全国高考数学试题分类汇编10排列组合及二项式定理
全国高考数学 试题分类汇编 排列、组合及二项式定理

2010排列、组合、二项式定理1.(2010·陕西高考理科·T4)5()ax x+(x R ∈)展开式中3x 的系数为10,则实数a 等于( ) (A )-1 (B )12(C) 1 (D) 2 【命题立意】本题考查二项式定理的通项公式的应用及运算能力,属保分题。
【思路点拨】5()ax x+⇒5215r r r r T a C x -+=⇒523r -=⇒11510 2.a C a =⇒= 【规范解答】选D 552155,(0,1,2,3,4,5)rr r r r r r a T C x a C x r x --+⎛⎫=== ⎪⎝⎭Q ,令523r -=,所以1r =,所以11510 2.a C a =⇒=2.(2010·北京高考理科·T4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( ) (A )8289A A (B )8289A C (C )8287A A (D )8287A C【命题立意】本题考查排列组合的相关知识。
所用技巧:有序排列无序组合、不相邻问题插空法。
【思路点拨】先排8名学生,再把老师插入到9个空中去。
【规范解答】选A 。
8名学生共有88A 种排法,把2位老师插入到9个空中有29A 种排法,故共有8289A A 种排法。
【方法技巧】解决排列组合问题常用的方法与技巧:(1)有序排列无序组合;(2)不相邻问题插空法:可以把要求不相邻的元素插入到前面元素间的空中;(3)相邻问题捆绑法。
3.(2010·山东高考理科·T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) (A )36种(B )42种(C)48种(D )54种【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问题解决问题的能力和运算求解能力.【思路点拨】根据甲的位置分类讨论.【规范解答】选B ,分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B. 【方法技巧】排列问题常见的限制条件及对策1、有特殊元素或特殊位置,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置.2、元素必须相邻的排列,将必须相邻的的元素捆绑,作为一个整体,但要注意其内部元素的顺序.3、元素不相邻的排列,先排其他元素,然后“插空”.4、元素有顺序限制的排列.4.(2010·天津高考理科·T10)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( )(A )288种 (B )264种 (C )240种 (D )168种【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的能力。
高考数学试题分类详解排列组合二项式定理

高考数学试题分类详解排列组合二项式定理1、(全国1理10)的展开式中,常数项为15,则n= A.3 B.4 C.5D.6解.的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,,当n=6时,,选D。
2、(全国1文5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有A.36种 B.48种 C.96种 D.192种解.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有种,选C。
3、(全国2理10)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A)40种 (B) 60种 (C) 100种 (D) 120种解.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有种,选B。
4、(全国2文10)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种 B.20种 C.25种 D.32种解.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D。
5、(北京文5)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()A.个B.个C.个D.个解析:某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有个,选A。
6、(北京理5)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()A.1440种B.960种C.720种D.480种解析:5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。
十年高考真题分类汇编 数学 专题 排列组合与二项式定理

十年高考真题分类汇编(2010—2019)数学专题13 排列组合与二项式定理一、选择题1.(2019·全国3·理T4)(1+2x 2)(1+x)4的展开式中x 3的系数为( ) A.12B.16C.20D.24【答案】A【解析】(1+2x 2)(1+x)4的展开式中x 3的系数为C 43+2C 41=4+8=12.故选A.2.(2018·全国3·理T5) (x 2+2x)5的展开式中x 4的系数为( )A.10B.20C.40D.80【答案】C【解析】由展开式知T r+1=C 5r (x 2)5-r(2x -1)r=C 5r2r x10-3r.当r=2时,x 4的系数为C 5222=40.3.(2017·全国1·理T6)(1+1x 2)(1+x)6展开式中x 2的系数为( ) A.15B.20C.30D.35【答案】C【解析】(1+x )6的二项展开式通项为T r+1=C 6rx r,(1+1x2)(1+x )6的展开式中含x 2的项的来源有两部分,一部分是1×C 62x 2=15x 2,另一部分是1x 2×C 64x 4=15x 2,故(1+1x2)(1+x )6的展开式中含x 2的项为15x 2+15x 2=30x 2,其系数是30.4.(2017·全国3·理T4)(x+y)(2x-y)5的展开式中x 3y 3的系数为( ) A.-80 B.-40 C.40 D.80【答案】C【解析】(2x-y )5的展开式的通项公式T r+1=C 5r(2x )5-r(-y )r.当r=3时,x (2x-y )5的展开式中x 3y 3的系数为C 53×22×(-1)3=-40;当r=2时,y (2x-y )5的展开式中x 3y 3的系数为C 52×23×(-1)2=80.故展开式中x 3y 3的系数为80-40=40.5.(2017·全国2·理T6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】先把4项工作分成3份有C 42C 21C 11A 22种情况,再把3名志愿者排列有A 33种情况,故不同的安排方式共有C 42C 21C 11A 22·A 33=36种,故选D .6.(2016·四川·理T2)设i 为虚数单位,则(x+i)6的展开式中含x 4的项为( ) A.-15x 4B.15x 4C.-20i x 4D.20i x 4【答案】A【解析】二项式(x+i)6展开的通项T r+1=C 6rx 6-r i r,则其展开式中含x 4是当6-r=4,即r=2,则展开式中含x 4的项为C 62x 4i 2=-15x 4,故选A .7.(2016·全国2·理T5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9【答案】B【解析】由题意知,小明从街道的E 处出发到F 处的最短路径有6条,再从F 处到G 处的最短路径有3条,则小明到老年公寓可以选择的最短路径条数为6×3=18,故选B .8.(2016·全国3·理T12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个【答案】C【解析】由题意知a 1=0,a 8=1,则满足题意的a 1,a 2,…,a 8的可能取值如下:综上可知,不同的“规范01数列”共有14个.9.(2016·四川·理T4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72【答案】D【解析】要组成没有重复数字的五位奇数,则个位数应该为1,3,5中的一个,其他位置共有A44种排法,所以其中奇数的个数为3A44=72,故选D.10.(2015·四川·理T6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个【答案】B【解析】当首位数字为4,个位数字为0或2时,满足条件的五位数有C21A43个;当首位数字为5,个位数字为0或2或4时,满足条件的五位数有C31A43个.故满足条件的五位数共有C21A43+C31A43=(2+3)A43=5×4×3×2×1=120个.故选B.11.(2015·全国1·理T10)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【答案】C【解析】(x2+x+y)5=[(x2+x)+y]5的展开式通项为T r+1=C5r(x2+x)5-r y r(r=0,1,2,…,5).由题意,y的幂指数为2,故r=2.对应的项为C52(x2+x)3y2=10(x2+x)3y2.记(x2+x)3的展开式通项为T s+1=C3s(x2)3-s x s=C3s x6-s(s=0,1,2,3),由题意令6-s=5,得s=1.故所求项的系数为10C31=30.12.(2015·陕西·理T4)二项式(x+1)n(n∈N*)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4【答案】B【解析】(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n-2=C n2=15,解得n=6,故选B.13.(2015·湖北·理T3)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A.212B.211C.210D.29【答案】D【解析】由条件知C n3=C n7,∴n=10.∴(1+x)10中二项式系数和为210,其中奇数项的二项式系数和为210-1=29.14.(2014·大纲全国·理T5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【答案】C【解析】从6名男医生中选出2名有C62种选法,从5名女医生中选出1名有C51种选法,故共有C62·C51=6×5×5=75种选法,选C.2×115.(2014·辽宁·理T6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24【答案】D【解析】插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为A43=24.故选D.16.(2014·四川·理T6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种【答案】B【解析】(1)当最左端排甲的时候,排法的种数为A55;(2)当最左端排乙的时候,排法种数为C41A44.因此不同的排法的种数为A 55+C 41A 44=120+96=216.17.(2014·重庆·理T9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ) A.72B.120C.144D.168【答案】B【解析】第1步,先排歌舞类节目,有A 33=6种排法,排好后有4个空位.第2步,排另3个节目,因为3个歌舞节目不相邻,则中间2个空位必须安排2个节目.分两类情况:①中间两个空位安排1个小品类节目和1个相声节目,有C 21A 22=4种排法,最后一个小品类节目排两端,有2种方法.共有6×4×2=48种排法. ②中间两个空位安排2个小品类节目,有A 22=2种排法,排好后有6 个空位,选1个将相声类节目排上,有6种排法.共有6×2×6=72种排法. 所以一共有48+72=120种排法.18.(2014·四川·理T2)在x(1+x)6的展开式中,含x 3项的系数为( ) A.30B.20C.15D.10【答案】C【解析】含x 3的项是由(1+x)6展开式中含x 2的项与x 相乘得到,又(1+x)6展开式中含x 2的项的系数为C 62=15,故含x 3项的系数是15. 19.(2014·湖南·理T4) (12x -2y)5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20【答案】A 【解析】由已知,得T r+1=C 5r (12x)5-r(-2y)r=C 5r(12)5-r(-2)r x 5-r y r(0≤r≤5,r∈Z),令r=3,得T 4=C 53(12)2(-2)3x 2y 3=-20x 2y 3.20.(2014·浙江·理T5)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( ) A.45 B.60 C.120 D.210【答案】C【解析】∵(1+x )6展开式的通项公式为T r+1=C 6rx r ,(1+y )4展开式的通项公式为T h+1=C 4ℎy h,∴(1+x )6(1+y )4展开式的通项可以为C 6r C 4ℎx r y h. ∴f (m ,n )=C 6m C 4n .∴f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 63+C 62C 41+C 61C 42+C 43=20+60+36+4=120.故选C .21.(2013·全国1·理T9)设m 为正整数,(x+y)2m 展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( ) A.5 B.6 C.7 D.8 【答案】B【解析】由题意可知,a=C 2m m ,b=C 2m+1m ,∵13a=7b,∴13·(2m )!m !m !=7·(2m+1)!m !(m+1)!, 即13=2m+1,解得m=6.故选B.22.(2013·山东·理T10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252 C.261 D.279 【答案】B【解析】构成所有的三位数的个数为C 91C 101C 101=900,而无重复数字的三位数的个数为C 91C 91C 81=648,故所求个数为900-648=252,应选B .23.(2013·全国2·理T5)已知(1+ax)(1+x)5的展开式中x 2的系数为5,则a=( ) A.-4B.-3C.-2D.-1【答案】D【解析】因为(1+x)5的二项展开式的通项为C 5r x r(0≤r≤5,r∈Z),则含x 2的项为C 52x 2+ax·C 51x=(10+5a)x 2,所以10+5a=5,a=-1.24.(2013·辽宁·理T7)使(3x x √x )n(n ∈N *)的展开式中含有常数项的最小的n 为( )A.4B.5C.6D.7 【答案】B【解析】(3x +x √x )n 展开式中的第r+1项为C nr (3x)n-rx -32r =C n r 3n-rx n -52r ,若展开式中含常数项,则存在n ∈N *,r ∈N,使n-5r=0,故最小的n 值为5,故选B.25.(2013·大纲全国·理T7)(1+x)8(1+y)4的展开式中x 2y 2的系数是( ) A.56B.84C.112D.168【解析】因为(1+x)8的展开式中x 2的系数为C 82,(1+y)4的展开式中y 2的系数为C 42,所以x 2y 2的系数为C 82C 42=168.故选D.26.(2012·湖北·理T5)设a ∈Z,且0≤a<13,若512 012+a 能被13整除,则a=( )A.0B.1C.11D.12 【答案】D 【解析】∵512 012可化为(52-1)2 012,其二项式系数为T r+1=C 2012r522 012-r·(-1)r .故(52-1)2 012被13除余数为C 20122012·(-1)2 012=1,则当a=12时,512 012+12被13整除.27.(2012·安徽·理T7)(x 2+2) (1x 2-1)5的展开式的常数项是()A.-3B.-2C.2D.3【答案】D【解析】通项为T r+1=C 5r(1x 2)5-r(-1)r=(-1)rC 5r1x 10-2r.令10-2r=2或0,此时r=4或5.故(x 2+2)(1x 2-1)5的展开式的常数项是(-1)4×C 54+2×(-1)5×C 55=3.28.(2012·全国·理T2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A.12种 B.10种 C.9种 D.8种 【答案】A【解析】将4名学生均分为2个小组共有C 42C 22A 22=3种分法,将2个小组的同学分给两名教师带有A 22=2种分法,最后将2个小组的人员分配到甲、乙两地有A 22=2种分法,故不同的安排方案共有3×2×2=12种.29.(2012·辽宁·理T5)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( ) A.3×3! B.3×(3!)3C.(3!)4D.9!【答案】C【解析】完成这件事可以分为两步,第一步排列三个家庭的相对位置,有A 33种排法;第二步排列每个家庭中的三个成员,共有A 33A 33A 33种排法.由乘法原理可得不同的坐法种数有A 33A 33A 33A 33,故选C .30.(2012·安徽·理T10)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4【解析】6人之间互相交换,总共有C 62=15种,而实际只交换了13次,故有2次未交换.不妨设为甲与乙、丙与丁之间未交换或甲与乙、甲与丙之间未交换,当甲与乙、丙与丁之间未交换时,甲、乙、丙、丁4人都收到4份礼物;当甲与乙、甲与丙之间未交换时,只有乙、丙两人收到4份礼物,故选D . 31.(2011·全国·理T8) (x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40B.-20C.20D.40【答案】D【解析】令x=1得(1+a)(2-1)5=2,∴a=1.原式=x·(2x -1x)5+1x (2x -1x)5,故常数项为 x·C 53(2x)2(-1x )3+1x ·C 52(2x)3(-1x )2=-40+80=40.32.(2010·山东·理T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) A.36种 B.42种 C.48种 D.54种 【答案】B【解析】若乙排在第二位,则有A 33种方案;若乙不排在第二位,则乙只能排在第三、四、五位,此时共有A 31A 21A 33种方案,故共有A 33+A 31A 21A 33=42(种).二、填空题1.(2019·天津·理T10)(2x-18x 3)8的展开式中的常数项为 【答案】28【解析】T r+1=C 8r (2x)8-r(1-8x3)r=C 8r ·28-r·(-18)r·x8-4r.需8-4r=0,r=2.常数项为C 8226(-18)2=C 8226126=C 82=28.2.(2018·天津·理T10)在(x 2√x )5的展开式中,x 2的系数为.【答案】52【解析】展开式的通项为T r+1=C 5r x 5-r(2x)r =(-12)r C 5r x 5-3r2.令5-3r 2=2,可得r=2.所以(x 2x )5的展开式中的x 2的系数为(-12)2C 52=52.3.(2018·浙江·T14)二项式(√x 3+12x)8的展开式的常数项是 .【答案】7 【解析】通项为T r+1=C 8r (x 13)8-r (12x -1)r =(12)r C 8r x 8-4r3,当r=2时,8-4r3=0. 故展开式的常数项为(12)2C 82=14×8×72=7.4.(2018·上海·T3)在(1+x)7的二项展开式中,x 2项的系数为 (结果用数值表示). 【答案】21【解析】由(1+x)7的二项展开式的通项,得(1+x)7的二项展开式的x 2项的系数为C 72=21.5.(2018·全国1·理T15)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有 种.(用数字填写答案) 【答案】16【解析】方法一:①恰有1位女生时,有C 21C 42=12种选法. ②恰有2位女生时,有C 22C 41=4种选法.故不同的选法共有12+4=16种.方法二:6人中选3人共有C 63种选法,3人全是男生时有C 43种选法,所以至少有1位女生入选时有C 63−C 43=16种选法.6.(2018·浙江·T16)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成 个没有重复数字的四位数.(用数字作答) 【答案】1260 【解析】分两类:第一类:从0,2,4,6中取到0,则没有重复数字的四位数有C 31C 52A 31A 33=540;第二类:从0,2,4,6中不取0,则没有重复数字的四位数有C 32C 52A 44=720.所以没有重复数字的四位数共有540+720=1260种.7.(2017·山东·理T11)已知(1+3x)n的展开式中含有x 2项的系数是54,则n= .【答案】4【解析】二项展开式的通项T r+1=C n r (3x)r=3r·C n r ·x r,令r=2,得32·C n 2=54,解得n=4.8.(2017·浙江·T13)已知多项式(x+1)3(x+2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x+a 5,则a 4= ,a 5= . 【答案】16 4【解析】由二项式展开式可得通项公式为C 3r x 3-rC 2m x 2-m 2m,分别取r=3,m=1和r=2,m=2可得a 4=4+12=16,令x=0可得a 5=13×22=4.9.(2017·天津·理T14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个.(用数字作答) 【答案】1080【解析】①没有一个数字是偶数的四位数有A 54=120个;②有且只有一个数字是偶数的四位数有C 41C 53A 44=960个.所以至多有一个数字是偶数的四位数有120+960=1 080个.10.(2017·浙江·T16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有 种不同的选法.(用数字作答) 【答案】660【解析】由题意可得,总的选择方法为C 84C 41C 31种方法,其中不满足题意的选法有C 64C 41C 31种方法,则满足题意的选法有C 84C 41C 31−C 64C 41C 31=660种.11.(2016·全国1·理T14)(2x+√x )5的展开式中,x 3的系数是 .(用数字填写答案) 【答案】10【解析】二项式的通项公式T r+1=C 5r (2x)5-rx r 2=C 5r 25-rx 5-r2,令5-r2=3,解得r=4,故x 3的系数为C 54×25-4=10.12.(2016·天津·理T10) (x 2-1x )8的展开式中x 7的系数为 .(用数字作答)【答案】-56【解析】展开式通项为T r+1=C 8r (x 2)8-r(-1)r=(-1)rC 8r x16-3r,令16-3r=7,得r=3,所以展开式中x 7的系数为(-1)3C 83=-56.13.(2015·广东·理T12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560【解析】共有A 402=40×39=1 560条毕业留言.14.(2015·天津·理T12)在(x -1)6的展开式中,x 2的系数为. 【答案】 1516【解析】由题意知T r+1=C 6r x 6-r ·(-14x )r =C 6r ·x 6-2r ·(-14)r .令6-2r=2,可得r=2. 故所求x 2的系数为C 62(-14)2=1516. 15.(2015·重庆·理T12)(x32√x )5的展开式中x 8的系数是(用数字作答). 【答案】52【解析】展开式的通项公式T r+1=C 5r ·(x 3)5-r ·(2√x )r =C 5r ·2-r ·x 15-72r (r=0,1,2,…,5). 令15-72r=8,得r=2,于是展开式中x 8项的系数是C 52·2-2=52. 16.(2015·全国2·理T15)(a+x)(1+x)4的展开式中x 的奇数次幂项的系数之和为32,则a= .【答案】3【解析】∵(1+x)4=x 4+C 43x 3+C 42x 2+C 41x+C 40x 0=x 4+4x 3+6x 2+4x+1, ∴(a+x)(1+x)4的奇数次幂项的系数为4a+4a+1+6+1=32,∴a=3.17.(2014·安徽·理T13)设a ≠0,n 是大于1的自然数, (1+x a )n 的展开式为a 0+a 1x+a 2x 2+…+a n x n .若点A i (i,a i )(i=0,1,2)的位置如图所示,则a= .【答案】3 【解析】由题意得a 1=1a ·C n 1=n a =3,∴n=3a; a 2=1a 2C n 2=n (n -1)2a 2=4, ∴n 2-n=8a 2.将n=3a 代入n 2-n=8a 2得9a 2-3a=8a 2,即a 2-3a=0,解得a=3或a=0(舍去).∴a=3.18.(2014·北京·理T13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.【答案】36【解析】产品A,B 相邻时,不同的摆法有A 22A 44=48种.而A,B 相邻,A,C 也相邻时的摆法为A 在中间,C,B 在A的两侧,不同的摆法共有A 22A 33=12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).19.(2014·全国1·理T13)(x-y)(x+y)8的展开式中x 2y 7的系数为 .(用数字填写答案)【答案】-20【解析】(x+y)8的通项公式为T r+1=C 8r x 8-r y r (r=0,1,…,8,r ∈Z).当r=7时,T 8=C 87xy 7=8xy 7,当r=6时,T 7=C 86x 2y 6=28x 2y 6, 所以(x-y)(x+y)8的展开式中含x 2y 7的项为x·8xy 7-y·28x 2y 6=-20x 2y 7,故系数为-20.20.(2014·全国2·理T13)(x+a)10的展开式中,x 7的系数为15,则a= .(用数字填写答案)【答案】12【解析】设展开式的通项为T r+1=C 10r x10-r a r , 令r=3,得T 4=C 103x 7a 3,即C 103a 3=15,得a=12. 21.(2013·浙江·理T11)设二项式(√x -√x 3)5的展开式中常数项为A,则A= . 【答案】-10【解析】T r+1=C 5r (√x )5-r ·(-1√x 3)r =C 5r x 5-r 2·(-1)r ·x -r 3=(-1)r C 5r x 5-r 2-r 3=(-1)r C 5r x 15-5r 6. 令15-5r=0,得r=3,所以A=(-1)3C 53=-C 52=-10. 22.(2013·北京·理T12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .【答案】96【解析】分给同一人的2张参观券连号的情况共有12,23,34,45四种情况,从4人中选一人得到连号参观券,有4C 41种方法.其余3张分给3人可以全排列,有A 33种方法,所以不同的分法有4C 41×A 33=96种.23.(2013·大纲全国·理T14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)【答案】480【解析】先排除甲、乙外的4人,方法有A 44种,再将甲、乙插入这4人形成的5个间隔中,有A 52种排法,因此甲、乙不相邻的不同排法有A 44·A 52=480(种).24.(2013·浙江·理T14)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有 种(用数字作答).【答案】480【解析】按C 的位置分三类情况:①当C 在第一或第六位时,有A 55=120种排法;②当C 在第二或第五位时,有A 42A 33=72种排法;③当C 在第三或第四位时,有A 22A 33+A 32A 33=48种排法.所以共有2×(120+72+48)=480种排法.25.(2012·福建·理T11)(a+x)4的展开式中x 3的系数等于8,则实数a= .【答案】2【解析】∵T r+1=C 4r a r x 4-r ,∴当4-r=3,即r=1时,T 2=C 41·a·x 3=4ax 3=8x 3.故a=2. 26.(2012·浙江·理T14)若将函数f(x)=x 5表示为f(x)=a 0+a 1(1+x)+a 2(1+x)2+…+a 5(1+x)5,其中a 0,a 1,a 2,…,a 5为实数,则a 3= .【答案】10【解析】由x 5=a 0+a 1(1+x)+a 2(1+x)2+…+a 5(1+x)5可得,{x 5=a 5·C 55x 5,0·x 4=a 4C 44x 4+a 5C 54x 4,0·x 3=a 3C 33x 3+a 4C 43x 3+a 5C 53x 3, 可解得{a 5=1,a 4=-5,a 3=10.27.(2012·大纲·理T15)若(x +1)n 的展开式中第3项与第7项的二项式系数相等,则该展开式中12的系数为 .【答案】56【解析】∵C n 2=C n 6,∴n=8.T r+1=C 8r x 8-r (1)r =C 8r x 8-2r ,当8-2r=-2时,r=5.∴系数为C 85=56.28.(2011·北京·理T12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)【答案】14【解析】可用排除法,这个四位数每一位上的数字只能是2或3,则共有24个,而这其中要求数字2或3至少出现一次,所以全是2和全是3不满足,即满足要求的四位数有24-2=14个.。
2023年高考数学真题分训练 排列组合、二项式定理(理)(含答案含解析)

专题 30 排列组合、二项式定理(理)年 份题号 考 点考 查 内 容2011 理 8 二项式定理 二项式定理的应用,常数项的计算 2023 理 2排列与组合 简单组合问题卷 1 理 9 二项式定理 二项式定理的应用以及组合数的计算 2023卷 2理 5 二项式定理 二项式定理的应用 卷 1 理 13 二项式定理 二项式展开式系数的计算2023卷 2 理 13 二项式定理 二项式展开式系数的计算 卷 1 理 10 二项式定理 三项式展开式系数的计算2023卷 2 理 15 二项式定理 二项式定理的应用卷 1 理 14 二项式定理 二项式展开式指定项系数的计算 卷 2 理 5 排列与组合 计数原理、组合数的计算2023卷 3理 12 排列与组合 计数原理的应用 卷 1 理 6 二项式定理 二项式展开式系数的计算 卷 2 理 6 排列与组合 排列组合问题的解法2023卷 3理 4 二项式定理 二项式展开式系数的计算 卷 1 理 15 排列与组合 排列组合问题的解法2023 卷 3 理 5 二项式定理 二项式展开式指定项系数的计算2023卷 3 理 4 二项式定理 利用展开式通项公式求展开式指定项的系数 卷 1 理 8 二项式定理 利用展开式通项公式求展开式指定项的系数2023 卷 3理 14二项式定理利用展开式通项公式求展开式常数项考点出现频率2023 年预测考点 102 两个计数原理的应用 23 次考 2 次 考点 103 排列问题的求解 23 次考 0 次 考点 104 组合问题的求解23 次考 4 次 考点 105 排列与组合的综合应用 23 次考 2 次 考点 106 二项式定理23 次考 11 次命题角度:(1)分类加法计数原理;(2)分步乘法计数原 理;(3)两个计数原理的综合应用.核心素养:数学建模、数学运算考点102 两个计数原理的应用1.(2023 全国II 理)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为A.24 B.18 C.12 D.9(答案)B(解析)由题意可知E →F 有6 种走法,F →G 有3 种走法,由乘法计数原理知,共有6 ⨯ 3 = 18 种走法,应选B.2.(2023 新课标理1 理)4 位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A.18B.3824 - 2 7C.58D.78(答案)D(解析)P ==.24 83.(2023 湖北理)回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249 等.显然2位回文数有9 个:11,22,33,…,99.3 位回文数有90 个:101,111,121,…,191,202,…,999.则(Ⅰ)4 位回文数有个;(Ⅱ) 2n +1 (n ∈N+) 位回文数有个.(解析)(Ⅰ)4 位回文数只用排列前面两位数字,后面数字就可以确定,但是第—位不能为0,有9(1~9)种情况,第二位有10(0~9)种情况,所以4 位回文数有9 ⨯10 = 90 种.答案:90(Ⅱ)解法一:由上面多组数据研究发觉,2n +1 位回文数和2n + 2 位回文数的个数相同,所以可以算出2n + 2位回文数的个数.2n + 2 位回文数只用看前n +1位的排列情况,第—位不能为0 有9 种情况,后面n 项每项有10 种情况,所以个数为9 ⨯10n .解法二:可以看出2 位数有9 个回文数,3 位数90 个回文数。
全国高考数学 试题分类汇编10 排列、组合及二项式定理

2013年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题 1 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a( )A .4-B .3-C .2-D .1-【答案】D 2 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 【答案】B 3 .(2013年高考新课标1(理))设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8【答案】B 4 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168【答案】D 5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2013年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x【答案】C 7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得()3nx n N n+⎛+∈ ⎝的展开式中含有常数项的最小的为( )A .4B .5C .6D .7【答案】B8 .(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20【答案】C9 .(2013年高考陕西卷(理))设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为( )A .-20B .20C .-15D .15【答案】A10.(2013年高考江西卷(理))(x 2-32x)5展开式中的常数项为 ( )A .80B .-80C .40D .-40 【答案】C 二、填空题 11.(2013年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2013年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】10 13.(2013年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将FE D C B A ,,,,,六个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【答案】480 15.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】590 16.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))6x ⎛- ⎝ 的二项展开式中的常数项为______.【答案】15 17.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________. 【答案】10-18.(2013年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a =-19.(2013年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________. 【答案】9620.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若8x ⎛+ ⎝的展开式中4x 的系数为7,则实数a =______. 【答案】2121.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答). 【答案】480。
2020年全国高考理科数学试题分类汇编10:排列、组合及二项式定理 Word版含答案

2020年全国高考理科数学试题分类汇编10:排列、组合及二项式定理一、选择题1 .(2020年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD版含答案))已知5)1(x+的展开式中2x的系数为5,ax+)(1则=a()A.4-B.3-C.2-D.1-【答案】D2 .(2020年普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.279【答案】B3 .(2020年高考新课标1(理))设m为正整数,2+展开式的x y()m二项式系数的最大值为a,21+展开式的二项式系数的x y+()m最大值为b,若137=,则m=()a bA.5 B.6 C.7 D.8【答案】B4 .(2020年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))()()84x y的系数是()+的展开式中22x y11+A .56B .84C .112D .168【答案】D5 .(2020年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )A .14B .13C .12D .10【答案】B6 .(2020年上海市春季高考数学试卷(含答案))10(1)x +的二项展开式中的一项是 ( )A .45xB .290xC .3120xD .4252x【答案】C7 .(2020年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))使得()13nx n N n x x +⎛⎫+∈ ⎪⎝⎭的展开式中含有常数项的最小的为 ( )A .4B .5C .6D .7【答案】B8 .(2020年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是 ( )A .9B .10C .18D .20【答案】C9 .(2020年高考陕西卷(理))设函数61,00.,(),x x f x x x x ⎧⎛⎫-<⎪ ⎪=⎝-≥⎭⎨⎪⎩ , 则当x>0时, [()]f f x 表达式的展开式中常数项为 ( )A .-20B .20C .-15D .15【答案】A10.(2020年高考江西卷(理))(x 2-32x )5展开式中的常数项为( )A .80B .-80C .40D .-40【答案】C 二、填空题11.(2020年上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________【答案】483612.(2020年高考四川卷(理))二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)【答案】1013.(2020年上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).【答案】4514.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六个字母排成一排,且B A ,均在C的同侧,则不同的排法共有________种(用数字作答)【答案】48015.(2020年普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答)【答案】59016.(2020年普通高等学校招生统一考试天津数学(理)试题(含答案))61x x ⎛⎫- ⎪⎝⎭ 的二项展开式中的常数项为______.【答案】1517.(2020年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式53)1(xx -的展开式中常数项为A ,则=A ________.【答案】10-18.(2020年高考上海卷(理))设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =【答案】2a =-19.(2020年高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________.【答案】9620.(2020年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若83a x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为7,则实数a =______.【答案】2121.(2020年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答).【答案】480。
高考数学理试题分类汇编排列组合与二项式定理

高考数学理试题分类汇编排列组合与二项式定理Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】2017年高考数学理试题分类汇编:排列组合与二项式定理1. ( 2017年新课标Ⅱ卷理) 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种 【答案】D【解析】22234236C C A = ,故选D 。
2. (2017年天津卷理) (14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 【答案】 1080【解析】413454541080A C C A += 3. ( 2017年新课标Ⅱ文) 11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 (D)A.110B.15C.310D.254. (2017年新课标Ⅰ) 6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】621(1)(1)x x ++展开式中含2x 的项为224426621130C x C x x x⋅+⋅=,故2x 前系数为30,选C.. 5. (2017年江苏卷)23已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1,2,3,,)k m n =+.(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-. 【解析】(1)11222C C C 22()(1)m n nm n n n mn P A m n m n ++-+==++-.6. (2017年天津卷文) 3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15【答案】C7. (2017年浙江卷) 13.已知多项式()1x +3()2x +2=5432112345x a x a x a x a x a +++++,则4a =________,5a =________.【答案】16,4【解析】由二项式展开式可得通项公式为:32r r m m C x C x ,分别取0,1r m ==和1,0r m ==可得441216a =+=,令0x =可得325124a =⨯=8. (2017年浙江卷) 16.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有______中不同的选法.(用数字作答) 【答案】6609. (2017年新课标Ⅲ卷理) (x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80 B .-40 C .40 D .80【答案】C【解析】由()52x y - 展开式的通项公式:()()5152rrr r T C x y -+=- 可得:当3r = 时,()52x x y - 展开式中33x y 的系数为()33252140C ⨯⨯-=-当2r = 时,()52y x y - 展开式中33x y 的系数为()22352180C ⨯⨯-= , 则33x y 的系数为804040-= . 本题选择C 选项.10. (2017年山东卷理)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. 11. (2017年天津卷理) 16.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】 (1)1312 (2) 1148【解析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=, 1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=. 所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=.(Ⅱ)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. 12. (2017年山东卷理)(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n nx x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =. 13. (2017年山东卷理)(18)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙中心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示。
排列组合二项式定理分类

2009届全国百套名校高三数学模拟试题分类汇编10 排列组合与二项式定理一、选择题1、(广东省北江中学2009届高三上学期12月月考)“2a =”是“6()x a -的展开式的第三项是604x ”的( )条件A.充分不必要B. 必要不充分C. 充要D. 既不充分也不必要 答案:A2、(四川省泸县六中高09级二诊模拟数学试题)从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( ) A .210种 B .420种C .630种D .840种答案:B3、(广东省湛江师范学院附中2009年高考模拟试题)m x )1(+展开式中2x 项的系数等于数列{}n a 的第三项,其中305+=n a n ,则=mA.-9B.9C.10D.11答案:C4、(福建省莆田第四中学2009届第二次月考)若n x )21(+展开式中含3x 的项的系数等于含x 的项的系数的8倍,则n 等于( ) A .5 B .7 C .9 D .11 答案:A5、(四川省万源市第三中学高2009级测试)m x )1(+展开式中2x 项的系数等于数列{}n a :305+=n a n 的第三项,则=m ( )A .9-B .9C .10D .11答案:C6、(重庆市大足中学2009年高考数学模拟试题)123)1(xx -展开式中的常数项为 ( )A.-1320B.1320C.-220D.220答案:C 提示:()2209,03412,1103412121-=∴==--=-+T r r xC T rrrr 7、(四川省成都市高中数学2009级九校联考)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有( ) (A )4种 (B )96种 (C )1种 (D )24种答案:B8、(四川省成都市高中数学2009级九校联考)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( ) A.-2B.-1C.1D.2答案:A9、(四川省成都市高中数学2009级九校联考)北京奥运会期间,某高校有14名志愿者参加服务工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )(A )124414128C C C(B )124414128C A A(C )12441412833C C C A (D )12443141283C C C A 答案:A10、(福建省德化一中2009届高三上学期第三次综合测试)两男两女4个同学排成一列照相,如果要求男女相间而立,则满足条件的方法数共有(▲▲▲)A .4种B .8种C .12种D .6种 答案:B11、(四川省成都市2009届高三入学摸底测试)已知集合{1,0,11}A =-,{1,2,3,4,5,9}B =,映射:f A B →的对应法则为2:22f x y x x →=-+.设集合{|M m B m =∈在集合A 中存在原象},集合{|N n B n =∈在集合A 中不存在原象},若从集合M 、N 中各取一个元素组成一个对数log a b ,则组成的不同对数log a b 值的总个数为(A)60 (B)36 (C)13 (D) 9 答案:D12、(湖南省长郡中学2009届高三第二次月考)在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2003个数是 ( )A 3844B 3943C 3945D 4006答案:B13、(四川省成都市高2009届高中毕业班第一次诊断性检测)某学校有教职工100人,其中教师80人,职员20人,现从中选取10人组成一个考察团外出学习考察,则这10人中恰好有8名教师的不同选法种数是 A 、C 802C 208 B 、A 802A 208 C 、A 808A 202 D 、C 808C 202 答案:D14、(四川省成都市高2009届高中毕业班第一次诊断性检测)(x -1x )9的展开式中第3项是 A 、-84x 3 B 、84x 3C 、-36x 5D 、36x 5答案:D15、(上海市张堰中学高2009届第一学期期中考试)组合数rn C ()Z r n r n ∈≥>,1,恒等于( )A 、1111--++r n C n rB 、()()1111--++r n C r nC 、11--r n nrCD 、11--r n C rn 答案:D16、(四川省成都七中2009届高三零诊模拟考试)过正方体任意两个顶点的所有直线中,异面直线( )对.A.32B.72C.174D.189答案:C17、(四川省泸县六中高09级二诊模拟数学试题)用长度分别为2、3、4、5、6(单位:cm )的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为( )A 2B 2C 2D 220cm答案:B18、(苍山诚信中学·理科)在某次数学测验中,学号)4,3,2,1(=i i 的四位同学的考试成绩}98,96,93,92,90{)(∈i f , 且满足)4()3()2()1(f f f f <≤<,则这四位同学的考试成绩的所有可能情况的种数为( )A .9种B .5种C .23种D .15种答案:D19、(郓城实验中学·理科)在2431⎪⎪⎭⎫⎝⎛+x x 的展开式中,x 的幂指数是整数的项共有 ( )A .3项B .4项C .5项D .6项答案:C20、(郓城实验中学·理科)用4种不同的颜色为正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法有( )种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考理科数学试题分类汇编10:排列、组合及二项式定理
一、选择题 1 .( 普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知
5)1)(1(x ax ++的展开式中2x 的系数为5,则=a
( )
A .4-
B .3-
C .2-
D .1-
【答案】D 2 .( 普通高等学校招生统一考试山东数学(理)试题(含答案))用0,1,,9十个数字,可以
组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 【答案】B 3 .( 高考新课标1(理))设m 为正整数,2()
m
x y +展开式的二项式系数的最大值为
a ,21()m x y ++展开式的二项式系数的最大值为
b ,若137a b =,则m =
( )
A .5
B .6
C .7
D .8
【答案】B
4 .( 普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))()()84
11+x y +的展开式中2
2
x y 的系数是 ( )
A .56
B .84
C .112
D .168
【答案】D
5 .( 普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))满足{},1,0,1,2a b ∈-,
且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为 ( )
A .14
B .13
C .12
D .10
【答案】B
6 .( 上海市春季高考数学试卷(含答案))10
(1)x +的二项展开式中的一项是
( )
A .45x
B .290x
C .3120x
D .4252x
【答案】C 7 .( 普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))使得
()3n
x n N n x x +⎛
+∈ ⎝
的展开式中含有常数项的最小的为
( )
A .4
B .5
C .6
D .7
【答案】B
8 .( 高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得
到lg lg a b -的不同值的个数是 ( )
A .9
B .10
C .18
D .20
【答案】C
9 .( 高考陕西卷(理))设函数6
1,00.,
()x x f x x x x ⎧⎛⎫
-<⎪ ⎪=⎝
-≥⎭⎨⎪
⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为
( )
A .-20
B .20
C .-15
D .15
【答案】A
10.( 高考江西卷(理))(x 2
-32x
)5
展开式中的常数项为 ( )
A .80
B .-80
C .40
D .-40 【答案】C 二、填空题 11.( 上海市春季高考数学试卷(含答案))36的所有正约数之和可按如下方法得到:因为
22
36=23⨯,所以36的所有正约数之和为
22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参
照上述方法,可求得2000的所有正约数之和为________________________
【答案】4836
12.( 高考四川卷(理))二项式5
()x y +的展开式中,含2
3
x y 的项的系数是_________.(用数字作答)
【答案】10 13.( 上海市春季高考数学试卷(含答案))从4名男同学和6名女同学中随机选取3人参加
某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).
【答案】
4
5
14.( 普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))将F E D C B A ,,,,,六
个字母排成一排,且B A ,均在C 的同侧,则不同的排法共有________种(用数字作答) 【答案】480
15.( 普通高等学校招生统一考试重庆数学(理)试题(含答案))从3名骨科.4名脑外科和
5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有1人的选派方法种数是___________(用数字作答) 【答案】590 16.( 普通高等学校招生统一考试天津数学(理)试题(含答案))6
x x ⎛
⎝ 的二项展开式
中的常数项为______.
【答案】15
17.( 普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设二项式5
3)1(x
x -
的展开式中常数项为A ,则=A ________. 【答案】10-
18.( 高考上海卷(理))设常数a R ∈,若5
2a x x ⎛
⎫+ ⎪⎝
⎭的二项展开式中7x 项的系数为10-,则
______a =
【答案】2a =- 19.( 高考北京卷(理))将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1
张,如果分给同一人的2张参观券连号,那么不同的分法种数是_________. 【答案】96
20.( 普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若8
3
x x ⎛
+ ⎝
的展开式中4x 的系数为7,则实数a =______. 【答案】
2
1
21.( 普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))6个人排成一
行,其中甲、乙两人不相邻的不同排法共有____________种.(用数字作答). 【答案】480。