2014高中数学必修5第二章数列
高中数学必修5课件:第2章2-1-2数列的性质和递推关系

n 3n+1
为递
增数列.
数学 必修5
第二章 数列
方法二:∵n∈N*,∴an>0,
n+1
∵
an+1 an
=
3n+4 n
=
n+13n+1 3n+4n
=
3n2+4n+1 3n2+4n
=1+
1 3n2+4n
3n+1
>1,∴an+1>an,∴数列3nn+1为递增数列.
数学 必修5
第二章 数列
方法三:令f(x)=3x+x 1(x≥1),则 f(x)=133x3+x+1-1 1=131-3x+1 1, ∴函数f(x)在[1,+∞)上是增函数, ∴数列3nn+1是递增数列.
数学 必修5
第二章 数列
(2)∵bn=aan+n 1,且a1=1,a2=2,a3=3,a4=5,a5=8, ∴b1=aa12=12,b2=aa23=23,b3=aa34=35,b4=aa45=58. 故b1=12,b2=23,b3=35,b4=58.
数学 必修5
第二章 数列
数列的单调性问题
已知数列{an}的通项公式为an=
(1)写出此数列的前5项;
(2)通过公式bn=
an an+1
构造一个新的数列{bn},写出数列{bn}
的前4项.
数学 必修5
第二章 数列
解析: (1)∵an=an-1+an-2(n≥3),且a1=1,a2=2, ∴a3=a2+a1=3,a4=a3+a2=3+2=5, a5=a4+a3=5+3=8. 故数列{an}的前5项依次为 a1=1,a2=2,a3=3,a4=5,a5=8.
4分 6分 8分
10分
12分
数学 必修5
第二章 数列
高中数学必修五第二章数列教学资料

第二章数列§2.1.1数列的概念与简单表示法(第1课时) ●教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣 ●教学重点数列及其有关概念,通项公式及其应用 ●教学难点根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.4,5,6,7,8,9,10. ①1,21,31,41,51,…. ②1,0.1,0.01,0.001,0.0001,…. ③ 1,1.4,1.41,1.414,…. ④ -1,1,-1,1,-1,1,…. ⑤ 2,2,2,2,2,…. ⑥观察这些例子,看它们有何共同特点?(启发学生发现数列定义) 上述例子的共同特点是:⑴均是一列数;⑵有一定次序. 从而引出数列及有关定义 Ⅱ.讲授新课⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式:ΛΛ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系:项 1 51413121 ↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:n a n 1=来表示其对应关系即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系 ⒋ 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项. 数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项. 5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
高中数学必修5课件:第2章2-3-1等差数列的前n项和

数学 必修5
第二章 数列
与前n项和有关的最值问题
已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当n为何值时,数列{an}的前n项和取得最大值. [思路点拨]
数学 必修5
第二章 数列
[规范解答] (1)由a1=9,a4+a7=0,
得a1+3d+a1+6d=0,
数学 必修5
第二章 数列
等差数列的前n项和公式
已知量 首项、末项与项数
求和
na1+an
公式 Sn=_____2________
首项、公差与项数 Sn=__n_a_1+__n__n_2-__1__d___
数学 必修5
第二章 数列
对等差数列前n项和公式的理解 (1)等差数列的前n项和公式有两种形式,涉及a1,an,Sn, n,d五个量,通常已知其中三个量,可求另外两个量,解答方 法就是解方程组.
数学 必修5
第二章 数列
如图,某仓库堆放的一堆钢管,最上面的一层有4根钢 管,下面的每一层都比上一层多一根,最下面的一层有9根.
[问题1] 共有几层?图形的横截面是什么形状? [提示] 六层 等腰梯形
数学 必修5
第二章 数列
[问题2] 假设在这堆钢管旁边再倒放上同样一堆钢管,如 图所示,则这样共有多少钢管?
数学 必修5
第二章 数列
由an≤0解得n≤4,即数列{an}前3项为负数,第4项为0, 从第5项开始为正数.
∴当n≤4时,Tn=-Sn=n(7-n), 当n>4时,Tn=Sn-S4+(-S4) =Sn-2S4=n(n-7)-2×4×(4-7) =n2-7n+24
∴Tn=nn2-7-7nn+,2n4≤,4n,>4.
高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
高中数学第二章数列2.1.2数列的递推公式人教A版必修5

第2课时 数列的递推公式
课程目标
1.理解数列的函数特性,掌握判断数列增减性 的方法. 2.知道递推公式是给出数列的一种形式. 3.能够根据递推公式写出数列的前几项.
学习脉络
递推公式 如果已知数列{an}的首项(或前几项),且任一项 an 与它的前一项 an-1(或
前几项)间的关系可用一个公式来表示,那么这个公式叫做数列{an}的递推 公式.用递推公式给出数列的方法叫做递推法.
又 a1=1,∴an=2n-1(n≥2).当 n=1 时,a1=1 也满足上式,故数列{an}的一个
通项公式为 an=2n-1,an+1-an=2(n+1)-1-(2n-1)=2>0,∴an+1>an.
∴数列{an}是单调递增数列.
首页
J 基础知识 ICHU ZHISHI
Z S 重点难点 HONGDIAN NANDIAN
探究四
探究一 判断数列的单调性
数列的单调性一般要通过比较 an+1 与 an 的大小来判断,具体为: an+1-an>0⇔an+1>an⇔数列{an}单调递增;
an+1-an<0⇔an+1<an⇔数列{an}单调递减.
探究一
探究二
探究三
探究四
人教版高中数学必修五课件:第二章 数列2-4-2 等比数列的性质

【所以自主{an解2}答是】首1项.因为为1,an公=2比n-为1,4所的以等a比ann数122 列,22nn=故1 242a,n2=4n-1.
答案:an2=4n-1
2.由a4·a7=-512,得a3·a8=-512.
由
解得a3=-4,a8=128或a3=128,a8=-4(舍).
所以aaq33 =a8a
am·an=ak·al
2.等比数列的单调性
(1)当a1>0,_q_>_1_或a1<0,_0_<_q_<_1_时,{an}为递增数列. (2)当____,0<q<1或a1<0,____时,{an}为递减数列. (3)当_a_1>_0_时,{an}为常数列q.>1
q=1
1.在等比数列{an}中,a6=6,a9=9,则a3=( )
(3)若m+n=p+l(m,n,p,l∈N*),那么aman=apal吗? 提示:相等,aman=2m-1×2n-1=2m+n-2, apal=2p-1×2l-1=2p+l-2,因为m+n=p+l, 所以m+n-2=p+l-2,所以aman=apal.
探究2:对任意的等比数列{an},若有m+n=p+l(m,n,p,l∈N*), 那么aman=apal吗? 提示:相等,设等比数列{an}的公比为q,则am=a1qm-1, an=a1qn-1,ap=a1qp-1,al=a1ql-1,aman= a1qm-1×a1qn-1=a12 qm + n-2, apal= a1qp-1×a1ql-1=a12qp + l-2, 因为m+n=p+l,所以aman=apal.
高中数学必修5 第二章 数列 知识整理
第二章 数列2.1 数列1.数列(1)数列的概念按照一定次序排列的一列数称为数列。
数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123,,,,,n a a a a ……,简记为{}n a 。
其中数列{}n a 的第n 项n a 也叫做数列的通项。
注意:①数列中每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。
所以,数列的一般形式可以写成123,,,,n a a a a …,简记为{}n a 。
如:数列1,2,3,4,…,可以简记为{n}。
②数列中的数是按一定次序排列的。
因此,如果组成两个数列的数相同而排列次序不同,那么它们就不是相同的数列。
如:数列1,2,3,4,5与5,4,3,2,1是不同的数列。
③数列的定义中,并没有规定数列中的数必须不同。
因此,同一个数在数列中可以重复出现。
如:1,1,1,1,1,1,---…;2,2,2,2,2,…等。
④{}n a 与n a 是不同的概念。
{}n a 表示数列123,,,,,n a a a a ……,而n a 仅表示数列{}n a的第n 项。
⑤从映射函数的观点看,数列可以看做是一个定义域为正整数N +(或它的有限子集{1,2,3,,}n …)的数与自变量从小到大依次取值时对应的一列函数值,这里的函数是一种特殊函数:它的自变量只能取正整数,由于数列的值是函数值,序号是自变量,数列的通项公式也就是相应函数的解析式。
可以将序号为横坐标,相应的像为纵坐标,通过描点画图来表示一个数列,从数列的图像表示可以直观的看出数列的变化情况。
(2)数列的分类①按照数列的项数的多少可分为:有穷数列与无穷数列。
项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。
②按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列。
高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,
2014届高二数学同步配套课件第2章《等差数列》(苏教版必修5)
练一练·当堂检测、目标达成落实处
1 3.等差数列{an}中,S10=4S5,则ad1=____2____.
解析 由题意得:10a1+12×10×9d=4(5a1+12×5×4d),∴10a1+45d =20a1+40d, ∴10a1=5d,∴ad1=12.
练一练·当堂检测、目标达成落实处
4.已知等差数列{an}的公差 d 不等于 0,Sn 是其前 n 项和,给出下 列命题: ①给定 n(n≥2,且 n∈N*),对于一切 k∈N*(k<n),都有 an-k+ an+k=2an 成立; ②存在 k∈N*,使得 ak-ak+1 与 a2k+1-a2k-3 同号; ③若 d>0,且 S3=S8,则 S5 与 S6 都是数列{Sn}中的最小项; ④点1,S11,2,S22,3,S33,…,n,Snn(n∈N*),…,在同 一条直线上. 其中正确命题的序号是________.(把你认为正确的命题序号都 填上)
(2)写出 aij 的计算公式.
研一研·题型解法、解题更高效
解 (1)通过观察“等差数阵”发现:第一行的首项为 4,公差为 3;第二行首项为 7,公差为 5.归纳总结出:第一列(每行的首项) 是以 4 为首项,3 为公差的等差数列,即 3i+1,各行的公差是 以 3 为首项,2 为公差的等差数列,即 2i+1.所以 a45 在第 4 行, 首项应为 13,公差为 9,进而得出 a45=49. (2)该“等差数阵”的第一行是首项为 4,公差为 3 的等差数列: a1j=4+3(j-1); 第二行是首项为 7,公差为 5 的等差数列: a2j=7+5(j-1); ……
解析 该数阵的第 1 行有 1 个数,第 2 行有 2 个数,…,第 n 行有 n 个数,则第 n-1 (n≥3)行的最后一个数为n-112+n-1 =n22-n2,则第 n 行从左至右的第 3 个数为n22-n2+3.
【教材分析与导入设计】2014年高中数学必修5(人教A版)第二章 【素材】等差数列前n项和(说课课件)
公式应用
1.根据下列各题中的条件,求相应的等差数列 的前n项和
(1)
(2)
a1 5, an 95, n 10
a1 100, d 2, n 50
等差数列的前n项和 知识准备
学生已经学习了等差数列的通项公式 和性质,数列的和等有关内容。
背 景 分 析
能力储备 教 学 学 生 目 学 标 情 学生情况
学生经过初高中的数学学习,已具 有一定的自主探究能力,从特殊到一 般的类比推理能力,但学生对于倒序 教 教 求和的思想还初次见到,要着重引导。
方 学 学 法 我所在的学校是省示范性高中,学生 程 评 手 基础还不错,经过近几年的课改,已 序 价 段 经形成了较浓的自主探究氛围与合作
(3)
a1 7, d 3, an 52
设计意图:巩固与熟悉等差数列前n项和公式及简单 变形,使学生对公式形成较深的印象。
第三阶段:新知探究 n(n 1) n(a1 a n ) s n na1 d sn 2 2
接下来, 进一步引导学生观察两个公式的结构特点, 让 学生形成更深刻印象。 特别地, 第二个公式可让学生探 究S n与n是怎样的函数关系?学生能够较快的看出是一个 关于n的二次函数。 接着, 我将提出另一个问题: 等差数 列的前n项和公式与关于n的二次函数到底有没有一个必然 的联系呢?从而引发学生思考!从而引出探究2。
交流意识。这些都为本节课突破难点 提供了有利条件。
等差数列的前n项和 知识与技能
(1)利用从特殊到一般的认识过 程,通过类比探究,得到并掌握等差 数列前n项和公式及推导过程。(2) 能利用求和公式解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011高中数学必修5第二章数列题组训练[基础训练A 组]一、选择题(六个小题,每题5分,共30分)1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和S 9等于( )A .66B .99C .144D .2973.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A . 81B .120C .168D .1924.12+与12-,两数的等比中项是( )A .1B .-1C .1±D .21 5.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项 A .2 B .4 C .6 D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225 二、填空题(五个小题,每题6分,共30分)1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,4a =7,则7s =_________3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a =___________. 4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则74a a ⋅=___________. 三、解答题(四个小题,每题10分,共40分)1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
2. 在等差数列{}n a 中, ,1.3,3.0125==a a 求2221201918a a a a a ++++的值。
3. 求和:)0(),(...)2()1(2≠-++-+-a n a a a n4. 设等比数列{}n a 前n 项和为n S ,若9632S S S =+,求数列的公比q 。
[综合训练B 组]一、选择题(六个小题,每题5分,共30分)1.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )A . – 4B .-6C .-8D .-102.设S n 是等差数列{}n a 的前n 项和,若==5935,95S S a a 则( ) A .1 B .-1 C .2 D .21 3.若)32lg(),12lg(,2lg +-x x 成等差数列,则x 的值等于( )A .1B .0或32C .32D .5log 24.已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是( )A .15(0,)2+ B.15(,1]2- C.15[1,)2+ D.)251,251(++- 5.在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对6.在等差数列{}n a 中,设n a a a S +++=...211,n n n a a a S 2212...+++=++,n n n a a a S 322123...+++=++,则,,,321S S S 关系为( )A .等差数列B .等比数列C .等差数列或等比数列D .都不对二、填空题(五个小题,每题6分,共30分)1.等差数列{}n a 中, ,33,562==a a 则a 3+a 5为______________。
2.数列7,77,777,7777…的一个通项公式是______________________。
3.在正项等比数列{a n }中,a 1a 5+2a 3a 5+a 3a 7=25,则 a 3+a 5=_______。
4.等差数列中,若),(n m S S n m ≠=则n m S +=_______。
5.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且k a =13,则k=________________。
三、解答题(四个小题,每题10分,共40分)1.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么?1. 求和:12...321-++++n nx x x2. 已知数列{}n a 的通项公式112+-=n a n ,如果)(N n a b n n ∈=,求数列{}n b 的前n 项和。
4.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围。
[提高训练C 组]一、选择题(六个小题,每题5分,共30分)1.数列{}n a 的通项公式11++=n n a n ,则该数列的前( )项之和等于9。
A .98 B .99 C .96 D .972.在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )A .9B .12C .16D .173.在等比数列{}n a 中,若62=a ,且0122345=+--a a a 则n a 为( )A .6B .2)1(6--⋅nC .226-⋅nD .6或2)1(6--⋅n 或226-⋅n4.在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为( )A . –22.5B .-21.5C .-20.5D .-205.已知等差数列n a n 的前}{项和为mS a a a m S m m m m n 则且若,38,0,1,12211==-+>-+- 等于 ( ) A .38 B .20 C .10 D .96.等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b =( ) A 23 B 2131n n -- C 2131n n ++ D 2134n n -+ 二、填空题(五个小题,每题6分,共30分)1.已知数列{}n a 中,a 1=-1,a 1+n ·a n =a 1+n -a n ,则数列通项a n =___________。
2.已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________。
3.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则a ∶b ∶c=_________。
4.在等差数列{}n a 中,公差21=d ,前100项的和45100=S ,则99531...a a a a ++++=_____________。
5.若等差数列{}n a 中,.__________,4,8134111073==-=-+S a a a a a 则三、解答题(四个小题,每题10分,共40分)1. 已知数列{}n a 的前n 项和nn S 23+=,求n a . 2. 一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数。
3. 数列),60cos1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 01020-⋅⋅⋅n …的前多少项和为最大? 4. 已知数列{}n a 的前n 项和)34()1(...139511--++-+-=-n S n n ,求312215S S S -+的值。
高中数学必修5第二章数列题组训练参考答案[基础训练A 组]一、选择题 1.C 2.B 3.B 4.C 5.B 6.C二、填空题 1.8 2.49 3.12654. 3375±5. 2-三、解答题 1.2,5,8,11或11,8,5,2 2. 5.31 3.原式=⎪⎪⎩⎪⎪⎨⎧=-≠+---)1(22)1(2)1(1)1(2a n n a n n a a a n 4.243-=q [综合训练B 组]一、选择题 1.B 2.A 3.D 4.D 5.B 6.A二、填空题 1.38 2.)110(97-=nn a 3. 5 4.0 5. 18三、解答题1. 15,20,25 2. 原式=⎪⎪⎩⎪⎪⎨⎧=+≠---)1(2)1()1(11x n n x nx x x n n3. ⎪⎩⎪⎨⎧≥+-≤+-=)6(,5010)5(,1022n n n n n n S n4. 为偶数且n n ,8≥[提高训练C 组]一、选择题 1.B 2.A 3.D 4.C 5.C 6.B二、填空题1.21n - 2. 100 3. )2(:1:4- 4. 10 5. 156三、解答题1. ⎩⎨⎧≥==-)2(,2)1(,51n n a n n2. ,2=q 项数为83. 104. 76-。