振动力学期末考试试题和答案

合集下载

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

《振动力学》作业资料(含答案解析)

《振动力学》作业资料(含答案解析)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

振动力学考题集[1]

振动力学考题集[1]

1、四个振动系统中,自由度为无限大的是()。

A. 单摆;B. 质量-弹簧;C. 匀质弹性杆;D. 无质量弹性梁;2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。

A. c1+c2;B. c1c2/(c1+c2);C. c1-c2;D. c2-c1;3、()的振动系统存在为0的固有频率。

A. 有未约束自由度;B. 自由度大于0;C. 自由度大于1;D. 自由度无限多;4、多自由度振动系统中,质量矩阵元素的量纲应该是()。

A. 相同的,且都是质量;B. 相同的,且都是转动惯量;C. 相同的,且都是密度;D. 可以是不同的;5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频率()固有频率时,稳态位移响应幅值最大。

A. 等于;B. 稍大于;C. 稍小于;D. 为0;6、自由度为n的振动系统,且没有重合的固有频率,其固有频率的数目(A )。

A. 为n;B. 为1;C. 大于n;D. 小于n;7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定()。

A. 大于0;B. 等于0;C. 小于0;D. 不能确定;8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。

A. 大于0;B. 等于0;C. 小于0;D. 不能确定;9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激励频率为无限大时,该集中质量的稳态位移响应一定()。

A. 大于0;B. 等于0;C. 为无穷大;D. 为一常数值;10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是()。

A. 杆的纵向振动;B. 弦的横向振动;C. 一般无限多自由度系统;D. 梁的横向振动;11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。

A. k1+k2;B. k1k2/(k1+k2);C. k 1-k 2;D. k 2-k 1;12、 无阻尼振动系统两个不同的振型u (r )和u (s ),u (r )T Ku (s )的值一定( )。

振动力学习题集含答案

振动力学习题集含答案

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+= 系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

《振动力学》习题集[含答案]

《振动力学》习题集[含答案]

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得:()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得:()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222121212121θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

《振动力学》习题集(附答案解析)

《振动力学》习题集(附答案解析)

代入各单元状态变量的第一元素,即:
得到模态:

5.10在图E5.10所示系统中,已知GIpi(i= 1 , 2),li(i= 1 , 2)和Ji(i= 1 , 2)。用传递矩阵法计算系统的固有频率和模态。
图E5.10
解:
两自由端的边界条件为: , 。
其中: , 。
由自由端边界条件得频率方程:

代入各单元状态变量的第一元素,即:
图 T 2-26答案图 T 2-25
解:
受力如答案图T 2-26。对O点取力矩平衡,有:
4.7 两质量均为m的质点系于具有力F的弦上,如图E4.7所示。忽略振动过程中弦力的变化写出柔度矩阵,建立频率方程。求系统的固有频率和模态,并计算主质量、主刚度、简正模态,确定主坐标和简正坐标。
图E4.7答案图E4.7(1)
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
解:

求出C,D后,代入上面第一个方程即可得。
2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
故频率方程为:
5.1质量m、长l、抗弯刚度EI的均匀悬臂梁基频为3.515(EI/ml3)1/2,在梁自由端放置集中质量m1。用邓克利法计算横向振动的基频。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动力学期末考试试题和答案
振动力学(试题) 2008 一、填空(每空2分)
1、设周期振动信号的周期为,则其傅里叶级数的展开的基频为,T
,,,
2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为,,, ,
作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0
动的幅值为,,,
4、粘性阻尼一周期内所消耗的能量与频率成,,,比。

5、无阻尼多自由度系统的主振型正交关系为,,,,,,
6、写出多自由度系统再频率域的输入与输出之间的关系,,,,,
7、写出瑞利商的表达式,,,,,,
r8、多自由度系统中共存在个主固有频率,其相应的主振型,,,
正交。

9、无阻尼多自由度系统,利用里兹法计算出的主振型关于M、K是
否正交,,,,(答是或否)
10、写出如图T-1所示梁的左端边界条件,,,,,,,,,,
y
L x
K
图T-1
二、(20分)系统如图T-2所示,杆AB为刚性、均质,长度为,总L
质量为,弹簧刚度为,阻尼系数为。

求系统的固有频率及阻mck
尼因子。

图T-2
三、系统如图T-3所示。

求系统的固有频率与主振型。

k
k
k k k
m m m
X X X 123
图T-3
四、
五、(20分)简支梁如图T-5所示,弹性模量为E,质量密度为,, 横截面积为A,截面惯性矩为J。

求梁在中央受集中弯矩M下的响应。

(假设梁的初始状态为零)
图T-5
答案
一、填空(每空2分)
1、周期振动信号的周期为,则其傅里叶级数的展开的基频为 T2/,T
2、单自由度粘性阻尼系统的阻尼因子与阻尼系数的关系为,
c ,,
2mk
作用下系统响应的稳态振3、单自由度粘性阻尼系统在简谐力ptsin,0
p10动的幅值为 ,,B222k,,,,,(1)(2)
4、粘性阻尼一周期内所消耗的能量与频率成,正,比。

5、无阻尼多自由度系统的主振型正交关系为加权(M,K)正交:
0()ij,0()ij,,,TTTT ,,,,M,K,,,ijijMij(),Kij(),pipi,,
6、写出多自由度系统在频率域的输入与输出之间的关系
21,其中 xHP()()(),,,,HKMiC()(),,,,,,
TXKX7、写出瑞利商的表达式 ()RX,TXMX
r8、多自由度系统中共存在个重固有频率,其相应的主振型,,加
权(M,K)正交。

MK9、无阻尼多自由度系统,利用里兹法计算出的主振型关于、是
否正交,,,是,(答是或否)
10、写出如图T-1所示梁的左端边界条件
,,,,,EJy|0,EJyky||, x,0xx,,00
y
L
K
图T-1
二、(20分)系统如图T-2所示,杆AB为刚性、均质,长度为,总L 质量为,弹簧刚度为,阻尼系数为。

求系统的固有频率及阻mck
尼因子。

图T-2
解:刚性杆绕A端转动,取杆的转角为广义坐标。

受力如下图 ,
K
2,,Lk 2A
θ
LJ, c, 2L/2 L/2
12JmL,杆绕A端的转动惯量
3
研究杆,对A点取矩,得: 111222,,,,,,,,,mLcLLkL()0 32222
化简得:
111
,,,,,,mck0 342
1kkk3e2,,,,n得,固有频率: 1mme2m
3
1cc6e4,,,,阻尼因子: mkmkmk28ee,2
32
三、系统如图T-3所示。

求系统的固有频率与主振型。

k
k
k k k
m m m
X X X 123
图T-3
m,,解:取图示主坐标,系统质量矩阵为 M,,,m,,
2kk,,,刚度矩阵 K,,,,kk2,,
带入频率方程:
2KM,,,0
220kmk,,, 2,,,,,kkmk30,
202,,kkm,
210,,,2m,,得: 令,,,,,,,,,,131(2)(1)(4)0,,,,k012,,, ,,,1,2,4
各阶固有频率为 ,
k2,,1m
2k2, ,2m
4k2,3,m
伴随法求各阶固有频率对应的主振型,得
(3)(2)1,,,,,
第一列的伴随为 2,,
1
分别带入得到 ,,1,2,4
1
对应的主振型为 ,,,111
1
,1
对应的主振型为 ,,,022
1
1
对应的主振型为 ,,,,213
1
四、
五、(20分)简支梁如图T-5所示,弹性模量为E,质量密度为,,
横截面积为A,截面惯性矩为J。

求梁在中央受集中弯矩M=Mtsin,0 下的响应。

(假设梁的初始状态为零)
图T-5
解:加集中弯矩 Mtsin,0
ix,两端简支梁的正则振型为: ()sin,YxCiil
2 其中 C,i,Al
EJ22固有频率为: i,1,2,,,,ii4Al,
l,,qtpxtYxmxtYxdx()[(,)()(,)()],,将带入 Mtsin,ijj,00,x又,mxtMtxl(,)()(/2),,,Pxt(,)0,
ii,,,()()(/2)cossin,,qtMtYlMCt,得到正则广义力为: iji02l
i,i/2其中 cos(1),,2
第i个正则方程为: ,
ii,,2 ,,cossinMCt,,,,iiii02l
由上式求出正则坐标的稳态响应为:
1ii,, ,()cossintMCt,,ii022,l2,,i
梁的稳态振动响应为: ,
,ixii,,,1,,yxtCMCt(,)sincossin,,ii022,ll2,,i1,i ,2M1ix,,i/20,,sin(1) sint,,222,Alli2,4,,,,,i。

相关文档
最新文档