量技术发展的重要方向。

智能测量系统将更加智能化、自动化,能够实现自主识别、自主判断和自主纠正,大大提高了测量效率和可靠性。

铁路铁轨温度检测技术的研究与发展

铁路铁轨温度检测技术的研究与发展

铁路铁轨温度检测技术的研究与发展铁路交通在现代社会中扮演着重要的角色,为了确保铁路线路的安全运行,温度监测技术成为了一个重要的研究领域。

本文将探讨铁路铁轨温度检测技术的研究与发展,并分析其在铁路运输中的重要作用。

一、温度对铁路线路的影响铁路线路温度的变化对铁轨的健康状况和运行安全至关重要。

温度过高或过低会对铁轨结构产生不利影响,例如,温度过高会导致铁轨膨胀,增加铁轨的应力,进而影响列车的行驶平稳性;而温度过低则会引起铁轨收缩,增加铁轨的应力,造成裂缝和损坏。

因此,对铁路线路温度进行准确的监测具有重要的意义。

二、传统的温度监测技术在过去,铁路铁轨温度的监测主要依靠人工测量和热电偶温度计等传感器。

人工测量的缺点在于需要时间和人力投入,监测结果也容易受到人为因素的影响;而传感器的安装和维护成本较高,并且不易布置在所有铁轨上。

三、基于红外技术的温度监测随着红外技术的发展和应用,越来越多的铁路公司开始采用基于红外技术的温度监测系统。

该系统使用红外传感器来测量铁轨的温度,并通过数据传输到监测中心进行分析和处理。

相比传统的监测方法,基于红外技术的温度监测具有以下优势:1. 非接触式测量:红外传感器可以远距离测量铁轨的温度,避免了传感器与铁轨的接触,减少了安装和维护成本。

2. 实时监测和报警:基于红外技术的温度监测系统可以实时监测铁轨的温度变化,并在温度超过安全范围时及时发出警报,提醒运营人员采取相应的措施。

3. 大数据分析:监测中心可以通过对大量温度数据的分析,提取出关键信息,帮助运营人员做出合理的运维决策,提高铁路线路的运行效率和安全性。

四、未来的发展趋势随着科技的不断进步和铁路运输的不断发展,铁路铁轨温度检测技术也将不断革新和升级。

以下是未来可能出现的一些发展趋势:1. 无人机监测:利用无人机搭载红外传感器,可以实现对铁路铁轨温度的大面积监测,提高监测效率和精度。

2. 引入智能算法:通过引入机器学习和人工智能等技术,可以对温度数据进行分析和预测,帮助预防铁轨温度异常和事故的发生。

温湿度检测毕业论文

温湿度检测毕业论文

温湿度检测毕业论⽂1 绪论1.1 前⾔温湿度的监测与控制是⼯业⽣产过程中⽐较典型的应⽤之⼀,随着传感器在⽣产和⽣活中的更加⼴泛的应⽤。

在⽣产中,温湿度的⾼低对产品的质量影响很⼤。

由于温湿度的监测控制不当,可能使我们导致⽆法估计的经济损失。

为保证⽇常⼯作的顺利进⾏,⾸要问题是加强⽣产车间内温度与湿度的监测⼯作,但传统的⽅法过于粗糙,通过⼈⼯进⾏监测,对不符合温度和湿度要求的库房进⾏通风、去湿和降温等⼯作。

这种⼈⼯测试⽅法费时费⼒,效率低,且测试的温度及湿度误差⼤,随机性⼤。

⽬前,在低温条件下温湿度的测量已经相对成熟。

利⽤新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。

但⼈们对它的要求越来越⾼,要为现代⼈⼯作、科研、学习、⽣活提供更好的更⽅便的设施就需要从数字单⽚机⼊⼿了,⼀切向着数字式、智能化控制⽅向发展。

对于国外对温湿度检测的研究,从复杂模拟量监测到现在的数字智能化监测越发的成熟,随着科技的进步,现在对温湿度的研究,检测系统向着智能化、⼩型化、低功耗的⽅向发展。

在发展过程中,以单⽚机为核⼼的温湿度控制系统发展为体积⼩、操作简单、量程宽、性能稳定、测量精度⾼等诸多优点在⽣产⽣活中的各个⽅⾯发挥着⾄关重要的作⽤。

温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离⼦型湿敏元件、重量型湿敏元件、光强型湿敏元件、声表⾯波湿敏元件等。

湿敏元件的线性度及抗污染性差,在监测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染⽽影响其测量精度及长期稳定性。

1.1在纺织⽣产中,温湿度的变化直接影响到产品的质量,产量和材料的消耗。

⽬前纺织⾏业的温湿度控制基本采⽤⼈⼯⼿动调节⽅式。

由于在控制中是⼈⼯的原因,所以必然存在反应速度慢,劳动强度⾼,调节⽅式⼤都属于开关控制,难以实现理想的调节⽅式,所以现场的温湿度波动范围⼤,温湿度的均匀度特性差,能源利⽤率低,失控⼏率⼤,由此直接影响产品产量和质量的稳定性。

温度测量技术的发展

温度测量技术的发展

温度测量技术的发展王魁汉本文作者王魁汉先生,东北大学教授1997年8月20日收到Development of Temperature Measuring TechnologyMr. WANG Kuihan, Professor, NortheastUniversity.This discusses a few critical topics in the technology and development of contact/n on-contact temperature transducers, online measurement of high temperature melt.一温度传感器实用的温度传感器种类很多,但存工业部门多采用辐射温度计及热电偶。

同外以辐射测温为主(占2/3),国内则多采用热电偶和热电阻(占98%)。

国外辐射温度计的蓬勃发展对国内影响很大,近几年国内辐射温度计明显呈上升趋势。

1. 非接触式温度传感器近几年辐射测温技术发展很快,其原因是:a.辐射温度汁的性能有了很大提高,性能稳定可靠,测温范围广。

b.价格比较便宜,国产红外辐射温度计的价格与B型热电偶相当。

c.在应用时采用“工艺温度”或“控制温度”的概念。

用于生产过程中温度参数的在线检测,已取得可喜成果。

目前,主要的研究开发工作如下(1)消除发射率的影响及多渡长温度计对对象真实温度的测量及材料发射率测量的要求,导致了多波长温度计的发展。

用同时测量多个波长的信号,加上已知的、用其他方法得到的对象发射率的知识,按定的数学模型计算后,就可自动补偿发射率的影响而得到较真实的温度。

反过米也可测量发射率。

用光电二极管列阵和棱镜分光技术已研制出可同时最多测量35个波长信号的温度计。

美国铝公司等研究表明,即使只有两个波长,用这种补偿的方法也比普通的比色温度计能较好地减少发射率的影响,尤其是发射率变化的影响。

(2)光纤测温光学纤维的抗电噪声和其它外来下扰的能力特别好对于克服工业现场的电噪声及光路中多种外来干扰的影响十分有效。

2024年手持红外测温仪市场分析现状

2024年手持红外测温仪市场分析现状

2024年手持红外测温仪市场分析现状摘要随着健康和安全意识的提高,手持红外测温仪在近年来迅速发展,并在各行各业得到了广泛应用。

本文通过对手持红外测温仪市场进行分析,包括市场规模、市场发展趋势、产品特点及应用领域等方面的研究,以期对手持红外测温仪市场的现状有一个全面的了解。

1. 引言手持红外测温仪是一种可以通过红外辐射来测量目标表面温度的设备。

由于其非接触式测温的特点,手持红外测温仪在疫情防控、工业制造、医疗保健等领域得到广泛应用。

本文将对手持红外测温仪市场的现状进行分析。

2. 市场规模手持红外测温仪市场呈现出快速增长的趋势。

据市场研究公司统计,2020年手持红外测温仪的全球市场规模约为10亿美元,预计到2025年将达到25亿美元。

市场需求的增加主要源自于疫情期间对非接触式温度检测设备的需求上升。

3. 市场发展趋势手持红外测温仪市场的发展趋势主要体现在以下几个方面:•技术创新:随着科技的不断进步,手持红外测温仪的性能和功能得到不断提升。

例如,一些新型手持红外测温仪具备更高的测温精度、更远的测温距离以及更快的测温速度,满足了市场对高性能产品的需求。

•应用领域扩大:手持红外测温仪在疫情期间得到广泛应用,而随着疫情逐渐得到控制,手持红外测温仪的应用领域也在不断扩大。

工业制造、食品安全、建筑工程、能源监测等领域都有对手持红外测温仪的需求,这将进一步推动市场的发展。

•价格下降:随着手持红外测温仪市场竞争的加剧,产品价格逐渐下降。

这使得手持红外测温仪对于个人用户和中小型企业来说更加可负担,进一步拉动了市场的增长。

4. 产品特点手持红外测温仪的产品特点主要包括以下几个方面:•非接触测温:手持红外测温仪通过红外辐射技术实现非接触式的温度测量,避免了传统温度测量方式的接触感染风险,提高了操作安全性。

•快速响应:手持红外测温仪可以在短时间内获得目标表面的温度数据,大大提高了测温效率。

•宽温度测量范围:手持红外测温仪的测温范围较广,通常可达-50℃至1000℃,适用于不同行业的不同温度测量需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1)薄膜温度传感器
在传感器结构改进方面,出现了薄膜温度传感器,它是随着薄膜技术的成熟而发展起来的新型微传感器,其敏感元件为微米级的薄膜,具有体积小、热扰动小、热动态响应时间短、灵敏度高、便于集成和安装的特点,并且具有耐磨、耐压、耐热冲击和抗剥离的优良性能,特别适合于微尺度或小空间温度测量、表面温度的测量等场合。

近年来发展的陶瓷薄膜热电偶,可以测量更高的温度,克服了金属薄膜热电偶的一些催化效应和冶金效应等缺点,在高温表面温度测量领域应用更为广泛。

2)热电偶材料性能的提高
在热电偶丝材料方面,一些类型的热电偶性能得到了提高,并出现了一些新型热电偶类型。

(1)N型热电偶越来越受到重视。

与K型热电偶相比,N型热电偶的高温稳定性与使用寿命均明显提高。

目前国外N 型热电偶得到了广泛的应用,而国内应用仍旧不是很普遍,但随着对加工产品质量控制要求的提高,N型热电偶使用将会越来越多。

(2)钨铼热电偶抗氧化技术得到了发展,拓宽了其应用领域。

主要是采用热电偶丝材镀膜或采用高致密保护套管隔绝等技术,可以延长钨铼热电偶在氧化气氛下的使用时间,使之不局限在还原条件下使用,可在一定程度上取代铂铑等贵金属热电偶。

(3)一些非标准分度的金属、非金属热电偶正在研制并逐步得到应用。

为了提高温度测量上限,一些非标准分度的铂铑、铱铑等贵金属热电偶已经在工程上得到应用。

另外,一些非金属热电偶材料得到了人们的重视,其特点有:①热电动势和微分电势大;②熔点高,测温上限也高;③价格低;④选用合适的非金属材料,可制成抗氧化或抗碳化的热电偶,用于恶劣条件下温度的测量。

其缺点是复现性和机械性能差。

目前,取得进展的非金属热电偶有C-TiC (ZrB2、NbC、SiC)、SiC-SiC、ZrB2(NbC)-ZrC、MoSi2-WSi2以及B4C-C等。

3)温度传感器保护套管材料
保护套管材料在温度测量中对敏感元件起着保护作用,对其测量准确度和使用寿命有很大影响,可由金属、非金属或金属陶瓷等材料制成。

近年来金属陶瓷保护套管材料性能得到了很大提高,如Al2O3基、MgO基、ZrO2基和碳化钛基等几种金属陶瓷,具有耐腐蚀、抗热冲击、耐高温性,可以在氧化、还原和中性气氛下使用,在冶金行业中可用于高温金属熔液温度的测量。

4)辐射测温技术
随着光电和红外探测器的发展,出现了多种多样的红外测温仪,红外测温技术得到了更多的应用。

具体表现在:(1)测温范围从高温、中温向中、低温部分拓展;(2)准确度和稳定性更高;(3)工作波段多样化, 可根据被测对象的特性选择;(4)从点测量发展到二维面测量;(5)红外测温仪具有小型化和智能化的特点;(6)从测量原理和方法上消除发射率影响,实现物体的真温测量。

多光谱测温技术也逐步开始在科研和工程领域中得到了应用。

其原理是在一个仪器中制成多个光谱通道,利用多个光谱的物体辐射能量信息,经过数据处理得到物体的真实温度。

该方法测量温度上限和测量准确度高、响应快,受中间介质影响小,非常适合非透明火焰温度和高温表面温度的测量。

5)光纤测温技术
黑体空腔式光纤高温计是由黑体空腔与被测介质达到温度平衡,通过光纤将黑体腔的辐射能量传输给光电探测器件,从而实现温度测量。

如蓝宝石黑体空腔式光纤高温计,具有测温高、响应快、寿命长的特点,可以部分取代贵金属热电偶。

还有一种测量钢水温度的消耗型光纤温度传感器,也是基于以上原理,由普通石英光纤实现测温,因其价格低、准确度高的特点可以取代消耗型贵金属热电偶。

分布式光纤测温系统是近年来发展起来的一种用于实时测量空间温度场分布的传感系统,它是一种分布式的、连续的、功能型光纤温度测量技术。

其中,光纤既是传输媒体也是传感媒体,利用光纤后向喇曼散射的温度效应,可以对光纤所在的温度场进行实时测量,利用光时域反射技术(OTDR)可以对测量点进行精确定位。

分布式的结构使得该系统能够实现实时快速多点测温。

光纤布拉格光栅(FBG)是最近十几年发展最为迅速的光纤无源器件之一,它是利用掺杂(如锗、磷等)光纤的光敏性,通过某种工艺方法使外界入射光子和纤芯内的掺杂粒子相互作用,导致纤芯折射率沿纤轴方向周期或非周期性地永久性变化,在纤芯内形成空间相位光栅。

当温度变化时,光纤的栅距和折射率发生变化,导致其响应波长的移动,通过检测响应波长即可确定温度。

它可以在一根光纤上实现多点测量,并能同时测量温度和应变。

利用这些原理制作的光纤多点温度传感器,可以应用在油井温度测量、大坝或地质灾害监测、飞机蒙皮的健康监测方面等场合,具有很好的应用前景,是近几年温度测量技术发展的重点之一。

4 结论
虽然温度测量方法多种多样,但在很多情况下,对于实际工程现场或一些特殊条件下的温度测量,比如对极限温度、高温腐蚀性介质温度、气流温度、表面温度、固体内部温度分布、微尺寸目标温度、大空间温度分布、生物体内温度、电磁干扰条件下温度测量来讲,要想得到准确可靠的结果并非易事,需要非常熟悉各种测量方法的原理及特点,结合被测对象要求选择合适的测量方法才能完成。

同时,还要不断探索新的温度测量方法,改进原有测量技术,以满足各种条件下的温度测量需求。

相关文档
最新文档