轨检车检测数据

合集下载

浅谈安博格GRP1000S轨检小车检测及数据处理

浅谈安博格GRP1000S轨检小车检测及数据处理

浅谈安博格GRP1000S轨检小车检测及数据处理作者:李国鸣来源:《建筑工程技术与设计》2014年第05期GRP1000S测量系统的介绍GRP1000S测量系统主要由TGS FX 手推轨检车、GPC100棱镜和GRPwin测量和分析软件包三大部分组成。

TGS FX轨检车内安装高精度的传感器装置,用于测量轨道高低、轨向(短波和长波不平顺)、水平、轨距、里程。

单独使用GRP1000,可以测量无碴轨道静态几何参数。

为了满足对无碴轨道三维绝对位置坐标的精度要求,需要用LEICA TPS全站仪来对GRP1000S定位,上述定位测量通过全站仪的自动目标照准功能以及与GRP1000S 之间持续的无线通讯来实现。

GRP1000S轨道测量系统不仅可以用于前期工程阶段的无碴轨道的铺设施工测量、道岔的安装测量。

轨道维护时,可以利用该系统对整个轨道、道岔进行测量,并参考测量结果制定精调方案,指导现场实际生产。

一、轨道检测作业方法轨道验收精密检测作业时,全站仪在靠近线路中心处自由设站,后视8个CPⅢ控制点,由机载软件解算出测站三维坐标后,配合轨检小车进行轨道检测。

轨检小车由人推着在轨道上缓慢移动,由远及近地靠向全站仪。

检测点根据要求而确定,道岔及重要附属构筑物应加测点。

轨道中线坐标和轨面高程的检测,是对线路轨道工程质量状况最基本的评价。

通过检测轨道实测坐标和高程值与线路设计值之间的差值,可以全面直观反映轨道工程质量。

在进行轨道中线坐标和轨面高程检测时,使用高精度全站仪实测出轨检小车上棱镜中心的三维坐标,然后结合事先严格标定的轨检小车的几何参数、定向参数、水平传感器所测横向倾角及实测轨距,即可推算出对应里程处的中线位置和左右轨的轨面高程。

进而与该里程处的设计中线坐标和设计轨面高程进行比较,得到实测的线路绝对位置与理论设计之间的差值。

轨距检测在轨距检测时,通过轨检小车上的轨距传感器进行轨距测量。

轨检小车的横梁长度须事先严格标定,则轨距可由横梁的固定长度加上轨距传感器测量的可变长度而得到,进而进行实测轨距与设计轨距的比较。

轨检车检测资料的分析与应用

轨检车检测资料的分析与应用
严重超限。轨检车资料显示整个曲线曲率严重不 良,曲率min=0.27rpk,max=0.44rpk,根据曲率 与半径的换算公式K=1/R得到整个曲线半径在 R=3700m至R=2270m间来回反复振荡,曲线R变 化幅度达到了1430m,曲率波形图呈大振幅的正
弦波,曲线线型严重不良。就如同列车在无缓和
6、无缝线路地段轨温升高,轨条内部应力分布 不均。
根据现场实践经验,我们可以将轨向分 为以下几类:
①单波(半波)轨向 如京九下行K1709(泰和大桥)线路波形图
见下图。
从图上我们可以看出单波轨向对行车影响 有限,不会引起列车连续晃动。消灭处理 起来也很方便,只要安排拨道消峰就能控 制晃车。
下图为07年2月部轨检车检查京九下行 K1488公里多波轨向不良波形图。
轨向不良不仅发生在直线上,曲线内轨向 (正矢)不良也导致曲线大量出现水加, 是曲线晃车的一个重要原因,因此要结合 波形图认真检查现场曲线的正矢,结合整 个曲线的情况进行拨道整治病害。
如下图:京九线下行K1597曲线轨检车波形 图。
曲线的复曲线穿行一样,每个波峰或波谷处就出 现一个水平加速度超限,动态晃车严重。
为找到有效地曲线整正方法,彻底解决曲线晃车 问题,使用经纬仪对既有下行K839曲线平面进行 复测计算,得到曲线最大上挑量为270mm,最大下 压量为130mm。在06年12月份对沪昆线动态不良 的下行K839曲线首次采用精确法整正,取得明显
效果。曲率得到很大改善,曲线轨检车高速检查 整个曲线Ⅰ级超限仅14处,无Ⅱ、Ⅲ级超限,曲 线地段轨检车扣分明显减少,高速行车平稳。整 正后的波形图如下:
3、曲率不但有指导曲线养修的作用,还能 够判断直线大方向的好坏。通过曲率公式 1/R可以反算出线路大方向的曲线半径,实 施激光精确拨道整治。如下图:

动轨检车轨道检测大数据应用

动轨检车轨道检测大数据应用

动轨检车轨道检测大数据应用摘要:在科技日新月异的今天,动轨检车越来越先进、检测越来越频繁,生成了大量动轨检车检测数据,如何运用好这些珍贵检测数据,充分发掘检测数据的潜力,从而更加科学、高效的指导轨道养护就显得十分重要。

基于此,本文浅要介绍动轨检车轨道检测大数据在几个方面的运用,首先,概述动轨检车轨道检测数据;然后介绍轨道检测大数据在维修任务下达、施工作业质量分析评判中的运用。

关键词:动检车;检测数据;大数据;应用一、动轨检车轨道检测数据概述动轨检车主要对轨距、水平、高低、轨向等项目进行直接检测,计算获得三角坑、轨距变化率,从而生成动态轨道几何尺寸超限报表(Ⅰ、Ⅱ、Ⅲ、Ⅳ级分)、轨道质量指数(TQI)、动态几何尺寸波形图。

时速大于160km区段还会检测长波长高低、轨向。

当前国家铁路主要干线动轨检车检测较为固定,同一条线路的每月动检日期均为同一天,这样一年下来,就可以产生非常多的可對比分析的动态检测数据,从而形成大数据库。

二、通过“T200”确定维修任务“T200”是每200米线路单元轨道质量指数的简称,我们通过“T200”大值分析和趋势性分析,确定需要维修的200米单元。

TQI大值分析是常规手段,以削峰管理为指导思想,对TQI超标处所及时安排政治。

但TQI趋势性分析是更为重要的手段,可以把设备病害消灭在萌芽状态,防止TQI超过临界值,设备快速恶化,难以整修。

而大数据的运用,让TQI 趋势性分析成为可能。

我们通过大数据分析得出一条线路每200米设备单元近6次动检车TQI,深色表示TQI值高、浅色表示TQI值低,形象展示出TQI变化情况。

从而进行TQI 趋势性分析。

三、通过波形图确定低塌焊缝,下达打磨任务通过平直尺人工对区间焊缝进行检查,是一种常规手段,如今通过动轨检波形图我们可以快速的找出区间成段焊缝不平顺处所,及时进行分析,确定打磨计划。

目前正线无缝线路多为25米、50米、100米定尺轨通过厂焊或者现场焊铺设而成,而焊缝高低不平顺成为无缝线路影响行车平顺性的首要因素。

充分利用轨检车数据及图纸

充分利用轨检车数据及图纸

及时消灭线路病害创建高平顺线路伴随我国铁路第五次提速的顺利完成,我段管内铁路已普遍提速至160km/h。

随着列车速度的提高,原有的管理方式、检测方式、作业方式难以与快速铁路对线路高平顺性的要求相适应。

为适应快速铁路对线路高平顺性的要求,就需要我们提高对轨检车数据及图纸的利用。

我国高速铁路技术已获突破性进展,秦沈客运专线已经建成,试验段时速已达。

伴随我国既有线的继续提速以及新型高速客运专线相继建成,就需要我们及早掌握利用轨检车数据及图纸,及时消灭线路病害作业方式,为将来管理、维修更高运营速度线路作准备。

铁路轨道支承在密实度和弹性都很不均匀的道床和路基上,却要承受很大的随机性列车动荷载的反复作用,轨道不可避免地产生不均匀残余变形。

其几何尺寸、平顺状态是经常变化的,它需要不断进行养护维修,校正轨道不平顺,经常保持轨道的平顺性是一项技术性很强,花费很大,十分繁重的工作。

对平顺性问题不了解,就很难做好线路维修工作。

一、轨道不平顺(一)轨道不平顺的分类1.轨道不平顺按对车辆激扰方向区分⑴.垂向轨道不平顺(高低、水平、三角坑、轨面短波不平顺、新轨垂向周期性不平顺)⑵.横向轨道不平顺(轨向、轨距、新轨横向周期性不平顺)⑶.复合不平顺(方向水平逆向复合、曲线头尾的几何偏差)2.轨道不平顺按波长区分波长类型波长范围幅值范围不平顺种类主要危害短波数毫米至数拾毫米mm 轨面擦伤、剥离、波纹磨耗、焊缝轮轨动作用力、噪声,设备寿命,运营成本数百毫米mm 波浪形磨耗、轨枕间距中波2至米周期性mm 新轨本身不平顺快速、高速车振动舒适性3至30米非周期性mm 高低、轨向、扭曲、水平、轨距安全、平稳、舒适性,运营成本长波30至200米mm 路基道床不均匀沉降,中跨桥梁挠曲变形,桥梁、隧道头尾刚度差异快速、高速列车、振动舒适性(二)轨道不顺特征对行车安全的影响轨道不平顺的幅值、波长、波数、周期性对轮轨相互作用力、机车车辆振动和列车脱轨安全性均有重要影响。

轨检车波形图数据分析及其在铁路维护中的应用

轨检车波形图数据分析及其在铁路维护中的应用

轨检车波形图数据分析及其在铁路维护中的应用摘要:本文旨在研究轨检车波形图数据的获取、分析以及其在铁路维护中的应用。

通过对波形图数据的处理和分析,可以更好地了解铁路轨道的状况,提高铁路运营的安全性和效率。

本文将介绍波形图数据的采集方法、分析技术以及应用,为铁路维护提供重要的参考。

关键词:轨检车;波形图;数据分析;维护应用;引言:铁路系统是国家经济的重要组成部分,需要不断进行维护和检测以确保运行的安全性和效率。

轨检车波形图是一种重要的数据源,用于评估铁路轨道的状况。

通过对波形图数据进行分析,可以检测轨道的异常,预测维护需求,并提高铁路系统的可用性。

一、波形图数据采集方法1.1传感器的使用1)激光测距仪(LiDAR):激光测距仪广泛应用于波形图数据采集。

它通过发射激光脉冲并测量反射时间,可以高精度地获取地面的高程和轨道的曲率信息。

2)惯性测量单元(IMU):IMU传感器可以测量加速度和角速度,用于确定车辆的姿态和运动状态,有助于对轨道特征的解释和纠正。

3)高精度GPS:高精度GPS系统用于获取轨道车辆的准确位置,结合其他传感器数据,有助于创建地理信息系统(GIS)数据库,实现数据的地理参考。

4)视觉传感器:摄像头和其他视觉传感器可用于拍摄轨道照片和视频,以支持轨道的可视检查,并为数据分析提供视觉信息。

1.2数据采集的时间、地点和频率1)时间:数据采集通常在轨道交通最低的时间段进行,以减少干扰和风险。

通常在深夜或凌晨进行,避免干扰列车运行。

2)地点:数据采集的地点应涵盖整个铁路网络,包括主线、辅线、弯道、坡道、交叉口等。

重点关注曾经发生过事故或问题的区域,以及高风险区域。

3)频率:数据采集的频率可以根据维护计划和需求而变化。

通常,轨道的日常巡检是常规任务,而更深度的波形图数据采集可以每月或季度进行一次。

二、数据预处理2.1 数据清洗和噪声消除1)数据清洗:数据清洗是识别和处理异常值、缺失数据以及其他不规范的数据点的过程。

轨道检查车检测数据分析

轨道检查车检测数据分析

轨道检查车检测数据分析摘要:介绍轨道检查车检测系统的检测项目,数据服务器的轨道检测数据集成处理环境软件,论述Microsoft SQL Server数据库中各项几何超限数据的对应内容,包括数据存储结构、字段内容说明。

阐述根据轨检车检测出的数据有利于全面开展线路质量管理,指导轨道维修,避免维修作业的盲目性,建立线路质量保障体系的重要性。

关键词:轨道检查车;检测系统;TID-IPE;Microsoft SQL Server数据库轨道检查车,简称轨检车,它是检查线路动态几何不平顺的高科技检测设备,利用轨检车可以掌握线路在列车实际动载作用下轨道几何尺寸偏差和相关的各项参数及相应的轨道质量指数,使用轨检车不但使检查结果真实可靠,而且还能对线路质量进行综合分析及评价,提供整修指导意见。

根据轨检车检测出的数据,可查知轨道几何偏差的幅值和发生的地点,分析病害成因,确定具体的维修方法。

利用计算机存储的检测数据,查阅、分析区段线路病害成因,做出准确评价,有计划、有目的且最经济地对线路进行维修。

1 轨检车检测项目及超限等级轨检车采用惯性基准与测量基准原理,可以检测轨距、水平(超高)、高低、轨向、三角坑、垂直加速度、水平加速度、轨距变化率、横加变化率、曲率变化率、70 m高低、70 m 轨向、轨低坡、钢轨断面(左右轨)、曲率变化率、轨距变化率等项目。

轨距是指钢轨顶面下16mm范围内两股钢轨作用边之间的最小距离。

水平为同一轨道横截面上左右钢轨顶面所在水平面的高度差。

高低是指钢轨顶面纵向起伏变化。

方向指钢轨内侧面轨距点沿轨道纵向水平位置的变化。

三角坑(扭曲)反映了钢轨顶面的平面性。

当轨检车检测的几何超限病害超过Ⅰ级限界后又回到Ⅰ级以内统计为一处Ⅰ级超限,当病害超过Ⅱ级后又回到Ⅰ级以内统计为一处Ⅱ级超限,当病害超过Ⅲ后又回到Ⅰ级以内统计为一处Ⅲ级超限。

2 检测数据的存储轨道检测系统在运行过程中,实时处理计算机将传感器的原始信号实时进行采集和处理,并通过网络将各项检测项目数据传送至数据服务器。

浅谈轨检车检测数据的有效运用

浅谈轨检车检测数据的有效运用

浅谈轨检车检测数据的有效运用摘要:近年来,随着铁路维修发展的需要,每月的轨检车检测出大量动态数据,如何利用这些数据去指导线路维修养护,如何预测线路设备变化趋势是至关重要的,本文就轨检车的检测目的、评价标准、检测项目、病害成因等方面进行分析,为线路养护维修工作提供指导,实现动态检测科学管理。

关键词:轨距;轨向;高低;水平;三角坑一、轨检车检测的目的轨检车是检查线路设备病害,指导线路维修的专用车辆,主要目的有:(1)通过轨检车检测,及时监控线路设备变化,合理安排精测精调等维修作业,确保铁路的安全运营。

(2)进行轨道动力学试验、轮轨相互作用的研究,改进轨道部件的设计,探索轨道的整体特性、确定轨道的合理结构,改善轨道、机车相互的协调性,延长轨道部件、机车的使用寿命。

(3)轨检车检测的大量数据,可以建立轨道状态数据库,掌握设备变化规律,编制设备状态图,制订设备养护维修计划,为完善设备养护维修标准提供科学依据。

(4)推动轨检技术的发展,提高轨检车检测水平,促进轨检车的升级改造。

二、动态质量评价与管理轨道动态质量的评价方法分为局部峰值管理和区段均值管理两种评价方法。

1.局部峰值管理局部峰值动态评价采用四级管理标准:I级为日常保养标准,II级为计划维修标准,III级为临时补修标准,IV级为限速标准。

局部峰值评价采用扣分法,具体扣分标准为:I级每处扣1分,II级每处扣5分,III级每处扣100分,IV级每处扣301分。

局部峰值管理以整千米为单元,具体动态评定标准为:优良是扣分总数在50分及以内,合格是扣分总数在51~300分,失格是扣分总数在301分及以上。

2.区段均值管理轨道质量指数(TQI)是衡量区段均值管理动态质量的综合指标。

使用TQI评价和管理轨道状态,是对单一幅值扣分评判轨道的补充,可以提高轨检车检测数据的综合应用水平,为制定线路维修计划提供科学依据。

TQI是从统计学(离散性)、物理学(轨道质量均衡性)的角度反映线路设备状态的恶化程度,TQI值的大小与设备状态平顺性有很大的关系。

如何利用轨检车数据分析打磨地段质量

如何利用轨检车数据分析打磨地段质量

如何利用轨检车数据分析打磨地段质量文章通过轨检车检查数据采集、汇总分析,同时收集集中修地段数据,结合两次轨检车跑车检查情况和现场调查,找出下降原因,提出有针对性的整治措施及意见,避免类似问题再次出现,确保线路月检保养后线路质量达到预期目的。

标签:打磨;轨检车;数据分析1 前言为全面提高设备质量,消除设备故障隐患。

每月度,我们均会利用一周左右的时间,开行轨道检测列车(以下简称轨检车),对管内设备进行综合轨检车检查,轨检车检测速度、标准等均较平时正常检测高,对集中修地段有更好的可比性。

尤其是通过一个月度后,更能反应集中修地段线路质量变化状况,本文主要是对钢轨打磨车打磨、月度保养等集中修地段在一个月度左右后的整体质量情况,通过轨检车数据进行对比分析,主要从平均分、TQI值变化进行评价,对磨耗明显区段结合现场调查,找出波磨原因,提出整治意见,确保集中修后质量延续,改善设备质量,确保行车安全。

2 轨检车数据采集及汇总2.1 轨检车数据的采集和对比每月度开行的轨检车检查列车,我们分析人员均全程上车分析,对各工班、各线及集中修区段等进行每日对比分析,并及时收集现场调查情况,建立专门的轨检检查数据库,含车上、地面数据分析及现场调查情况等。

通过对比两次轨检数据,对公司管内设备质量进行整体分析评价,分线、分工班进行排名,对磨耗较明显的线路及工班,指出磨耗原因,提出整改意见,对减少磨耗明显的线路及单位,好的做法通过通报学习。

2.2 集中修地段收集及总体情况对比进行分析收集公司一季度轨检车检测后所有集中修地段数据,并对集中修地段轨检检查的总体情况进行对比分析。

每项分析中,首先对总体情况进行对比,对因集中修导致线路质量有所下降,或其所影响的主要项目未得到明显改善且有所恶化等,我们在对比分析中,需结合现场情况,找准原因。

同时在对比分析过程中,我们必须选取同型、同标准检测波形图进行叠加对比,剔除干扰,真实反应集中修地段质量变化情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轨检车检测数据及波形图的应用
摘要
随着铁路的不断发展,轨检车的重要性不断得到肯定。

但是,车间和工区对轨检车检测数据及波形图的应用并不十分充分。

本文从影响检测结果的一些因素入手,谈了谈波形与现场病害的对应关系、病害点的补充及监控和病害实际里程的确定等几个方面,以解决轨检车数据在应用中遇到的一些实际问题。

这些方法的运用,在指导工区现场维修和监控管内病害发展上起到了积极的作用。

关键词轨检车数据及波形图应用
前言
随着铁路向着高速、重载的方向不断发展,动态检测的手段也日趋多样化、精细化。

我们需要利用先进的动态检测手段对线路设备质量进行检查监控;同时需要根据动态检测数据发现线路存在什么样的具体问题,以此指导工区维修。

动态检测的最终目的是应用检测结果对轨道质量状态进行评价,指导维修工作。

为了方便对病害点的查找应利用峰值指标,指导工区手工作业消灭Ⅲ级或Ⅱ级以上超限,关注I级病害是否有所发展,以解决线路局部不平顺问题。

1对检测结果产生影响的一些因素
1.1检测方式
轨检车对轨道进行的是动态检测,是线路在列车实际动载作用下、轨道几何尺寸存在的偏差,不同于静态测量值。

因此与静态测量值有出入是正常的。

当线路存在较为严重的空吊时,就会发现线路动态高低的测量值非常大。

当曲线钢轨存在磨耗或木枕地段的扣件扣压力不足,就会发生轨距动态检测与静态检测值有较大出入的现象。

1.2偏差等级的确定
1.2.1因偏差等级数据采集标准不同而产生的检测差异
轨检车每进行一个采样距离时,计算机对轨道的各个几个参数项目的检测结果采样一次,当某个项目的检测结果连续3次采样值都超过某一级病害界限值时,计算机统计为一处病害,并依据病害的最大值确定超限病害的相应级数。

如图所示,一、二、三级为病害界限值,A、B、C、D分别表示4个采样点,则s为一个采样距离,A为病害起点,D为病害终点,L表示超限病害长度。

由轨检车超限等级的定义可知,如果超限级数划定的标准不同,那么对同一病害做检测其检测结果也不一样。

同理,当使用不同的检测标准,检测结果也会不完全一样,进而会影响到线路整体状态的评定。

1.3检测里程的误差
轨检车的运行位置依靠轮轴速度来进行定位,误差累计依靠人为观测公里标进行纠正。

所以检测里程的确定就存有明显的缺点:客观上误差随着运行时间的增长而会不断累积,轮缘磨耗、侧线通过等原因也会产生里程误差;主观上人眼识别公里标进行标定时产生的熟练程度和反应时间的不同而产生人为误差。

里程产生较大误差时,就会对现场病害的查找及整修带来影响,阻碍轨检车数据在现场的应用。

2不平顺波长与现场病害的对应关系
2.1短波不平顺与现场病害的对应关系
长度小于数米,这种不平顺主要源于轨面的凹凸不平及轨道的支承不均匀性,易于激发行车噪声及轮重变化,可通过打磨钢轨(特别是打磨焊缝)和消除轨枕“空吊板”以降低其不利影响。

1-10米短波轨面不平顺的判定:两边平,中间凹或凸,且波形较尖锐(如图1所示)。

拿不准时看轨向:如果是轨面高低则对轨向不会产生较大峰值,但如果是空吊则对轨道动态
轨向有较大峰值的影响(如图2所示):
图1
图2 图3 图4
如果当短波轨面高低变化伴随方向变化,则一定是空吊,反之则一定是轨面高低不好,需打磨。

当一个大于10米的较平坦的波形中存在有10米以下的小凹凸时,则此段也应算作轨面不平顺。

如果是单股轨面不平顺,则在轨检车图纸上应该反映出是一股高低有变化,另一股不能有相似变化(如图3)。

如果双股有相似变化,当波形较陡则很有可能是双股焊缝高(如图1)。

如果波形缓且较长,则考虑基础刚度不均造成的短波不平顺。

(如图4)
2.2中、长波不平顺不平顺与现场病害的对应关系
数米<l≤20米,这种不平顺称为中波不平顺,不利于行车平稳。

可通过控制10米弦不平顺以排除或降低其不利影响。

10-20米的中波不平顺对应现场病害情况比较容易判定。

中波不平顺的判定与短波不平顺的判定,除病害波长不同、不用考虑轨面不平顺及高低接头及焊缝外,没有本质的区别。

现场传统的眼穿法起拨道基本能够满足设备维修需要。

2.3长波不平顺在高速状态下能够引发车体共振
20米<l≤100米,这种不平顺称为长波不平顺,主要影响旅客舒适度。

可通过控制长波不平顺以提高旅客舒适度。

如果:动态病害波长l=v/3.6f 时,(f=各种车体横向自振频率)
由此可知,每一个速度对应一个能够引起车体共振的线路不平顺波长,这叫做该速度下的线路不平顺敏感波长。

当高速行车时,未得到控制的线路不平顺敏感波长,便激发车体共振,增大横向加速度(水加)。

从搜集到的资料上看,国产车体的自振频率为1-1.5Hz不等。

我国对长波不平顺的管理刚刚起步,由于缺乏评判标准,在既有线提速段并没有广泛的应用。

但是由于在列车高速状态下长波不平顺可能激发列车蛇行共振并降低乘车舒适度。

因此,长波不平顺的防治和管理在客运专线及高速铁路维修中受到工务维修部门的广泛关注。

3病害点的补充与监控
运用上面提到的方法,比照波形图对线路存在病害处所进行二次查找,充分利用轨检车对线路设备状态的检测结果。

也可对线路病害的发生、发展、整修情况的初步监控。

现阶段车间实现这一目标的手段主要依靠波形图的历史对比功能。

在进行对比监控时,利用软件的对齐功能,以自己管内曲线头尾为地面参照物将新旧图纸叠加重合,观察病害点波形有无变化,变化是怎样的一个趋势。

4病害实际里程的确定
总体上病害实际里程小于病害检测里程(上加下减),但是每次轨检车的里程误差大小都不确定。

所以在现有条件下我们要找到轨检车的检测病害所在的实际里程,就必须要找到一个地面参照物。

4.1运用ALD数据确定病害实际里程
在轨检车图纸的最底层有一项叫做ALD的检测项目,是对道岔、桥梁、涵洞等地面标志物的检测。

因为轨道上的道口、道岔、桥梁、轨距拉杆等通常含有金属部件,所以可用安装于轨距吊梁中部的电涡流传感器来检测,把它标志在自动里程图上,这样可以方便准确地找出病害的位置。

4.2运用检测数据确定区间病害实际里程
运用区间曲线头尾里程与轨检车检测的曲线头尾里程代数差确定区间病害实际里程。

根据检测曲线头尾里程与实际曲线头尾里程的相差平均值求得一个平均误差值进行里程校正,争取每条曲线能够对应其前后1-2公里的病害里程校正。

根据工区现场反馈,校正后的误差在前后5-10米左右。

校正后的病害实际里程基本能够满足工区整修、查找病害源的需要。

从而减少了工作量、提高了维修作业的效率。

结束语:
充分利用轨检车的检测数据,将有助于管理人员监控线路病害的发生、发展和整修情况,将有助于更加科学的利用轨检车指导现场维修作业。

相关文档
最新文档