北师大实验中学一元一次不等式单元试卷
北师大八年级下《一元一次不等式与一元一次不等式组》单元检测卷含答案

单元检测卷:一元一次不等式与一元一次不等式组(基础卷)一、选择题(每小题3分,共30分)1.不等式2x>﹣3的解是()A.x<32-B.x>﹣32-C.x<﹣23D.x>﹣23【答案】B【解析】不等式两边除以2变形即可求出x>﹣32,故选B2.已知a>b,下列不等式中正确的是()A.a+3<b+3 B.C.﹣a>﹣b D.a﹣1<b﹣1【答案】B3.已知x>y,则下列不等式1)x-5<y-5,2)3x>3y,3)-3x>-3y,4)-x<-y,其中一定成立的有()A、1个B、2个C、3个D、4个【答案】B.【解析】由不等式的加法和乘法性质可得,(2)(4)正确,(1)(3)错误,所以总共只有两个成立,故选:B 4.下列不等式中,正确的是()A.m与4的差是负数,可表示为m﹣4<0B.x不大于3可表示为x<3C.a是负数可表示为a>0D.x与2的和是非负数可表示为x+2>0【答案】A5.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥3【答案】C.【解析】一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选C.6.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤0【答案】D【解析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.7.如果不等式组无解,那么m的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤5【答案】B8.不等式组24,241x xx x+⎧⎨+<-⎩≤的正整数解的个数有( )A.1个B.2个C.3个D.4个【答案】C【解析】解不等式①可得:x≤4,解不等式②可得:x>1,则不等式组的解为1<x≤4,则整数解为x=2、3、4共3个.9.将不等式组的解集在数轴上表示出来,应是()A .B .C .D .【答案】A10.根据下图所示,对a、b、c三种物体的质量判断正确的是()A.a<c B.a<b C.a>c D.b<c【答案】C二、填空题(每小题3分,共30分)11.写出一个解集为x>1的一元一次不等式_________.【答案】答案不唯一,如:2x ﹣2>0.【解析】答案不唯一,如:2x ﹣2>0的解集为x >1.故答案为2x ﹣2>0.12.绝对值大于1而小于4的整数有 个.【答案】413.不等式3x+1<-2的解集是________.【答案】x <-1.【解析】3x+1<-2,3x <-3,x <-1.故答案为x <-1.14.足球比赛中,每队上场队员人数n 不超过11,这个数量关系用不等式表示: .【答案】n ≤11.【解析】根据题意,可得:n ≤11.15.由x <y 得到ax >ay ,则a 的取值范围是 .【答案】a <0.【解析】∵x <y ,ax >ay ,∴a <0.故答案为:a <0.16.当x 时,式子523--x 的值是非正数。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组同步练习试题(含详细解析)

第二章一元一次不等式和一元一次不等式组同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、如图,一次函数y =kx +b (k ,b 为常数,k ≠0)经过点A (-3,2),则关于x 的不等式中k (x -1)+b <2的解集为( )A .x >-2B .x <-2C .x >-3D .x <-34、不等式3+2x ≥1的解在数轴上表示正确的是( )A .B .C .D .5、设m 为整数,若方程组3131x y m x y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是() A .4 B .5 C .6 D .76、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n> C .1﹣m >1﹣n D .m 2<n 27、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >8、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a+1<3b+19、一次函数y =kx +b (k ≠0)的图象如图所示,当x >2时,y 的取值范围是( )A .y <0B .y >0C .y <3D .y >310、已知一次函数y 1=kx +1和y 2=x ﹣2.当x <1时,y 1>y 2,则k 的值可以是( )A .-3B .-1C .2D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)14≥-的解集是_________.2、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 3、如图直线y =x +b 和y =kx +4与x 轴分别相交于点A (﹣4,0),点B (2,0),则040x b kx +>⎧⎨+>⎩解集为_____________.4、若关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个,则a 的取值范围_________. 5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩2、解不等式3x﹣1≤x+3,并把解在数轴上表示出来.3、某校为了丰富学生的业余生活,组织了一次棋类的比赛,准备购买若干跳棋和军棋作为奖品,若购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元.(1)求购买一副跳棋和一副军棋各需要多少钱?(2)学校准备购买跳棋与军棋共80副作为奖品,根据规定购买的总费用不能超过600元,则学校最多可以购买多少副军棋?4、下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.5、某公司销售A、B两种型号教学设备,每台的销售成本和售价如表:已知每月销售两种型号设备共20台,设销售A种型号设备x台,A、B两种型号设备全部售完后获得毛利润y万元(毛利润=售价-成本)(1)求y关于x的函数关系式(不要求写自变量的取值范围);(2)若销售两种型号设备的总成本不超过80万元,那么公司如何安排销售A、B两种型号设备,售完后毛利润最大?并求出最大毛利润.-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、C【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、A【分析】根据一次函数图象平移规律可得函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,即可得出点A 平移后的对应点,根据图象找出一次函数y=k (x -1)+b 的值小于2的自变量x 的取值范围,据此即可得答案.【详解】解:∵函数y =kx +b 图像向右平移1个单位得到平移后的解析式为y =k (x -1)+b ,∴A (−3,2)向右平移1个单位得到对应点为(−2,2),由图象可知,y 随x 的增大而减小,∴关于x 的不等式(1)2k x b 的解集为2x >-,故选:A .【点睛】本题考查一次函数的性质、一次函数图象的平移及一次函数与不等式,正确理解函数的性质、会观察图象,熟练掌握平移规律是解题的关键.4、B【分析】不等式移项,合并同类项,把x 系数化为1求出解集,表示在数轴上即可.【详解】解:不等式3+2x ≥1,移项得:2x ≥1﹣3,合并同类项得:2x ≥﹣2,解得:x ≥﹣1,数轴表示如下:.故选:B .【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.不等式的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.5、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.6、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.7、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.8、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b , ∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.9、A【分析】观察图象得到直线与x 轴的交点坐标为(2,0),根据一次函数性质得到y 随x 的增大而减小,所以当x >2时,y <0.【详解】∵一次函数y =kx +b (k ≠0)与x 轴的交点坐标为(2,0),∴y 随x 的增大而减小,∴当x >2时,y <0.故选:A .【点睛】本题考查了一次函数的性质:一次函数y =kx +b (k 、b 为常数,k ≠0)的图象为直线,当k >0,图象经过第一、三象限,y 随x 的增大而增大;当k <0,图象经过第二、四象限,y 随x 的增大而减小;直线与x 轴的交点坐标为(,0)b k-.10、B【分析】先求出不等式的解集,结合x <1,即可得到k 的取值范围,即可得到答案.【详解】解:根据题意,∵y 1>y 2,∴12kx x +>-,解得:(1)3k x ->-,∴10k -<,∴1k <;31x k <--, ∵当x <1时,y 1>y 2, ∴311k -<- ∴2k >-,∴21k -<<;∴k 的值可以是-1;故选:B .【点睛】本题考查了一次函数的图像和性质,解一元一次不等式,解题的关键是掌握一次函数的性质进行计算.二、填空题1、≤x 【分析】根据不等式的性质进行求解,根据二次根式的运算法则进行化简即可.【详解】4≥-4≥-,4x ≥-,x≤x故答案为:≤x【点睛】本题考查了解一元一次不等式,二次根式的混合运算,熟练掌握相关运算法则是解本题的关键. 2、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =- 则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键. 3、42x -<<【分析】观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,从而得到0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,从而得到40kx +> 的解集为2x <,即可求解.【详解】解:观察图象可得:当4x >- 时,y x b =+的图象位于x 轴的上方,∴0x b +> 的解集为4x >- ;当2x < 时,4y kx =+的图象位于x 轴的上方,∴40kx +> 的解集为2x <,∴040x b kx +>⎧⎨+>⎩解集为42x -<<. 故答案为:42x -<<【点睛】本题主要考查了一次函数与不等式的关系,观察图象得到当4x >- 时,y x b =+的图象位于x 轴的上方,当2x < 时,4y kx =+的图象位于x 轴的上方是解题的关键.4、﹣1<a ≤0【分析】先求出不等式组的解集,再根据已知条件得出−1<a ≤0即可.【详解】解:9210x x a --⎧⎨-≥⎩>①②, 解不等式①,得x <5,解不等式②,得x ≥a ,所以不等式组的解集是a ≤x <5,∵关于x 的不等式组9210x x a ->-⎧⎨-≥⎩的整数解共有5个, ∴−1<a ≤0,故答案为:−1<a ≤0.【点睛】本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①②由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.2、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.3、(1)购买一副跳棋和一副军棋各需要6元、10元;(2)学校最多可以买30副军棋【分析】(1)设购买一副跳棋和一副军棋各需要x 元、y 元,然后根据购买2副跳棋和3副军棋共需42元,购买5副跳棋和一副军旗共需40元,列出方程求解即可;(2)设购买m 副军棋,则购买()80m -副跳棋,然后根据购买的总费用不能超过600元,列出不等式求解即可.【详解】解:(1)设购买一副跳棋和一副军棋各需要x 元、y 元,由题意得:2342540x y x y +=⎧⎨+=⎩, 解得610x y =⎧⎨=⎩, ∴购买一副跳棋和一副军棋各需要6元、10元,答:购买一副跳棋和一副军棋各需要6元、10元;(2)设购买m 副军棋,则购买()80m -副跳棋,由题意得:()68010600m m -+≤,即4480600m +≤,解得30m ≤,∴学校最多可以买30副军棋,答:学校最多可以买30副军棋.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意,列出式子求解.4、(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.(3)把x=10代入不等式2(2x+1)>25,因为:左边=2×(2×10+1)=42>25,所以x=10是不等式2(2x+1)>25的解.(4)把x=12代入不等式2(2x+1)>25,因为:左边=2×(2×12+1)=50>25,所以x=12是不等式2(2x+1)>25的解.【点睛】本题考查了不等式的解即使不等式左右两边成立的未知数的值,正确理解不等式的解是解题的关键.5、(1)y=-2x+60;(2)公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【分析】(1)设销售A种品牌设备x台,B种品牌设备(20-x)台,算出每台的利润乘对应的台数,再合并在一起即可求出总利润;(2)由“生产两种品牌设备的总成本不超过80万元”,列出不等式,再由(1)中的函数的性质得出答案.【详解】解:(1)设销售A种型号设备x台,则销售B种型号设备(20-x)台,依题意得:y=(4-3)x+(8-5)×(20-x),即y=-2x+60;(2)3x+5×(20-x)≤80,解得x≥10.∵-2<0,∴当x=10时,y最大=40万元.故公司生产A,B两种品牌设备各10台,售完后获利最大,最大毛利润为40万元.【点睛】本题考查了一次函数的应用,一元一次不等式的应用,注意题目蕴含的数量关系,正确列式解决问题.。
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
数学:《一元一次不等式和一元一次不等式组》单元练习(北师大版八年级下)

课题单元练习题习题内容A组一、选择题(每题10分)1.x与y的差的5倍与2的和是一个非负数,可表示为()(A)()025>+-yx(B)()025≥+-yx(C)025≥+-yx(D)0225≤+-yx2.下列说法中正确的是()(A)3=x是32>x的一个解. (B)3=x是32>x的解集.(C)3=x是32>x的唯一解. (D)3=x不是32>x的解.3.不等式组()()⎪⎪⎩⎪⎪⎨⎧->+<-2.351,062xx的解集是()(A)32<<x(B)38-<<-x(C)38<<-x(D)8-<x或3>x4.若4224-=-mm,那么m的取值范围是()(A)不小于2 (B)不大于2 (C)大于2 (D)等于2二、填空题(每题10分)5. 当x___ __时,代数式43+-x的值是非正数.6..若x同时满足不等式032>+x与02<-x,则x的取值范围是___ __.三、解答题7.(10分)解不等式3223->+xx8.解不等式组(各15分)(1)⎩⎨⎧-<-<-2235xx(2)⎪⎩⎪⎨⎧+<-≤+--)1(3151215312xxxxB 组1.x 与y 的差的5倍与2的和是一个非负数,可表示为( )(A )()025>+-y x (B )()025≥+-y x (C )025≥+-y x (D )0225≤+-y x2.下列说法中正确的是( )(A )3=x 是32>x 的一个解. (B )3=x 是32>x 的解集.(C )3=x 是32>x 的唯一解. (D )3=x 不是32>x 的解.3. 不等式()222-≤-x x 的非负整数解的个数是( )(A )1 (B )2 (C )3 (D )44.若,0<+b a 且0>b ,则b a b a --,,,的大小关系是( )(A )b a b a -<-<<(B ) b a a b <-<<-(C )b a b a <-<-<(D )a b b a -<<-<5.若不等式()33->-a x a 的解集是1<x ,则a 的取值范围是( )(A ) 3>a (B )3->a (C ) 3<a (D )3-<a6.若4224-=-m m ,那么m 的取值范围是( )(A )不小于2 (B )不大于2 (C )大于2 (D )等于27.两个代数式1-x 与3-x 的值的符号相同,则x 的取值范围是( )(A )3>x (B )1<x (C ) 21<<x (D )1<x 或3>x8.如果方程组⎩⎨⎧=++=+.33,13y x k y x 的解为x 、y ,且42<<k ,则y x -的取值范围是( ) (A ) 10<-<y x (B ) 210<-<y x (C )11<-<-y x (D )13-<-<-y x 9.若方程()()x x m x m 53113--=++的解是负数,则m 的取值范围是( )(A )45->m (B )45-<m (C )45>m (D )45<m 10.已知x 关于的不等式组⎩⎨⎧>--≥-.0,125a x x 无解,则a 的取值范围是_____.11.如果关于x 的不等式()51+<-a x a 和42<x 的解集相同,则a 的值为_____.12.解不等式3225332x x x x --≥+--,并把它的解集在数轴上表示出来.13.已知关于y x ,的方程组⎩⎨⎧=--=+m y x m y x 232的解y x ,均为负数,求m 的取值范围.。
(北师大版)北京市八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测(包含答案解析)

一、选择题1.若点(4,12)--A a a 在第三象限,则a 的取值范围是( ).A .142a <<B .12a >C .4a <D .4a > 2.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1020x x ->⎧⎨+≤⎩B .1020x x +>⎧⎨+≤⎩C .1020x x +>⎧⎨-≤⎩D .1020x x -≤⎧⎨+<⎩ 3.三角形的两边长分别是4和11,第三边长为34m +,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有( )A .2种B .3种C .4种D .5种 6.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 7.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤8.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2B .a ≤-2C .a >-2D .a ≥-2 9.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b >D .22a b -+<-+10.如果不等式组5x x m <⎧⎨>⎩有解,那么m 的取值范围是( ) A .m >5 B .m≥5 C .m <5 D .m≤811.已知不等式()33a x a -<-的解集是1x >-,则a 的取值范围是( )A .3a >B .3a ≥C .3a <D .3a ≤12.已知点()1,23P a a +-在第四象限,则a 的取值范围是( )A .1a <-B .312a -<<C .312a -<<D .32a > 二、填空题13.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.14.已知a 为整数,且340218a <+<,则a 的值为____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.点()3,1m m --在第四象限,则m 的取值范围是_______.17.已知:a 、b 、c 是三个非负数,并且满足326a b c ++=,231a b c +-=,设37m a b c =+-,设s 为m 的最大值.则s 的值为__________.18.若关于x 的不等式组31123124x x x a +⎧->⎪⎪⎨+-⎪-<⎪⎩有4个整数解,那么a 的取值范围是_____. 19.若a b >,则2a _________2b (填“<”、“=”或“>”号).20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.(1)解不等式:1213x x +≤+并把解集表示在数轴上.(2)若关于x 的不等式组22x a +>的解为1x >-,求a 的值.22.解下面一元一次不等式组,并写出它的所有非负整数解.515264253(5)x x x x -+⎧+>⎪⎨⎪+≤-⎩. 23.列方程解应用题:七年级1班计划购买一批书包和词典作为“迎新知识竞赛”活动奖品,了解到每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)求每个书包和每本词典的价格;(2)若该班计划用900元购买40份(即书包、词典的总数量)奖品,设其中购买了m 个书包,请写出余下的钱的代数式,当余下的钱为最小值时,问该班购买书包和词典的数量各是多少?24.某厂贷款8万元购进一台机器生产商品.已知商品的成本每个8元,成品后售价是每个15元,应付税款和损耗总费用是销售额的20%.若每个月能生产销售1000个该商品,问至少几个月后能赚回这台机器的贷款?25.2020年新冠肺炎疫情在全球蔓延,全球疫情大考面前,中国始终同各国安危与共、风雨同舟,时至5月,中国已经向150多个国家和国际组织提供医疗物资援助.某次援助,我国组织20架飞机装运口罩、消毒剂、防护服三种医疗物资共120吨,按计划20架飞机都要装运,每架飞机只能装运同一种医疗物资,且必须装满.根据如下表提供的信息,解答以下问题:(2)若此次物资运费为W 元,求W 与x 之间的函数关系式;(3)如果装运每种医疗物资的飞机都不少于4架,那么怎样安排运送物资,方能使此次物资运费最少,最少运费为多少元?26.(1)计算:0)4π+-(2)解不等式:452(1)x x +≤+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】结合题意,根据点的坐标、象限的性质,列一元一次不等式组并求解,即可得到答案.【详解】∵点(4,12)--A a a 在第三象限∴40a -<且120a -<∴4a <且12a > ∴142a << 故选:A .【点睛】 本题考查了直角坐标系和一元一次不等式组的知识;解题的关键是熟练掌握坐标、象限、一元一次不等式组的性质,从而完成求解.2.C解析:C【分析】由数轴可得表示的解集为12x -<≤,把各个选项求出解集,即可解答.【详解】数轴表示的解集为12x -<≤.解不等式组1020x x ->⎧⎨+≤⎩,得:12x x >⎧⎨≤-⎩,解集为空集,故A 不符合题意. 解不等式组1020x x +>⎧⎨+≤⎩,得:12x x >-⎧⎨≤-⎩,解集为空集,故B 不符合题意. 解不等式组1020x x +>⎧⎨-≤⎩,得:12x x >-⎧⎨≤⎩,解集为12x -<≤,故C 符合题意. 解不等式组1020x x -≤⎧⎨+<⎩,得:12x x ≤⎧⎨<-⎩,解集为2x <-,故D 不符合题意. 故选C .【点睛】本题考查在数轴上表示不等式的解集以及解不等式组,解决本题的关键是求出不等式组的解集. 3.A解析:A【分析】已知两边的长,第三边应该大于任意两边的差,而小于任意两边的和,列不等式进行求解后再进行判断即可.【详解】解:根据三角形的三边关系,得11-4<3+4m <11+4,解得1<m <3.故选:A .【点睛】此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】设4人车租x 辆,6人车租y 辆,根据没有空座列出方程,结合至少有1名教师列出不等式,求解即可.【详解】解:设4人车租x 辆,6人车租y 辆,∵不得有空座,则461038x y +=+ ∴283y x =- 又∵每辆车上至少有1名教师,∴10x y +≤ 把283y x =-代入10x y +≤得,28103x x +-≤ ∴6x ≤∵x 、y 都是整数, 由283y x =-知x 是3的倍数, 因此,当x=0时,y=8;当x=3时,y=6;当x=6时,y=4;故有3种方案,故选:B .【点睛】 此题主要考查了二元一次方程与一元一次不等式的应用,关键是根据题目所提供的等量关系和不等量关系,列出方程和不等式求解.6.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.7.D解析:D【分析】根据运行程序,第一次运算结果小于等于75,第二次运算结果大于75列出不等式组,然后求解即可.【详解】由题意得,()2175221175x x +≤⎧⎪⎨++>⎪⎩①②,解不等式①得:37x ≤,解不等式②得:18x >,∴1837x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.8.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.9.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A、根据不等式的性质3,不等式的两边乘以(-3),可得-3a<-3b,故A不成立;B、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B成立;C、根据不等式的性质2,不等式的两边乘以13,可得33a b>,故C成立;D、根据不等式的性质3,不等式的两边乘以(-1),可得-a<-b,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.10.C解析:C【解析】∵不等式组有解,∴m <5.故选C . 【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键. 11.C解析:C【分析】根据已知解集得到a-3为负数,即可确定出a 的范围.【详解】解:不等式(a-3)x <3-a 的解集为x >-1,∴a-3<0,解得a <3.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解题关键.12.B解析:B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【详解】∵点P (1a +,23a -)在第四象限,∴10230a a +>⎧⎨-<⎩, ∴a 的取值范围是312a -<<. 故选:B .【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键.二、填空题13.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】 解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<, 解得3<h <6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.14.2【分析】先根据无理数的估算得出和的取值范围再解一元一次不等式组即可得【详解】即即即解得又为整数故答案为:2【点睛】本题考查了无理数的估算解一元一次不等式组熟练掌握无理数的估算方法是解题关键解析:2【分析】【详解】274064<<,<34<<,161825<<,<,即45<<,3402a <+<325a ∴<+<<,即325a <+<,解得13a <<,又a 为整数,2a ∴=,故答案为:2.【点睛】本题考查了无理数的估算、解一元一次不等式组,熟练掌握无理数的估算方法是解题关键.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】根据点()在第四象限列出关于m 的不等式组解之可得【详解】∵点()在第四象限∴解得故答案为:【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集正确求出每一个不等式解是基础熟知 解析:1m <【分析】根据点(3m -,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点(3m -,1m -)在第四象限,∴3010m m ->⎧⎨-<⎩, 解得1m <,故答案为:1m <.【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集,正确求出每一个不等式解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【分析】根据题意先把看作已知数分别用表示出和让列式求出的取值范围再求得用表示的形式结合的取值范围即可求得的值【详解】解:3a+2b+c=62a+b-3c=1解得a=7c-4b=9-11c ;∵a≥0b解析:611-【分析】 根据题意先把c 看作已知数,分别用c 表示出a 和b ,让0a ≥,0b ≥列式求出c 的取值范围,再求得m 用c 表示的形式,结合c 的取值范围即可求得s 的值.【详解】解:3a+2b+c=6,2a+b-3c=1,解得a=7c-4,b=9-11c ;∵a≥0、b≥0,∴7c-4≥0,9-11c≥0, ∴49711c ≤≤. ∵m=3a+b-7c=3c-3,∴m 随c 的增大而增大, ∵911c ≤. ∴当c 取最大值911,m 有最大值, ∴m 的最大值为s=3×911-3=611-. 故答案为:611-. 【点睛】 本题考查解三元一次方程组以及解不等式组,把c 看作已知数,分别用c 表示a 和b 是解答本题的关键.18.【分析】不等式组整理后根据4个整数解确定出a 的范围即可【详解】解:不等式组整理得:解得:1<x <-a-2由不等式组有4个整数解得到整数解为2345∴5<-a-2≤6解得:-8≤a <-7故答案为:-8解析:87a -≤<-【分析】不等式组整理后,根据4个整数解确定出a 的范围即可.【详解】解:不等式组整理得:12x x a -⎩-⎧⎨><, 解得:1<x <-a-2,由不等式组有4个整数解,得到整数解为2,3,4,5,∴5<-a-2≤6,解得:-8≤a <-7,故答案为:-8≤a <-7【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.19.>【分析】根据不等式的性质直接判断即可【详解】解:∵根据不等式性质2不等式两边乘(或除以)同一个正数不等号的方向不变∴>故答案为:>【点睛】本题考查了不等式的性质解题关键是熟记不等式的性质解析:>【分析】根据不等式的性质直接判断即可.【详解】解:∵a b >,根据不等式性质2,不等式两边乘(或除以)同一个正数,不等号的方向不变,∴2a >2b ,故答案为:>.【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)4x ≤,画图见解析;(2)4a =【分析】(1)先求出不等式的解集,再根据不等式的解集表示在数轴上即可;(2)先求出不等式的解集,再根据不等式解集列出关于a 的方程即可求解.【详解】(1)1213x x +≤+,解得:4x ≤;(2)解不等式得:22a x ->∵1x >-,∴212a -=- 解得:4a =【点睛】本题考查解不等式,用数轴表示解集,根据不等式解集求参数,解题的关键是熟练掌握解不等式的方法.22.不等式组的解集为﹣1<x≤2;所有非负整数解为:0,1,2【分析】求出不等式组的解集,根据不等式组的解集求出即可.【详解】解:()5152642535x x x x -+⎧+>⎪⎨⎪+≤-⎩①②,解不等式①得x >﹣1;解不等式②得x≤ 2;∴原不等式组的解集为﹣1<x≤ 2,∴原不等式组的所有非负整数解为0,1,2.【点睛】本题考查了解一元一次不等式的整数解,关键是求出不等式组的解集.23.(1)每个书包价格为28元,每本词典价格为20元;(2)购买方案为购买书包12个,词典28本.【分析】(1)设每个书包价格为x 元,则每本词典价格为(x-8)元,根据用124元恰好可以买到3个书包和2本词典,列方程组求解;(2)设购买书包m 个,则购买词典(40-m )个,根据“余下的钱最少”列不等式求解即可.【详解】(1)设每个书包价格为x 元,则每本词典价格为(8)x -元,根据题意得32(8)124x x +-=,解得28x =,则28820-=(元),答:每个书包价格为28元,每本词典价格为20元;(2)设购买书包m 个,则购买词典(40)m -个,余下的钱为900[2820(40)]m m -+-1008m =-,由题意知10080m -,即12.5m ≤,当12m =时,1008m -为最小的正整数4,答:购买方案为购买书包12个,词典28本.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.24.20【分析】设x 个月后能赚回这台机器的贷款,根据总利润=单个利润×每月销售数量×月份数结合总利润不低于贷款数,即可得出关于x 的一元一次不等式,解出不等式取其中最小值即可得出结论.【详解】解:设至少x 个月后能赚回这台机器的贷款则()1581520%100080000x --⨯⨯≥解得:20x ≥答:至少20个月后能赚回这台机器的贷款.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.25.(1)404(020)y x x =-<<且x 为正整数;(2)220044000W x =-+(020)x <<且x 为正整数;(3)9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【分析】(1)分别计算每种飞机所运载的重量,根据总重量120吨列出函数关系式,注意x 的实际意义;(2)根据表格信息,分别计算每种飞机所承担的运费,再相加可得总运费,注意x 的实际意义;(3)由每种医疗物资的飞机都不少于4架,列出一元一次不等式组,解得x 的取值范围,即可解得最少运费.【详解】(1)根据题意得,设有x 架飞机装运口罩,有y 架飞机装运消毒剂,则有(20)x y --架飞机装运防护服, 854(20)120x y x y ++--=解得:404(020)y x x =-<<;y ∴与x 之间的函数关系式:404(020)y x x =-<<且x 为正整数;(2)120016001000(20)W x y x y =++--20060020000x y =++200600(404)20000x x =+⨯-+220044000x =-+(020)x <<且x 为正整数;(3)由题意得:44204x y x y ≥⎧⎪≥⎨⎪--≥⎩4404420(404)4x x x x ≥⎧⎪∴-≥⎨⎪---≥⎩解得:89x ≤≤且x 为正整数,8x ∴=或9x =, W 220044000x =-+22000k =-<W ∴随x 的增大而减小,∴当9x =时,W 最小,220044000220094400024200W x =-+=-⨯+=(元)4044,207x x y ∴-=--=答:9架飞机装运口罩,4架飞机装运消毒剂,7架飞机装运防护服,方能使此次物资运费最少,最少运费为24200元.【点睛】本题考查一次函数的实际应用、解一元一次不等式组、一次函数的增减性等知识,是重要考点,难度较易,掌握相关知识是解题关键.26.(1)3-;(2)x≤32-. 【分析】(1)原式利用零指数幂法则,绝对值的意义,以及算术平方根性质计算即可得到结果; (2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【详解】解:(1)原式=14+-3-;(2)去括号,得4x+5≤2x+2,移项合并同类项得,2x≤-3,解得x≤32-. 【点睛】此题考查了实数的运算和解一元一次不等式,零指数幂,熟练掌握运算法则是解本题的关键.。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)

北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 已知a =23+x ,b =32+x ,且a >2>b ,那么求x 的取值范围。
3、已知方程组 2x +y =5m +6 的解为负数,求m 的取值范围。
X -2y =-174、若不等式组 x <a 无解,求a 的取值范围。
213-x >15、当x 取哪些整数时,不等式 2(x +2)<x +5与不等式3(x -2)+9>2x 同时成立?6、解不等式 (1)12-x x >1 (2)223-+x x <27、某工厂现有A 种原料290千克,B 种原料220千克,计划利用这两种原料生产甲、乙两种产品共40件,已知生产甲种产品需要A 种原料8千克,B 种原料4千克,生产乙种产品需要A 种原料5千克,B 种原料9千克。
问有几种符合题意的生产方案?8、已知有长度为3cm,7cm,xcm 的三条线段,问,当x 为多长时,这三条线段可以围成一个三角形?9、把一批铅笔分给几个小朋友,每人分5支还余2支;每人分6支,那么最后一个小朋友分得的铅笔小于2支,求小朋友人数和铅笔支数。
一、填空1、不等式组()122431223x x x x ⎧--≥⎪⎪⎨-⎪>+⎪⎩解集为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是3.若不等式组2113x a x <⎧⎪-⎨>⎪⎩无解,则a 的取值范围是 .4.已知方程组2420x ky x y +=⎧⎨-=⎩有正数解,则k 的取值范围是 .5.若关于x 的不等式组61540x xx m +⎧>+⎪⎨⎪+<⎩的解集为4x <,则m 的取值范围是 .6.不等式723x x +--<的解集为 . 二、选择题:7、若关于x 的不等式组12x x m -≤<⎧⎨>⎩有解,则m 的范围是( )A .2m ≤ B .2m < C .1m <- D .12m -≤<8、不等式组2.01x x x >-⎧⎪>⎨⎪<⎩的解集是( ).1.0.01.21A x B x C x D x >-><<-<<9、关于x 、y 方程组322x y x y a +=⎧⎨-=-⎩解是负数,则a 取值范围( ) A.-4<a<5 B.a>5 C.a<-4 D.无解三、解答题 10、解下列不等式组,并在数轴上表示解集。
⑶()72321235312x x x x x -⎧+>+⎪⎪⎨-⎪>-⎪⎩ ⑷()43321311522x x x x -<+⎧⎪⎨->-⎪⎩11、已知方程组256217x y m x y +=+⎧⎨-=-⎩的解为负数,求m 的取值范围.12、代数式213x +的值小于3且大于0,求x 的取值范围.13、求同时满足2328x x -≥-和121xx --<+的整数解14、某校今年冬季烧煤取暖时间为4个月.如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨.该校计划每月烧煤多少吨?15、某班学生完成一项工作,原计划每人做4只,但由于其中10人另有任务未能参加这项工作,其余学生每人做6只,结果仍没能完成此工作,若以该班人数为未知数列方程,求此不等式解集。
一元一次不等式及不等式组基础训练一.选择题:1.在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( ) A .x >0 B .x <2 C .0<x <2 D .x >22.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .33、(2007年福州)解集在数轴上表示为如图1所示的不等式组是(A .32x x >-⎧⎨⎩≥ B .32x x <-⎧⎨⎩≤ C .32x x <-⎧⎨⎩≥ D .32x x >-⎧⎨⎩≤4.已知两个不等式的解集在数轴上表示如图所示,那么由这两个不等式组成的不等式组的解集是A .x ≥1B .x >-1C .x >1D .-1≤x ≤15.(2007山东临沂课改)若0a b <<,则下列式子:①12a b +<+; ②1ab>;③a b a b +<;④11ab <中,正确的有( ) A .1个B .2个C .3个D .4个6. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩ 其中是一元一次不等式组的个数是( )图1A.3x > B.1y y -+>C.12x> D.21x >8.如果a ,1a +,a -,1a -四个数在数轴上所对应的点是按从左到右的顺序排列的,那么a 满足下列各式中的( ) A.12a <B.0a < C.0a > D.12a <-9.下列不等式总成立的是( ) A.42a a >B.20a >C.2a a >D.212a -≤010.已知a <b ,则下列不等式中不正确的是( ).A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -411.如果0x y +<,0xy <,那么正确的结论是( ) A.x y ,同号B.x y ,异号,且负数的绝对值较大 C.x y ,异号,且正数的绝对值较大D.不确定12.已知不等式组2113x x a-⎧>⎪⎨⎪>⎩的解集为2x >,则 ( )A.2a <B.2a =C.2a >D.2a ≤13.已知方程组2231y x my x m -=⎧⎨+=+⎩的解x 、y 满足2x+y ≥0,则m 的取值范围是 ( )A.m ≥-43B.m ≥43C.m ≥1D.-43≤m ≤114..关于x 的不等式组⎩⎨⎧x +152>x -32x +23<x +a 只有4个整数解,则a 的取值范围是 ( )A. -5≤a ≤-143B. -5≤a <-143C. -5<a ≤-143D. -5<a <-14315. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( )A.1个 B.2个 C.3个 D.4个16. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.1 17. a 是一个整数,比较a 与3a 的大小是( )A.3a a > B.3a a < C.3a a = D.无法确定 18. 若m >n ,则下列不等式中成立的是( )A .m + a <n + bB .ma <nbC .ma 2>na 2D .a -m <a -n 19.(2005年大连市)图2是甲、乙、丙三人玩跷跷板的示意图(支点在中点处),则甲的体重的取值范围在数轴上表示正确的是( )A B C D 20.(黄石市2005)已知关于x 的不等式2x+m>-5的解集如图所示,则m 的值为( ) A .1 B .0 C .-1 D .-221.设a b <,那么解集是a x b <<的不等式组是( )A.00x a x b ->⎧⎨->⎩,;B.00x a x b -<⎧⎨-<⎩,;C.00x a x b ->⎧⎨-<⎩,;D.00x ax b -<⎧⎨->⎩,22.下列不等式组中是一元一次不等式组的是( )A.30220x x ->⎧⎨-<⎩,;B.210230x x x +<⎧⎨+⎩,;≤C.020x y x +>⎧⎨<⎩,;D.1020x y -<⎧⎨+>⎩,23.如果|x -2|=x -2,那么x 的取值范围是( ).A.x ≤2 B.x ≥2 C.x <2 D.x >2 24.已知关于x 的不等式组2x x m<⎧⎨>⎩,无解,则m 的取值范围是( )A.2m <B.2m >C.2m ≥D.不能确定25.已知关于x 的不等式组21x x x a <⎧⎪>-⎨⎪<⎩,,无解,则a 的取值范围是( ) A.1a ≤- B.12a -<< C.a ≥0 D.2a ≤二.填空题:1.已知x >2,化简x -|2-x |=______.2.若不等式组12x x m -⎧⎨>⎩,≤有解,则m 的取值范围是______.3.如果三角形的三边长度分别为3a ,4a ,14,则a 的取值范围是______.4.已知点()P a b ,在第二象限,向下平移4个单位得到点Q ,点Q 在第三象限,那么b 的取值范围是______. 5.如果关于x 的不等式(1)5a x a -<+和24x <的解集相同,则a 的值为______.6.不等式组42078x y y x y=+⎧⎨<<⎩,的整数解为______.7.若不等式组x a <⎧⎨,的解集是空集,则a ,b 的大小关系是_________.甲 乙40kg 丙50kg 甲图19. 若a b >,则22____ac bc . 10. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .11. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .12. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .13.( 2007湖北天门)已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。
14.不等式的解集在数轴上表示如图所示,则该不等式可能是_____________。
15.不等式1252x +-≤-≤的解集是______________16.如果不等式(3)3a x a +>+的解集是1x <,那么a 的取值范围是____________.17.已知关于x 的不等式组321x a x -≥⎧⎨->-⎩有五个整数解,这五个整数是____________,a 的取值范围是___________________18.比较下面两个算式结果的大小(在横线上填“>”“<”“=”)2243+______432⨯⨯ 2222+______222⨯⨯ 22431⎪⎭⎫ ⎝⎛+______4312⨯⨯()2252+-______()522⨯-⨯ 223221⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ ______32212⨯⨯通过观察归纳,写出能反映这种规律的一般情况:______________________________。