塔盘的结构设计及塔的机械设计

合集下载

第八章 塔设备的机械设计(化工技术)

第八章 塔设备的机械设计(化工技术)

塔壁间的密封
碳钢制塔板与 塔盘圈厚度,一 般3-4mm,用不锈 钢时取2-3mm
2
分块式塔盘第八章图\分块塔板一.rm 第八 章图\分块塔板二.rm
塔身为焊制的整体圆筒,塔盘分成数块, 由人孔送入塔内,安装到塔盘固定件上。
塔径在800~900mm以上时建议采用
特点:
1)结构简单,装拆方便 2)制造方便,模具简单
二 裙座设计 结构: 1)座体 2)基础环 3)螺栓座 4)管孔
1
座体设计
初选座体有效厚度δes,然后验算危险
截面应力。
1)
基底为危险截面时,应满足
操作时,
0 0 M max m0 g Fv0 0 t min KB; K S Z sb Asb


水压试验时,
0.3 M


水压试验时,
0.3 M M e m g min 0.9 K s ; KB Z sm Asm
1 1 w 1 1 max
2
基础环设计
基础环尺寸的确定
1)
Dob Dis 160 ~ 400 mm Dib Dis 160 ~ 400 mm

7)稳定条件

ii max
cr
4
塔体拉应力校核
1)假设有效厚度δei
2)计算最大组合轴向拉应力
内压,正常操作时 外压,非操作时
max 1
i i 2
ii 3
max
ii 3

ii 2
• 3)强度校核条件

ii max
K
5)最大组合轴向压应力
外压,正常操作时 max 1

石化行业标准

石化行业标准
SH/T3143-2004
14
SH/T3144-2012
石油化工离心、轴流压缩机工程技术规范
本标准规定了石油化工用单轴离心压缩机、轴流压缩机及其驱动机、辅助设备在设计、制造、检测和试验等方面的要求。
本标准适用于石油化工行业离心压缩机、轴流压缩机的工程设计及设备采购。
本标准不适用于通风机、鼓风机和整体齿轮压缩机、膨胀机,也不适用于海洋平台上安装使用的离心压缩机。
本标准规定了石油化工装置板式塔的塔盘及其部件的机械设计(包括结构和强度设计)、制造、预组装、验收、包装、安装、检验和测试。对于不同流程塔盘间的再分配挡板、塔釜挡板和特殊结构塔盘等也可参照执行。
本标准适用于石油化工装置板式塔塔盘的设计、制造、安装和检验,不适用于填料塔的填料支撑、集油箱和盘式分配器等。
12
SH/T3129-2012
高酸原油加工装置设备和管道设计选材导则
本标准规定了高酸原油加工装置设备和管道的材料选用原则。
本标准适用于石油化工加工高酸原油且以酸腐蚀为主的新建和改、扩建工程项目重点装置主要设备和管道的设计选材。
SH/T3129-2002、SH/T3096-2001
13
SH/T3143-2012
本标准规定了石油化工给水排水管道设计的要求。
本标准适用于石油化工给水排水管道的设计。
SH3034-1999
4
SH/T3036-2012
一般炼油装置用火焰加热炉
本标准规定了一般炼油装置用火焰加热炉、空气预热器、通风机和燃烧器等的设计、材料选用、制造、检验、试验、运输准备和安装等方面的最低要求并给出了建议。
SH3091-1998
11
SH/T3096-2012
高硫原油加工装置设备和管道设计选材导则

塔设备机械设计说明

塔设备机械设计说明

第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。

在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。

这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。

传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。

以及吸附、离子交换、干燥等方法。

相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。

在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。

为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。

根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。

在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。

两相的组分浓度沿塔高呈阶梯式变化。

不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。

塔体是塔设备的外壳。

常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。

随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。

塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。

另外对塔体安装的不垂直度和弯曲度也有一定的要求。

支座是塔体的支承并与基础连接的部分,一般采用裙座。

其高度视附属设备(如再沸器、泵等)及管道布置而定。

它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。

塔设备的机械设计

塔设备的机械设计

阶梯环:一头为鲍尔环,一头翻卷,由于不对 称,装入塔内可减少填料环相互重叠,使填料 表面得以充分利用,同时增大了空隙,使压降 降低,传质效率提高。
鞍形填料:这种填料重迭部分少,空隙率大,利 用率高。它有两种形式,一种是矩鞍环,一种是 弧鞍环,都是敞开式填料,这种填料比拉西环传 质效率的波纹成45°,盘与盘之间成90°排列,结 构紧凑,比表面积大。传质好,且可根据物料温 度及腐蚀情况采用不同的材料。
一、 喷淋装置
液体喷淋装置设计的不合理,将导致液体 分布不良,减少填料的润湿面积,增加沟流和 壁流现象,直接影响填料塔的处理能力和分离 效率。液体喷淋装置的结构设计要求是:能使 整个塔截面的填料表面很好润湿,结构简单, 制造维修方便。
塔径DN=300~500mm时,塔节高度L=800~ 1000mm;塔径DN=600~700mm时,塔节高度 L=1200~1500mm。 为方便安装,每个塔节中的塔盘数为5-6块。
降液管的结构有弓形和圆形两类
另设溢流堰圆形降液管
圆形降液管伸出塔盘表面兼作流堰的圆形降液管
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
塔盘结构有整块式和分块式两种。当塔径 在800~900 mm以下时,建议采用整块式塔盘。 当塔径在800~900 mm以上时,人可以在塔内 进行装拆,一般采用分块式塔盘。
1. 整块式塔盘
此种塔的塔体由若干塔节组成,塔节与塔 节之间则用法兰连接。每个塔节中安装若干块 层层叠置起来的塔盘。塔盘与塔盘之间用管子 支承,并保持所需要的间距。图为定距管式支 承塔盘结构。
2.分块式塔盘
在直径较大的板式塔中,如果仍然用整块式 塔盘,则由于刚度的要求,势必要增加塔盘板 的厚度,而且在制造、安装与检修等方面都很 不方便。因此,当塔径在800 ~900 mm以上 时,都采用分块式塔盘。此时塔身为一焊制整 体圆筒,不分塔节 。

第八章-塔设备的机械设计

第八章-塔设备的机械设计

Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。

第六章 塔设备的机械设计

第六章 塔设备的机械设计

自支承式塔设备的塔体除承受工作介质压力 之外,还承受自重载荷、风载荷、地震载荷及 偏心载荷的作用。
(1)塔设备自重载荷的计算

塔设备的操作质量:
(kg) (6-2) 塔设备水压试验时的质量,这时设备质量最大, 简称设备最大质量 m0 m01 m02 m03 m04 mw ma me (kg) (6-3) 设备吊装时的质量,这时设备质量最小,简称 设备最小质量: m0 m01 0.2m02 m03 m04 ma me (kg) (6-4)
M
00 E
8CZ 1 m0 g (10 H 3.5 14 H 2.5 h 4h3.5 ) 175H 2.5
(Nmm)

底部截面的地震弯矩 16 I I M E CZ 1 mo gH 35
(Nmm)
(3)风载荷的计算

图6-31所示为自支承式塔设备受风压作用 的示意图。塔体会因风压而发生弯曲变形。吹 到塔设备迎风面上的风压值,随设备高度的增 加而增加。为了计算简便,将风压值按设备高 度分为几段,假设每段风压值各自均布于塔设 备的迎风面上,如图所示。
Fk Cz α1k mk g (N )



式中 Cz—— 结构综合影响系数,对圆筒形 直立设备取Cz=0. 5; α1—— 对应于塔器基本自振周期T(利用图630查取α1值时,应使T =T1)的地震影响系数 α值; ηk—— 基本震型参与系数;

关于 α—— 地震影响系数,按图6-30确定;图中曲 Tg 0.9 线部分按公式

(6-19)
(4 )偏心载荷的计算


有些塔设备在顶部悬挂有分离器、热交换 器、冷凝器等附属设备,这些附属设备对塔体 产生偏心载荷。偏心载荷所引起的弯矩为: Me=me g e (6-20) 式中 me—— 偏心质量Kg e—— 偏心质量的重心至塔设备中心线的距离, mm

干气脱硫

干气脱硫

干气脱硫塔机械设计摘要塔设备的作用是实现气(汽)—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的目的。

塔设备广泛用于蒸馏、吸收、介吸(气提)、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。

随着石油、化工的迅速发展,塔设备的合理造型及设计将越来越受到关注和重视。

对工业废气进行脱硫处理的设备,以塔式设备居多,即为脱硫塔。

炼厂气体脱硫方法主要分为两大类。

一为干法脱硫,另一为湿法脱硫,即MDEA水溶液法。

目前,我国炼厂干气脱硫绝大多数采用这种MDEA法。

本文主要设计的就是以MEDA水溶液为主的干气脱硫塔。

干气脱硫塔设备的设计和选型是建立在对循环吸收工段、精致工段流程的模拟、优化的基础上。

在满足工艺要求的条件下,考虑设备的固定投资费用和操作费用,进行进一步模拟计算、设计和选型。

设计主要包括基本参数选定、机械设计和图纸绘制。

基本参数选定部分完成了塔设备的选型、塔盘的选型和设备材料等内容的设计;机械设计部分为塔设备的筒体、封头、开口、裙座和地基等部件的设计计算,同时对塔的机械性能及塔板负荷性能做了校核。

图纸绘制阶段在前两个阶段的基础上,对干气脱硫塔整体绘制。

关键词:塔设备,干气脱硫塔,设计,校核The dry gas desulfurization tower mechanical designAbstractTower equipment's role is to achieve gas (steam) - full contact between the liquid or liquid - liquid phase, so as to achieve relative to the occasion for the purpose of mass transfer and heat transfer. Tower equipment is widely used in distillation, absorption, dielectric absorption (gas stripping), extraction, gas washing, humidification and cooling unit operations, its operational performance is good or bad, the production of the entire device, product yield, quality, costand environmental protection, "three wastes" treatment has a greater impact. With the rapid development of the petroleum, chemical, reasonable shape and design of the tower equipment will be more and more concern and attention. The industrial waste gas desulfurization processing equipment, the majority of tower equipment, is the desulfurization tower. Refinery gas desulfurization method is mainly divided into two categories. A dry flue gas desulphurization, and the other for wet FGD, MDEA aqueous solution method. At present, China refinery dry gas desulfurization vast majority of adopted this MDEA law. In this paper, the design is the based MEDA aqueous solution, the dry gas desulfurization tower.Dry gas desulfurization tower equipment design and selection is built on the basis of the absorption cycle steps, the fine section in the process simulation, optimization. In the process to meet the requirements of the conditions, considering the equipment fixed investment and operating costs, for further simulation, design and selection. The design includes the basic parameters selected, the mechanical design and drawings. The basic parameters of the selected partially completed tower equipment selection and design of tray selection and equipment and materials; Mechanical design part of tower equipment of the cylinder head opening, skirt and foundation and other parts of the designcalculations, check the same time, the tower of the mechanical properties and plate load performance. Drawing stage the first two stages on the basis of dry gas desulfurization tower as a whole draw.Keywords: tower equipment, dry gas desulfurization tower, design, verification目录绪论 (1)1 干气脱硫塔的应用 (3)2 设备总体设计 (4)2.1 干气脱硫塔的主要构件及其作用 (4)2.2 材料的选择 (5)2.3圆筒设计 (6)2.4 裙座及裙座与塔壳的连接方式 (7)2.5 塔盘结构设计 (8)2.6 危险截面的选择 (10)2.7 塔体分段 (11)2.8 地震载荷、地震弯矩及风载荷、风弯矩 (12)2.9 圆筒应力校核 (12)2.10 地脚螺栓的确定 (13)2.11 补强方式 (13)2.12 干气脱硫塔设备运行中常见故障及处理方法 (15)3 强度计算及校核 (17)3.1 设计任务书 (17)3.1.1 设计参数 (17)3.1.2 设计内容 (17)3.1.3 设计要求 (17)3.1.4 设计简图 (18)3.2 符号说明 (18)3.3 塔壳厚度计算 (24)3.4 塔式容器质量计算 (25)3.5 自振周期计算 (28)3.6 高振型地震载荷和地震弯矩计算 (28)3.7 风载荷计算 (30)3.8 最大弯矩计算 (36)3.9 圆筒应力校核 (36)3.10 裙座验算 (37)3.11 液压试验时的应力校核 (40)3.12 基础环厚度计算 (41)3.13 地脚螺栓计算 (43)3.14 筋板计算 (45)3.15 盖板计算 (46)3.16 裙座与塔壳连接焊缝验算 (46)3.17 开孔补强设计计算 (47)结论 (53)参考文献 (54)谢辞 (55)绪论在石油化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。

化工机械设备课程设计浮阀塔的设计

化工机械设备课程设计浮阀塔的设计

摘要 (2)1 前言 (3)1.1 研究的现状及意义 (3)1.2 设计条件及依据 (6)1.3 设备结构形式概述 (7)2 设计参数及其要求 (9)2.1 设计参数 (9)2.2设计条件 (9)2.3设计简图 (10)3 材料选择 (11)3.1 概论 (11)3.2塔体材料选择 (11)3.3裙座材料的选择 (11)4 塔体结构设计及计算 (12)4.1塔体和封头厚度计算 (12)4.1.1 塔体厚度的计算 (12)4.1.2封头厚度计算 (12)4.2塔设备质量载荷计算 (12)4.3风载荷与风弯矩的计算 (14)4.4地震弯矩的计算 (17)4.4.1地震弯矩的计算 (17)4.4.2偏心弯矩的计算 (18)4.5各种载荷引起的轴向应力 (19)4.6塔体和裙座危险截面的强度与稳定校核 (20)4.6.1塔体的最大组合轴向拉应力校核 (20)4.6.2.塔体和裙座的稳定校核 (21)4.7塔体水压试验和吊装时的应力校核 (22)4.7.1水压试验时各种载荷引起的应力 (22)4.7.2水压试验时应力校核 (23)4.8基础环的设计 (24)4.8.1 基础环尺寸 (24)4.8.2基础环的应力校核 (24)4.8.3基础环的厚度 (25)4.9地脚螺栓计算 (25)4.9.1地脚螺栓承受的最大拉应力 (25)4.9.2地脚螺栓的螺纹小径 (26)符号说明 (27)小结 (30)参考文献 (30)谢辞....................................................................................................................................... 错误!未定义书签。

图纸....................................................................................................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档