电影院座位设计问题

合集下载

数学建模综合题影院座位设计问题概要

数学建模综合题影院座位设计问题概要

数学模型张峰华材料学院材料成型及控制工程04班20123631 刘泽材料学院材料成型及控制工程04班20123627 杨海鹏材料学院冶金工程03班20123203一、问题重述影院座位的满意程度主要取决于视角α和仰角β,视角是观众眼睛到屏幕上下边缘的视线的夹角,越大越好;仰角是观众眼睛到屏幕上边缘视线与水平线的夹角,太大使人的头部过分上仰,引起不适,一般要求仰角β不超过030;记影院的屏幕高为h,上边缘距离地面高为H,影院的地板线通常与水平线有一个倾角θ,第一排和最后一排与屏幕水平距离分别为,d D,观众的平均座高为c(指眼睛到地面的距离),已知参数h=1.8. H=5, 4.5,19==,c=1.1(单位m)。

d D求解以下问题:θ时,求最佳座位的所在位置。

(1) 地板线的倾角010=(2) 地板线的倾角θ一般超过020,求使所有观众的平均满意程度最大时的地板线倾角。

二、问题的分析电影院座位的设计应满足什么要求,是一个非常现实的问题。

根据题意观众对座位的满意程度主要取决于观看时的视角α和仰角β,α越大越好,而β越小越好,最佳位置就是要在这两者之间找到一个契合点,使观众对两者的综合满意程度达到最大。

本文通过对水平视角α和仰角β取权重,建立适当的坐标系,从而建立一个线形型满意度函数。

针对问题一,已知地板线倾角,求最佳座位所在,即将问题转化求综合满意度函数的最大值,建立离散加权的函数模型并利用Matlab数学软件运算求解;针对问题二,将所有观众视为离散的点,要使所有观众的平均满意程度达到最大,即将问题转化求满意度函数平均值的最大值。

对此利用问题一所建立的满意度函数,将自变量转化为地板线倾角;在问题二的基础上对地板线形状进行优化设计,使观众的平均满意程度可以进一步提高。

本文在满意度呈线性的基础上来建立模型的,为使模型简化,更好地说明问题,文中将作以下假设。

三、模型假设1.忽略因视力或其他方面因素影响观众的满意度;2.观众对座位的仰角的满意程度呈线性;3.观众对座位的水平视角的满意程度呈线性;4.最后排座位的最高点不超过屏幕的上边缘;5.相邻两排座位间的间距相等,取为0.8m;6.对于同一排座位,观众的满意程度相同;7.所有观众的座位等高为平均座高;8.影院的的地板成阶梯状。

电影院座位设计

电影院座位设计

电影院座位设计(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--公选课《数学建模》论文——******问题学号:姓名:学号:姓名:学号:姓名:年月日1 问题的提出下图为影院的剖面示意图,座位的满意程度主要取决于视角α和仰角β.视角α是观众眼睛到屏幕上、下边缘视线的夹角,α越大越好;仰角β是观众眼睛到屏幕上边缘视线与水平线的夹角,β太大使人的头部过分上仰,引起不舒适感,一般要求β不超过030.设影院屏幕高h, 上边缘距地面高H,地板线倾角θ,第一排和最后一排座位与屏幕水平距离分别为d和D, 观众平均坐高为c(指眼睛到地面的距离).已知参数 h=,H=5,d= ,D=19,c=(单位:m).(如图所示)10,问最佳座位在什么地方.(1) 地板线倾角θ=o20),使所有观众的平均满意程度最大.(2) 求地板线倾角θ(一般不超过o(3) 地板线设计成什么形状可以进一步提高观众的满意程度.2 模型的假设30的范围内,观众都感到满意,毫无不舒适感,且满意程度相同.2.1 β在小于2.2 观众的满意度只取决于仰角β和视角α,与其他因素无关.2.3 同一排座位,观众的满意程度相同.3 符号约定α: 观众眼睛到屏幕上、下边缘视线的夹角(视角)(单位:度)β: 观众眼睛到屏幕上边缘视线与水平线的夹角(仰角)(单位:度)θ: 地板线倾角(单位:度)h: 影院屏幕高(单位:m)H: 上边缘距地面高(单位:m)d: 第一排座位与屏幕水平距离(单位:m)D: 最后一排座位与屏幕水平距离(单位:m)c : 观众平均坐高(指眼睛到地面的距离)(单位:m ) L: 相邻两排座位间的间距(单位:m ) l: 相邻两排座位间的水平间距(单位:m ) n: 座位的总排数4模型的建立最佳座位(地板线倾角θ=o10)设屏幕所在直线为y 轴,地面所在直线为x 轴,在图上建立直角坐标系,如图1所示:仰角β是观众眼睛到屏幕上边缘视线与水平线的夹角,视角α是观众眼睛到屏幕上、下边缘视线的夹角,设某一观众的眼睛的坐标为(x,y ),则有:xyH -=βtan (195.4≤≤x ) (1)xyh H --=-)tan(αβ (195.4≤≤x ) (2)由公式αβαβαβtan tan 1tan tan )tan(+-=-可得:)tan(tan 1)tan(tan tan αββαββα-+--= (3)将(1)、(2)式代入式(3),得:))((tan 2y h H y H x hx---+=α (195.4≤≤x ) ……(4) o x y 图1又 c d x y +-=θtan )( (195.4≤≤x ) (5)有:⎪⎪⎩⎪⎪⎨⎧---=----⋅---+=x c d x H c d x h H c d x H x hx θβθθαtan )(arctan ]tan )([]tan )([arctan 2 (6)作出仰角β和视角α沿着x 轴的变化曲线,如图2、图3 所示:由图2、图3可见,沿着x 轴,仰角β和视角α都是单调递减的.视角α越大越好,即座位越往前越好,然而仰角β太大(座位过于靠前)使人的头部过分上仰,会引起不舒适感.要考虑观众的满意程度就必须要同时考虑α与β的取值,最佳位置就是要在这两者之间找到一个契合点,使观众对两者的综合满意程度达到最大.然而α与ββ(单位:X(单位:图2α(单位:度)X(单位:米) 图3又存在一定的矛盾,要使α大,β也跟着大,β小α又跟着小,难以同时满足,但β在小于 30的范围内,观众都感到满意,毫无不舒适感,且满意程度相同,此时可以只考虑α的取值.综合以上的分析可得问题一的求解模型为:α maxβS min⎪⎩⎪⎨⎧≤>=300301 ..ββS t s 由(6)式知道,α、β两个函数都是角度,数值上有良好的可比性,可以简单地取其加权和作为单一目标函数.题目中没有关于优先权及权重的规定,可以设α的权重为ρ,β 的权重为)1(ρ-,这里10<<ρ.这样便有:max βρρα)1(--S ……(*). ⎪⎩⎪⎨⎧≤>=300301ββS 这里主观设ρ=,把(6)式代入(*)式,并进行化简,代入已知参数 h=、 H=5、d=、c=、010=θ,用数学软件求解得,最佳座位约在点(,)处,即所求最佳座位离屏幕的水平距离为米,此处的仰角030=β,视角092.13=α. 使观众的平均满意程度达到最大的地板线倾角θ值(一般不超过020)设第i 排观众的满意度为i S ,则所有观众的平均满意程度nSS ni i∑==1,可见,平均满意度S 的大小由每一排的满意度i S 所决定,而i S 又是由仰角β和视角α所决定,所以,要使观众的满意程度达到最大,取决于两个方面:(1) 仰角β不超过030的座位所占的比例越大,观众的平均满意程度就越大. (2)所有座位的视角α的均值越大,观众的平均满意程度就越大.地板线倾角θ(00200≤≤θ)的改变将同时使所有座位的仰角β和视角α的大小发生改变,由(6)式可知,在某一座位(即x 取某一定值),在θ(00200≤≤θ)逐渐增大的过程中,θtan 增大,则β减小,仰角β不超过030的区域扩大,即地板线倾角θ(00200≤≤θ)越大,仰角β不超过030的座位所占的比例越大,由(1)、(5)式可得,030=β时x 与θ的关系:θθtan 373.1)tan 1513(9.0++=x (7)查阅相关资料可知,相邻两排座位间的间距一般为=L ,随着地板线倾角θ的变化,相邻两排座位间的间距不变,但相邻两排座位间的水平间距会发生改变.由图4可看出,相邻两排座位间的水平间距与地板线倾角θ的关系为θcos L l = ,座位的总排数1][+-=l dD n ,并限制最后一排观众的视高不要超过屏幕的上边缘,用数学软件编程求出使观众的平均满意程度达到最大的地板线倾角θ值(00200≤≤θ).(具体程序见附录) 算法设计思想:(1) 让地板线倾角θ在]20,0[0内逐一取值,步长为; (2) 让x 在[,19]内逐一取值,步长为l ;(3) 对一个取定的θ,判断x 所在的位置仰角β是否超过030,若仰角β超过030,则该座位的综合满意度必须同时考虑仰角β和视角α的取值,否则,只需要考虑视角α的取值,把所有座位的综合满意度相加,并求出观众的平均综合满意度,判断此时的平均满意度是否最大,最后一排的高度是否超过屏幕的上边缘,并记下最大值时θ的取值;(4) 改变θ值,重新求值、判断.计算结果为:005.15=θ,这个结果不影响最后一排观众,所以使观众的平均满意程度达到最大的地板线倾角θ约为015. 设计地板线形状以进一步提高观众的满意程度图4由上两问可知,观众的满意程度与仰角β、视角α和地板线倾角θ都有关,而每一座位到屏幕的水平距离(i x )基本固定不变,考虑观众的满意度,就要考虑仰角β、视角α随着y 的变化情况.由(4)式可得:81.0)1.4(8.1arctan)2.3)(5(8.1arctan222--+=--+=y x xy y x x α ……(8) 由(8)式可知,当x 取某一定值时,α随y 先增后减,当1.4=y 时,α取得最大值.其实,由图5我们可以很直观的看出,当观众的眼睛在屏幕的中垂线上时(即1.4=y ),视角α达到最大值,越往两边,视角α就越小,当x 取某一定值时,视角α都在1.4=y 处取得最大值.图6为10=x 时α随y 的变化曲线:图6屏幕 (0,) (0,5) (0,) αα图5所以,要使每一个座位所对应的视角α取最大值,对应的y 值应在直线1.4=y 上.设计地板线应考虑以下几个方面:(1) 第i 排座位所在的位置应高于第1-i 排座位所在的高度(n i ,...,3,2=); (2) 前一排的观众不会挡住后一排观众的视线;(3) 视角α尽可能大,即眼睛的位置应尽可能分布在直线1.4=y 的附近; (4) 仰角030<β的座位所占的比例尽可能大.由上述可知,当观众的眼睛在1.4=y 上时,视角α达到最大值,所以在设计地板线时,应尽量使观众的眼睛分布在1.4=y 的附近.在影院的最后一排作一与屏幕平行且等长等高的线段1l ,连接屏幕的下端与线段1l 的上端,记此连接直线为2l ,取座位区域的中点M ,平移直线2l 使其经过中点M ,把地板线设计在与直线2l 平行且在此直线的正下方与此直线相距米处,如图7所示:由图7可得:地板线的倾角:041.5)/arctan(==D h θ第一排观众眼睛所在的位置离地面的高度:41.32)()tan(1.41=-⋅-=d D h θ(m ) 第一排观众的仰角:0147.19arctan=-=dh D β 地板线前端离地面的高度:31.21.112=-=h h (m ) 地板线所在的直线:884.1095.0+=x y图7若观众的眼睛都在直线2l 上,就都能无遮挡的看到整个屏幕,又能使观众的眼睛尽可能分布在1.4=y 的附近,且在此区域内,所有观众的仰角都在030以内,此时观众的平均满意度可达到最大.根据最优地板线的设计知道,第一排座位以下()都是空置的,这样既浪费建筑材料,又浪费空间,我们可以把屏幕与地板线整体向下移动,这样既不影响观众的平均满意度,又能节省材料与空间,操作性更强.5 模型的评价与推广5.1模型的评价 模型的优点:(1) 模型能抓住影响观众满意程度的主要因素(仰角β和视角α),合理构造满意度函数,过程清晰明了,结果科学合理.(2) 模型具有较好的通用性,实用性强,对现实有很强的指导意义. 模型的不足以及需要改进的地方:(1) 模型主观假设同一排座位观众的满意程度相同,实际情况并非如此,这就使得我们的模型对解决实际问题时有一定的局限性.(2) 模型建立的过程中,以观众眼睛所在的点为坐高点,没有考虑前排观众额部对后排观众的遮挡,在第三问中,我们把2l (连接屏幕的下端与线段1l 的上端,记此连接直线为2l )适当下移,在使观众的平均满意程度达到更大的同时,也避免了遮挡情况的出现.5.2 模型的推广我们建立模型的方法和思想对其他类似的问题也很适用,本文所建立的模型不但能指导多媒体教室的设计,对标准篮球的设计也具有参考意义.运用我们所建立的模型,对于已知剖面来分析物体的形状这一类型的问题的处理有很好的参考价值.例如:运用该模型去解决房间的布局,旗杆高度的设计等相关的问题.参考文献:[1] 姜启源.数学模型(第三版)[M].北京:高等教育出版社,2003[2] 洪毅等.经济数学模型[M].广东:广东华南理工大学出版社,1998 [3] 王庚.实用计算机数学建模[M].安徽:安徽大学出版社,2000[4] 李海涛、邓樱等.MATLAB 程序设计教程[M].北京:高等教育出版社,2004[5] 李世奇、杜慧琴等.Maple 计算机代数系统应用及程序设计[M].四川:重庆大学出版社,1999附 录clearclck=0::20;m=0;v=0;for sita=k.*2.*pi./360s=0;l=*cos(sita);n=fixl)+1;for x=:l:19if x<*(13+15*tan(sita))/+3*tan(sita))s=s+*x/(x^2+ elses=s+*x/(x^2+ endendif s/n>m & tan(sita)*<m=s/n;v=sita;endendmv*180/pi11。

电影院座位的舒适度标准及数量

电影院座位的舒适度标准及数量

电影院座位的舒适度标准及数量1. 背景电影院座位的舒适度对观众的观影体验起着重要的作用。

舒适的座位设计可以提供更好的观影条件,让观众能够更好地享受电影。

因此,制定电影院座位的舒适度标准及合理的数量对于电影院的经营和观众满意度至关重要。

2. 舒适度标准电影院座位的舒适度标准主要包括以下几个方面:2.1 座位宽度座位宽度是评估座位舒适度的重要指标之一。

根据人体工程学原理,每个人需要一定的空间来保持身体的舒适姿势,因此座位宽度应该能够容纳观众的身体大小。

一般来说,座位宽度应不小于50厘米,以确保观众在观影期间能够舒适地坐着。

2.2 座位间距座位间距也是影响观众舒适度的重要因素。

过小的座位间距会使观众感到拥挤和不适,因此座位间距应该足够宽敞,以提供足够的空间给观众活动和伸展腿部。

一般来说,座位间距应不小于90厘米,以确保观众能够自由地移动和调整体位。

2.3 座位倾斜度座位倾斜度是指座位背部相对于水平面的倾斜角度。

适度的座位倾斜度可以提供观众观影时的舒适支撑,避免观众感到不适和乏力。

一般来说,座位倾斜度在10°到15°之间是比较合适的。

3. 座位数量座位数量的确定应考虑观众的需求和电影院的容量。

座位数量过少会导致观众难以找到座位,影响观影体验;而座位数量过多则会导致观众拥挤,影响观众的舒适度。

因此,根据电影院的容量和观众的需求,合理确定座位数量十分重要。

一般来说,应根据电影院的面积和容量,评估每个观影厅的合理座位数量。

4. 结论电影院座位的舒适度标准和合理数量对于观众的观影体验至关重要。

遵循座位宽度、座位间距和座位倾斜度的舒适度标准,合理评估每个观影厅的座位数量,可以提供更好的观影条件,提高观众的满意度和电影院的经营效益。

小型电影院设计规范改

小型电影院设计规范改

小型电影院设计规范改随着人们对文化娱乐需求的提升,电影院已经成为人们常去的休闲场所之一、为了满足人们对于电影观影体验的需求,小型电影院的设计规范也应不断进行改进。

本文将从空间布局、影院设备、舒适度和安全性等方面提出几项改进规范。

一、空间布局1.座位数量和距离:小型电影院的座位数量应根据场地面积和观影需求进行合理配置,座位与屏幕之间的距离应符合观影距离的要求。

一般来说,座位数不宜超过150个,距离屏幕的最佳观影距离为1.5倍屏幕宽度。

2.紧凑空间设计:小型电影院的空间相对较小,因此应注重紧凑的空间设计,避免浪费空间。

可采用弯曲座椅或圆形座椅等设计,提高观众的观影体验。

3.通道设计:为了方便观众进出电影院,通道的设计应宽敞且合理,以避免拥挤和堵塞。

二、影院设备1.声音设备:小型电影院的声音设备应具备良好的音质和高保真度,并且能够提供适当的音量。

建议采用环绕声系统,以提升观众的听觉体验。

2.屏幕设备:屏幕的质量对于观影效果有着重要的影响。

应选择适合小型电影院的高清晰度屏幕,并确保投影质量清晰、亮度适中。

3.观众席设备:观众席座椅的设计应符合人体工程学原理,提供舒适的观影体验。

座椅的角度、高度和宽度等参数应根据人体工程学数据进行合理调整,同时考虑到通道的宽度和配置。

三、舒适度1.空调设备:小型电影院的空调设备应具备较大的制冷和制热能力,以便适应不同季节的需求。

同时,应考虑到座位与通道的通风情况,保持影院内的舒适温度。

2.灯光设计:观影时,灯光应能提供适宜的亮度,既能照亮观众席,又不影响屏幕的观看效果。

在开场前和结束后的时间段,可以通过控制灯光亮度和颜色来提升观众的观影体验。

3.降噪设备:小型电影院周围可能存在各种噪音干扰,如交通噪音、外部设备噪音等。

为了提供良好的观影环境,建议采用降噪设备,降低外界噪音的影响。

四、安全性1.疏散通道:小型电影院应设置合理的疏散通道,确保观众在紧急情况下能够迅速安全地离开电影院。

影院座位间距标准

影院座位间距标准

影院座位间距标准
影院座位间距标准因国家和地区的建筑规范和标准不同而有所差异。

但一般来说,以下是一些常见的规范:
1.中国大陆:根据《公共建筑设计标准》规定,影院座位排距宽度不小于1.2米,排距长度不小于1米,排数不宜超过10排,每排座位数不宜超过18座。

2.香港:排距宽度不小于1.08米,每排不宜超过14座,每个座位与楼梯之间的距离不小于1米。

3.日本:排距宽度不小于1.1米,每排座位数不宜超过14座,每个座位与楼梯之间的距离不小于0.7米。

4.美国:排距宽度不小于2.5英尺(约0.76米),每排不宜超过20座,每个座位与楼梯之间的距离不小于1英尺(约0.3米)。

需要提醒的是,以上规范只是参考标准,不同影院的具体间距可能会有所不同。

电影院座位的排列组合题

电影院座位的排列组合题

电影院座位的排列组合题在电影院中,座位的排列组合是一个常见的问题。

通过不同的排列组合方式,可以实现座位的合理规划和管理,以提供更好的观影体验。

本文将探讨电影院座位的排列组合问题,并提出一种有效的解决方案。

在电影院中,座位的排列方式通常采用矩阵形式。

每个座位可以用行和列的坐标来表示。

假设一个电影院的座位排列为m行n列,即总共有m*n个座位。

首先,我们考虑座位的排列组合方式。

对于每个座位,观众可以选择坐下或离开。

因此,每个座位有两种状态:占用或空闲。

对于m*n个座位来说,一共有2^(m*n)种可能的组合方式。

然而,并不是所有的组合方式都是可行的。

在实际情况中,观众需要一定的间隔来保持舒适的观影环境。

为了满足这一要求,我们可以引入一些限制条件。

首先,由于人的身体大小是有限的,我们需要确保每个座位周围有足够的空间。

通常情况下,至少要保持一个座位的间隔。

这就意味着每个观众所占据的空间实际上是一个2*2的矩阵。

在排座位时,我们可以将这个矩阵看作是一个整体,而不是单独的座位。

其次,为了方便观众的进出,我们可以在每一排中留出通道。

这样,观众可以更轻松地通过通道进入或离开他们所在的排。

为了确保通道的宽度足够,我们可以预留一定数量的座位来构建通道。

在考虑了以上限制条件后,座位的排列组合方式将大大减少。

我们可以使用排列组合的方法进行计算,得到最终的组合方式数。

在实际应用中,可以使用计算机程序来快速计算。

通过合理的座位排列组合,电影院可以提供更好的观影体验。

观众可以更轻松地进入和离开座位,同时享受到更宽敞舒适的观影环境。

此外,通过适当的座位规划,电影院还可以最大限度地提高座位数量,从而增加收益。

总结起来,电影院座位的排列组合是一个重要的问题。

通过合理的座位规划,可以提供更好的观影体验,增加观众的舒适度和满意度。

同时,适当的座位规划也能够增加电影院的经济效益。

在实际应用中,我们可以使用计算机程序来计算最佳的座位排列组合方式,以实现座位的合理规划和管理。

关于电影院座位排距问题

关于电影院座位排距问题

电影院座位问题
巨幕厅每排座位数超过22个的问题。

根据设计规范
A、电影院建筑设计规范(JGJ58-2008)的第4.2.6条:
4.2.6 每排座位的数量应符合下列规定:
1 短排法:两侧有纵走道且硬椅排距不小于0.80m 或软椅排距不小于0.85m 时,每排座位的数量不应超过2
2 个,在此基础上排距每增加50mm,座位可增加2 个;当仅一侧有纵走道时,上述座位数相应减半;
2 长排法:两侧有走道且硬椅排距不小于1.Om 或软椅排距不小于1.1m时,每排座位的数量不应超过44 个;当仅一侧有纵走道时,上述座位数相应减半。

长排法及短排法说明:
排距:
排距是每排台阶与台阶之间的净距离,参考电影院建筑设计规范(JGJ58-2008)的条文说明的4.2.7的图文说明,如下图:(图示中排距为1120)。

影院座位设计问题

影院座位设计问题

摘要本文研究了电影院的座位设计问题,根据观众对座位的满意程度主要取决于视角α与仰角β这一前提条件,建立了满意程度最大的相关模型,并进行求解。

问题一,首先建立在满足仰角条件情况下的优化模型,接着通过主观臆断分别对视角和仰角赋权重,对座位进行离散分析,并引入满意度函数建立了离散加权模型,最后运用Matlab软件求解出当地板线的倾角为10时,最佳位置距屏幕的水平距离为6.8635米。

问题二,根据问题一中的离散加权模型,将座位看作离散的点,建立满意度函数平均值模型,再利用Matlab软件解得当地板线的倾角为15时,所有观众的平均满意0543.程度最大。

在问题二的基础上,为进一步提高观众的满意程度,将地板线设计成折线形状,即相邻两排座位所在的点构成一条直线,且每排座位所在地板线的倾角以 5.2变化,增加到20后保持不变,第一排抬高2.1米。

本文所建立的模型通俗易懂,求解简单明了,对模型进行验证发现与现实生活中的实际情况十分吻合,因此具有很强的实用性和推广意义。

关键词:离散加权平均满意度优化模型一、问题重述影院座位的满意程度主要取决于视角α和仰角β,视角是观众眼睛到屏幕上下边缘的视线的夹角,越大越好;仰角是观众眼睛到屏幕上边缘视线与水平线的夹角,太大使人的头部过分上仰,引起不适,一般要求仰角β不超过030;记影院的屏幕高为h ,上边缘距离地面高为H ,影院的地板线通常与水平线有一个倾角θ,第一排和最后一排与屏幕水平距离分别为,d D ,观众的平均座高为c (指眼睛到地面的距离),已知参数h =1.8. H =5, 4.5,19d D ==,c =1.1(单位m)。

求解以下问题:(1) 地板线的倾角010=θ时,求最佳座位的所在位置。

(2) 地板线的倾角θ一般超过020,求使所有观众的平均满意程度最大时的地板线倾角。

二、问题的分析电影院座位的设计应满足什么要求,是一个非常现实的问题。

根据题意观众对座位的满意程度主要取决于观看时的视角α和仰角β,α越大越好,而β越小越好,最佳位置就是要在这两者之间找到一个契合点,使观众对两者的综合满意程度达到最大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电影院座位设计问题一、问题的提出下图为影院的剖面示意图,座位的满意程度主要取决于视角α和仰角β。

视角α是观众眼睛到屏幕上、下边缘视线的夹角,α越大越好;仰角β是观众眼睛到屏幕上边缘视线与水平线的夹角,β太大使人的头部过分上仰,引起不舒适感,一般要求β不超过o30。

设影院屏幕高h , 上边缘距地面高H ,地板线倾角θ,第一排和最后一排座位与屏幕水平距离分别为d 和D , 观众平均坐高为c (指眼睛到地面的距离)。

已知参数 h =, H =5,d = ,D =19,c =(单位:m )。

(如图所示)(1) 地板线倾角θ=o10,试问最佳的座位在什么地方。

(2) 求地板线倾角θ(一般不超过o20),使所有观众的平均满意程度最大。

(3) 地板线设计成什么形状可以进一步提高观众的满意程度。

二、问题的分析观众在电影院观赏电影,感觉是否满意不仅取决于电影的精彩与否,而且还取决于座位设计的舒适程度. 座位的设计应满足什么要求,是一个非常现实的问题.根据题意观众对座位的满意程度主要取决于观看时的视角和仰角. 经调查可知这两者都要满足一定的条件.但在实际生活中又不可能同时满足,只能在二者兼顾的条件下求出使平均满意度最大的那种情况. 根据题意很容易得知α和β的正切值呈递减趋势,这对问题的解决很有帮助.下文针对题目提出的三个问题逐一进行分析.针对问题1:为方便求解,可以以屏幕所在的墙壁的剖面为y 轴,向上为正方向,以与之垂直的地面为x 轴,以交点为原点O,建立直角坐标系.当地板线倾角o 10=θ时,根据已知条件通过计算得知,最前排视角α和仰角β的值均为最大,最后排视角α和仰角β的值均为最小.那么仰角030=β时的位置是否是最佳位置呢我们可以先将离散的座位连续化,根据条件求出αtg 的表达式,作出α对x 的变化图象以及其变化率图象,计算αtg 的最大值,找到最佳座位点,然后再将问题离散化,对求得的最佳座位点进行优化.针对问题2: 一般地,人们对某件事物看法的心理变化是一个模糊的概念.本文观众对座位是否满意也是一个模糊概念.根据模糊数学隶属度的概念和心理学的相关知识,我们可以引入满意度函数的概念,构造一个满意度函数,通过这一函数来度量观众满意程度随其座位离屏幕的距离x 的变化趋势.在倾斜角θ固定的情况下,满意度函数值随x 的变化而变化,不同的x 有不同的满意度.有了满意度函数这一衡量标准后,我们可以求出所有座位的平均满意度.当平均满意度最大时,求出此时对应的倾斜角θ,即为所要求的平均满意度最大时地板线的倾斜角度.三.模型的假设1. 假设座位在地板线上严格等距,且均匀分布;2. 假设观众的满意度可以用一连续函数来衡量,因而可将离散问题连续化;3. 假设视角对观众的满意度影响较大;四.符号说明α当人坐下时眼睛到屏幕上、下边缘视线的夹角 β当人坐下时眼睛到屏幕上边缘视线与水平线的夹角),(y x p 当人坐下时眼睛所处在坐标系中的位置坐标)(x F α关于距离x 和倾斜角θ的正切函数 )(x G β关于距离x 和倾斜角θ的正切函数 )(x M 满意度函数)(i x M 第i 个位置的满意程度M 平均满意程度λ满意度函数的相关因子(即满意因子)五.模型的建立 1.建模的准备建立坐标系为了建立合适的数学模型,我们先建立如下坐标系:由题意及坐标图得,直线L 的方程:c d x tg y +-=)(θ (1) 直线L 上任意一点),(y x P 的仰角β的正切值为: xtg d x c H tg θβ)(---=(2)又由图可知: xtg d x h c H tg θαβ)()(----=- (3)由(2)(3)得:xdtg c H h dtg c H x tg dtg c H htg htg )()()1()(222θθθθθα+--+-++++--=构造满意度函数一般说来,人们的心理变化是一个模糊的概念.本文中观众对某个座位是否满意的看法就是一个典型的模糊概念.由模糊数学隶属度的概念和心理学的相关知识,根据人们通常对一件事物评价的心理变化应遵循一定规律,不妨定义观众对座位的满意度为:)0()(20)(>=--λλx x ex M (4)其中λ表示观众满意度的相关因子,称为满意因子,一般为常数. 0x 表示最佳座位点,即最佳座位处的横坐标值.2.模型的建立问题1的模型座位的满意程度主要取决于视角α和仰角β.α越大越好,β太大使人的头部过分上仰,引起不舒适感,一般要求β不超过o30.要确定最佳座位,必须同时兼顾视角α和仰角β.由上文不难发现αtg 和βtg 均是x 的函数,这里不妨令αtg x F =)(,βtg x G =)(,则可得到:xdtg c H h dtg c H x tg dtg c H htg hx F )()()1()(2)(22θθθθθ+--+-++++--=(5)xtg d x c H x G θ)()(---=(6)由030≤β,即030tg tg ≤β得:θπθtg tgdtg c H x ++-≥6又由题意知:D x ≤ 则x的取值范围为:D x tg tgdtg c H ≤≤++-θπθ6(7)从而得到求解最佳座位的数学模型:xdtg c H h dtg c H x tg dtg c H htg hx MaxF )()()1()(2)(22θθθθθ+--+-++++--=t s .D x tg tgdtg c H ≤≤++-θπθ6(8)当θ=10度时求得模型的解观众的满意度随位置变化曲线如图:4681012141618-0.100.10.20.30.40.50.60.70.8地板线横坐标x观众的满意度值θ=10度时观众的满意度曲线问题2的模型为了求平均满意程度最大时地板的倾角θ,本文先设法求平均满意程度M . 由(4),记第i 个座位满意度为:)0()(20)(>=--λλx x i i ex M (9)则区间],[D d 上n 个座位的满意度为:∑=ni i x M 1)( (10)从而得座位的平均满意程度为:nx M M ni i∑==1)( (11)从而得到求解地板倾角的数学模型:Max nx M M ni i∑==1)((12)其中i x 的表达式为:l i d x i )1(-+=,l 为常数,表示前后两个座位之间的距离.,n 的表达式为:1][+-=ldD n . 观众满意度随地板线曲率变化如图:00.51 1.52 2.59.29.49.69.81010.210.4地板线斜率k(tgθ)观众平均满意度观众平均满意度随地板线斜率变化曲线有图解得:︒==8.1936.0arctan θ问题3的模型为了进一步提高观众的满意程度,应当使总满意程度进一步增大。

因此,利用最优化模型,使得每一名观众的满意程度达到最大。

目标函数为:Max nx M M ni i∑==1)(约束条件为:)0,0()(20)(n i e x M x x i i <<>=--λλ从而得到结果为:02468101214161820附录:第一、二问程序:n=0;ku=0;q=5;t0=0;s=;for k=0::;m=0;for x=450:1900;y(x)=(x/100)*(k^2+1)/2+((3+*k)^/(2*(x/100))-k*(3+*k);z(x)=y(x);w(x)=atan(z(x));f(x)=atan((5-k*((x/100)/(x/100));x30=+*k)/(k+(3^/3);if k==if x<=x30t=(w(x)-q*(f(x)-pi/6));if t>t0t0=t;x10=x/100;endendif x>x30t=(w(x)-s*q*(f(x)-pi/6));if t>t0t0=t;x10=x/100;endendx11=x/100;figure(1);plot(x11,t);grid;xlabel('地板线横坐标x');ylabel('观众的满意度值');title('θ=10度时观众的满意度曲线');hold on;endif x<=x30m=((w(x)-q*(f(x)-pi/6))/100)+m;endif x>x30m=((w(x)-s*q*(f(x)-pi/6))/100)+m;endendfigure(2);plot(k,m,'.');grid;xlabel('地板线斜率k(tgθ)');ylabel('观众平均满意度');title('观众平均满意度随地板线斜率变化曲线'); hold on;m>nn=m;ku=k;endplot(x10,t0,'*');第三问程序:h=;H=5;d=;D=19;c=;q=1;s=;para=0;stepx=(D-d)/20; stepy=(H-c)/25; y=zeros(1,21); total=0;max=0;for i1=0:1i(1)=i1;for i2=0:1i(2)=i2;for i3=0:1i(3)=i3;for i4=0:1i(4)=i4;for i5=0:1i(5)=i5;for i6=0:1i(6)=i6; for i7=0:1i(7)=i7; for i8=0:1i(8)=i8; for i9=0:1i(9)=i9; for i10=0:1i(10)=i10; for i11=0:1i(11)=i11; for i12=0:1i(12)=i12; for i13=0:1i(13)=i13; for i14=0:1i(14)=i14; for i15=0:1i(15)=i15; for i16=0:1i(16)=i16; for i17=0:1i(17)=i17; for i18=0:1i(18)=i18;for i19=0:1i(19)=i19;for i20=0:1i(20)=i20;for i21=0:1i(21)=i21;for i22=0:1i(22)=i22;for i23=0:1i(23)=i23;for t=1:21x(t)=(t-1)*stepx+d;y(1)=c;if t>1for r=2:ty(t)=i(r-1)*stepy+y(t-1);endendx1=x(t);y1=y(t);de=(x1)^2+(H-h/2-y1)^2-(h/2)^2;w(t)=(atan((h*x1)/de)-s*q*((atan(H-y1)/x1)-pi/6));if x1<(3^*5;if y1<=(5-((3^/3)*x1);w(t)=(atan((h*x1)/de)-q*((atan(H-y1)/x1)-pi/6));endendtotal=total+w(t);endendpara=0;if total>maxmax=total;for e=1:20if y(e)>(H-h)for v=1:eaa=((v-1)*stepx+d)*(-(y(e)-(H-h))/((e-1)*stepx+d))+(H-h);if aa<y(v)para=1;endendendendfor s=1:20if para~=1;m(s)=i(s);endendendendtotal=0;endendendendendendendendendendendendendendendendendendendendendfor j=1:21m0=0;if j>1for e=2:jm0=m(e-1)+m0;endendyopt(j)=m0*stepy;xopt(j)=(j-1)*stepx+d;endx3=1::length(yopt)-1;y3=interp1(xopt,yopt,x3,'cubic'); p=polyfit(x3,y3,15);y4=polyval(p,x3);plot(x3,y4,'-');hold onplot(x3,y3,xopt,yopt); for rr=1:length(yopt)-1; y5=y4((rr-1)*10+1); plot(rr,y5);hold onendgrid on;hold on;plot(0,(H-h),'*'); plot(0,H,'*');。

相关文档
最新文档