阵列声波处理流程

合集下载

电成像及阵列声波资料处理流程

电成像及阵列声波资料处理流程

WAVEXDAN( 四 分 量 交 叉 偶 极 各 向 异性处理,包括滤波、开窗、 异性处理,包括滤波、开窗、道平衡 等预处理, 估算慢度,、各向异性参数,、 等预处理 估算慢度 、各向异性参数 、 快慢横波时差) 快慢横波时差
Fracman( 利用弹性参数参数 ( 计算岩石应力预测裂缝发育带.) 计算岩石应力预测裂缝发育带 )
Sonic Fracture(利用斯通 利用斯通 利波透射和反射系数计算 开启裂缝分布) 开启裂缝分布
纵波、快慢横波、斯通利波时差, 纵波、快慢横波、斯通利波时差,快慢横波方 斯通利波能量及差值, 位,纵、横、斯通利波能量及差值,斯通利波 渗透率、裂缝发育程度、各向异性参数。 渗透率、裂缝发育程度、各向异性参数。
Four-component Rotation(计 计 算快慢横波方位) 算快慢横波方位 Sonic Waveform Energy ( 计 算 纵 波 、 BestDT:快慢横波慢度 : 横波、斯通利波波形、 横波、斯通利波波形、 能量及其能量差, 能量及其能量差,可根 Anisotropy PostProcess:利用 据裂缝对声波能量的吸 : 收情况来判定裂缝位置) 快慢横波慢度信息计算各向异性 收情况来判定裂缝位置) 参数(基于慢度、基于时间) 参数(基于慢度、基于时间)
China University of Petroleum
成像及阵列声波资料处理、 预处理 : 加速度校正、 深
度对齐 、 坏电极剔除 、 电 极增益校正 、 电极响应均 衡化、 衡化 、 确定显示颜色阈值 、 纽扣电流刻度等 图像显示 差 图 像 生 产 质量 裂缝交互 拾取 裂缝参数 定量计算
时差结果
纵横时差、反射波形、衰减、快慢横波时差、 纵横时差、反射波形、衰减、快慢横波时差、各向异 性参数, 性参数,裂缝渗透率

阵列声波

阵列声波
气 水
文昌9-1-1井纵波幅度在含气层段明显衰减
文昌9-1-2井在水层段纵波幅度的响应特征
KL2井声波法识别油气
丽水3-6-12井气层上的声波测井效果
5.3 缝洞性储层评价
用斯通利波反射波评价裂缝
具有裂缝和溶洞的碳酸盐地层
GR Delay Stoneley Perm
0 (ms) 1.5
数字阵列声波测井(DAC)质量验收标准
图面清晰,图头数据齐全、准确 要求原图的图面、波形、曲线、字迹清晰可辨;图头数
据填写齐全、准确,备注栏中应注明仪器的测量方式。 原图应标明所回放波列的名称、刻度范围及单位。 设备数据齐全, 原图应附上实测的仪器结构图。 回放纵波时差、测速、张力等曲线,以便检查套管内声波时 差值、测速情况 磁带带头信息 (包括波列个数、发射器号、接收器号,采样 时间间隔、采样点数等)记录齐全、准确。 重复性检查
0.01 (md) 100
0
300 Shift 150 (Hz) 0
NMR Perm
Porosity
0.01 (md) 100
0 (%) 10
Raw Ref Coef
0
0.2
Proc
Ref Coef
Acoustic Image
5750 DEPTH 5700
5.4 超压层的声波响应
用声波时差估算超压层段的流体压力
数字阵列声波测井仪 DAC
2( 单极) 9
1-15
2 12( 单极)
1-20 0. 5 6. 0
13. 5
3. 5 ( Sembl ance 处理) 0. 5 ( 首至检测)
4. 5-21
3. 75
400
20000 612

阵列声波处理流程-eXpress

阵列声波处理流程-eXpress

快速地层中的单极波传播
快速地层:
接收器
纵波
Vs > Vf
横波
发射器
地层
快速地层中的单极波列
Receiver Array
Monopole Transmitter
慢速地层中的单极波传播
纵 首波 波
慢速地层: Vs < Vf
斯通利波 横波
慢速地层中的单极波列
纵波 3.35 斯通利波波
4.42 1000

体积模量(BMOD) 2 2 3t s 4tc 10 K 1.3410 b 3t 2 t 2 s c 剪切模量(SMOD)
1.3410
10

b
t s2

泊松比(POIS)
1 t s2 2tc2 2 2 2 t s tc
DEPTH (feet)
波分离
56
反射系数的计算
DWVTR
DEPTH
REFL
RWVRT
REFL0
RLAG TIME
57
波分离 成果图
包括直达波的中 心频率、斯通利 波慢度、原始反 射系数、处理过 的反射系数、伽 马曲线、下行波 相对直达波的时 间延迟、以及分 离开的直达波、 下行波、上行波
2、求渗
快横波 = XX cos2q + (XY + YX) sinq cosq + YYsin2q 慢横波 = XX sin2q - (XY + YX) sinq cosq + YYcos2q
处理前的质量控制
波形偏移的线性度 波形和和波谱相关性 X&Y波形的匹配程度
波 形
波 谱

麦克风阵列声源处理 波束成形法matlab

麦克风阵列声源处理 波束成形法matlab

麦克风阵列声源处理和波束成形法在声学信号处理领域中扮演着重要的角色。

通过利用麦克风阵列的多个麦克风来获取声音信号,并且根据波束成形法对声音进行处理,可以实现对声源的定位、分离和增强,从而在语音识别、语音通信、音频录制等应用中发挥重要作用。

本文将对麦克风阵列声源处理和波束成形法进行全面的评估和探讨,以及共享对这一主题的个人观点和理解。

一、麦克风阵列声源处理1.1 麦克风阵列的原理和结构麦克风阵列是由多个麦克风组成的一种声学传感器系统,可以在空间上对声音进行采集和处理。

它通常由均匀排列的麦克风单元组成,每个麦克风单元之间的位置和间距都是预先设计好的,以便实现对声源的准确定位和分离。

麦克风阵列可以使用不同的拓扑结构,如线性阵列、圆形阵列等,以适应不同的应用需求。

1.2 麦克风阵列的声源定位和分离通过对麦克风阵列采集到的声音信号进行处理和分析,可以实现对声源的定位和分离。

常用的方法包括波束成形、自适应信号处理、时域盲源分离等。

这些方法可以根据麦克风阵列采集到的信号特点,对声源进行空间定位和分离,从而实现对复杂环境下多个声源的有效处理。

1.3 麦克风阵列声音增强和降噪在实际应用中,麦克风阵列可以用于对声音进行增强和降噪。

通过对采集到的声音信号进行处理,可以有效地提取和增强感兴趣的声音信号,同时抑制噪音和干扰声音,从而提高语音识别和通信的质量。

二、波束成形法在声源处理中的应用2.1 波束成形方法的基本原理波束成形法是一种基于阵列信号处理的方法,通过对阵列接收到的信号进行加权和叠加,可以实现对特定方向上声源的增强,从而形成一个波束。

波束成形法可以通过调整加权系数,实现对不同方向上声源的响应,从而实现对多个声源的定位和分离。

2.2 波束成形方法的实现与优化波束成形方法在实际应用中需要考虑到不同方向上声源的信号特点和空间分布,以及阵列的结构和性能参数。

对于不同的应用场景,波束成形方法需要进行优化设计,包括阵列几何结构的选择、加权系数的计算和调整等,以实现对声源的有效处理和增强。

阵列声波测井介绍

阵列声波测井介绍

苏xx井第7号层MPAL资料纵波幅度衰减明显,有效地指示出气层的特征。


理 论


图横

版波
进速
行 气

图 版



纵波时差


理 论

图横
版波
进速
行 气




气层 差气层 油层 水层 干层
纵波时差
利用泊松比、压缩系数参数进行储层识别的方法标准
泊松比 干层 0.22左右 泥岩 0.22-0.35 气层 < 0.23
处理成果质量控制
• 预处理
——在波列里提取时差 ——波形和频谱的一致
• 后台处理
——时差和相似度重合 ——首波到时和波形重合
预处理质量控制
交互的时差编辑
未编辑 Comp. Shear
Draw
编辑后
Shear
Correlogram
后台处理质量控制
时差/相似度 & 首波到时/波形
偶极横波提取
从偶极 波形中 提取横 波时差
仪器总装图
接收电路
接收声系
隔声体
发射声系
发射线路
仪器由发射电路短节、发射换能器短节、隔声体 短节、接收换能器短节和接收控制采集电子线路短 节五部分组成 ,仪器总长8.53米,重约300公斤。
测量方式
单极方式:
采用传统的单极声源发射器,可向井周围发射声波,使 井壁周围产生轻微的膨胀作用,因此在地层中产生了纵 波和横波,由此得出纵波和横波时差 。在疏软地层中, 由于地层横波首波与井中泥浆波一起传播,因此单极声 波测井无法获取横波首波 。
MPALmechprop岩石物理参数提取模块

声学阵列信号处理技术

声学阵列信号处理技术

声学阵列信号处理技术1.引言1.1 概述声学阵列信号处理技术是一种利用多个传感器将声音信号进行接收、处理和分析的技术。

声学阵列由多个微型麦克风组成,可以在不同位置同时接收远场声音信号,并通过信号处理算法来实现声音的定位、分离和增强等功能。

随着科技的不断发展,声学阵列信号处理技术在各个领域都得到了广泛的应用。

在语音识别领域,声学阵列可以提供清晰的语音输入,大大提高了语音识别的准确性和性能。

在通信领域,声学阵列可以提供更好的语音通话质量和降噪效果,改善了通信的可靠性和稳定性。

在音频处理领域,声学阵列可以实现音频信号的定位和分离,提供沉浸式音频体验。

此外,声学阵列还广泛应用于声纹识别、声波成像、无人驾驶等领域。

本文将对声学阵列信号处理技术进行详细的介绍和分析。

首先,我们将概述声学阵列信号处理技术的基本原理和工作流程。

接着,我们将详细讨论声学阵列的原理和应用。

最后,我们将对声学阵列信号处理技术进行总结,并展望其未来的发展方向。

通过本文的阅读,读者将能够了解声学阵列信号处理技术的基本概念和原理,以及其在不同领域中的应用和前景。

希望本文能够为相关领域的研究者和工程师提供一些有价值的参考和指导。

1.2 文章结构文章结构部分的内容可以包括以下内容:本文结构如下:第一部分为引言部分,主要对声学阵列信号处理技术进行基本介绍,包括概述、文章结构和目的。

第二部分是正文部分,分为两个小节。

2.1节主要概述了声学阵列信号处理技术的基本概念和原理,从信号采集、传输到处理的整个流程进行详细介绍,包括声学阵列的组成、工作原理以及信号处理算法等内容。

2.2节主要介绍了声学阵列技术的主要应用领域,包括音频信号处理、语音识别、声源定位等。

通过实际案例和应用场景的分析,展示了声学阵列信号处理技术在各个领域的重要性和应用前景。

第三部分为结论部分,总结了本文对声学阵列信号处理技术的概述和应用,强调了声学阵列技术在提高信号处理效果和拓展应用领域方面的优势,并展望了未来发展的方向和挑战。

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍——阵列声波测井原理及地质应用目录一、前言 (2)二、阵列声波测井原理 (2)1、多极子阵列声波仪器的测量原理 (2)2、交叉偶极子阵列声波仪器的测量原理 (3)3、阵列声波的测量方式 (4)4、阵列声波测井波形分析 (4)三、阵列声波的处理 (6)1、提取纵波、横波及斯通利波 (6)2、数据处理STC算法 (6)3、全波列分析处理程序 (7)四、阵列声波的基本地质应用 (8)1、利用纵波、横波及斯通利波识别裂缝 (8)2、鉴别岩性和识别气层 (9)3、在计算岩石机械特性中的应用 (10)4、压裂施工分析 (11)5、利用时滞频移识别裂缝带 (13)6、判断地层各向异性 (14)7、计算地层应力和确定应力方位 (16)五、总结及建议 (17)一、前言阵列声波仪器能够测量地层的纵波、横波、斯通利波,通过一定的数学计算方法便能提取这些波的首波传播时间,计算频散特性,从而分析出岩石的声学特性,再结合密度、泥质含量、孔隙度等曲线能够计算地层弹性力学参数、机械特性参数、泥浆参数、地层渗透率等参数,并且能够计算各向异性地层的各向异性大小和方位。

利用这些参数能够评价井眼的稳定性,评价裂缝的发育带,确定应力大小及方位,为压裂施工提供压力参数,为钻井泥浆的配制提供泥浆参数,并能判断岩石裂缝的有效性。

由于这些特点,目前阵列声波测井已得到了广泛的应用。

尤其在解决复杂的地质问题,为油田增产、增效服务方面,起到了非常重要的作用。

二、阵列声波测井原理1、多极子阵列声波仪器的测量原理多极子阵列声波测井仪器(MAC)将单极子阵列和偶极子阵列进行有效地组合,两个阵列的配置是完全独立的(如图2-1)。

该仪器的声系包括1个单极子声系和1个偶极子声系。

单极子声系包括2个单极子发射换能器T1、T2和8个接收换能器,发射换能器带宽为2KHz-15KHz,中心频率为8KHz,可以激发地层纵波、斯通利波,在地层中激发转换横波。

XMAC交叉多极子阵列声波测井资料评价基础

XMAC交叉多极子阵列声波测井资料评价基础

0
方位各向异性 360
慢横波波形
200000
微侧向
200000
FMI
为北北-东向, 与利用快横
诱导缝
波方位确定
的地层主应 力方向一致。
诱导缝走向
xx5井地层横波各向异性处理成果图
板 深 7
b)在4300-4301.5米处没有各向异性,成像图上指示发育较多的 溶洞,无疑这类地层要产生各向异性,但这些界面方向多变, 造成各向异性的不稳定,多数情况下互相抵消故在XMAC处理 中没有各向异性表现。
官76-30-2 斯 通 利 波 变 密 度 图
官76-30-2 渗 透 率 指 示 图
无油花 日产9 .8 方水,累 计0.966 方水。
油花 日:5 .2方水 累:1.09方水
结束语
目前为止共测了八口井,其解释成果与斯伦贝谢的DSI 有很好的一致性。但现在还局限在定性阶段,今后我们打算 从以下几个方面深化 XMAC的研究工作: 1)声波全波波形与地层物性的关系 a渗透率与波形的关系 b含气饱和度与波形的关系 2)斯通利波幅度衰减与含气饱和度的关系 a油气两相和气水两相的斯通利波衰减系数与含气饱 和度的关系 b油气两相和气水两相的斯通利波衰减与流体压缩 系数的关系 3、建立纵横波比与含气饱和度的关系 由于时间仓促加之水平有限,错误和疏漏之处在所 难免,敬请各位专家批评指正。
以上我们简单介绍了一下地层各向 异性的作用。那么引起各向异性的原因 有那些呢?下面从以下五个方面介绍以 一下引起各向异性的原因 :
a)在成像图上没有出现任何诱导裂缝、天 然裂缝、井壁应力崩落的特征,而快慢横 波发生了分裂,其原因是构造应力的非平 衡性所致,同时也预示着在井壁附近很可 能存在其走向平行于最大水平构造应力的 高角度裂缝。这对压裂酸化和水平井设计 有重要的意义,对产能的潜在贡献较大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
透率
先根据中心频率曲线 结合时差曲线、伽马 曲线,选一非渗透层 。(时差小、频率高 、而且具有一定对称 性的层)
计算渗透 率时注意
a. 第一次计算时滞和频 移时,参考点要选干 层点,不能选泥岩点 。 b. 第二个估算渗透率时 ,第二个参考点要选 渗透层,所对应的孔 隙流体密度按储层内 流体密度填写 c. 公制井径的单位是米 ,而不是厘米
S1IS O S2ISO S1S2
0 1 0 1
FAST WAVE
快横 波
慢横波
180 s/ft 70 500 3500 TIME (s)
ANIS_AR RAY 0 % 25
AZ_FAS T


AZ_SLOW
ANIS_AV E 25 % 0 AZ_TOOL 0 (deg) 180
SLOW WAVE
XMACF1
DAL
接收系
接收系
接收系
接收系
T2 T3 T4
T2
T2
发射系
T3 T4 T1
发射系
T3 T1
T4
发射系
发射系
T2
T1
T1
16个接收器,一 单一偶相间排列 缺点:波列线性 度较差
区别在于隔声体 8个接收器, 接收器与 T3与T4之间有 XMAC相同, 由橡胶换成刚性 1ft的距离 T3与T4在同一 体,优势是测速 提高,可以在斜 深度 井中使用
Monopole Transmitter
Snell定律
q V1
1 <
V2
q
2Leabharlann qcsin( q1 ) V1 sin( q 2 ) V2
硬(快速)地层
V1 > V2
V1 V1 sin( q c ) q c arcsin V2 V2
q1
q2
软(慢速)地层
θ2 < 90°
识别含气储层
Gassmann Equation:
f: fluid, s: solid matrix, d: dry
(1 Kd / Ks ) K Kd 2 / K f (1 ) / Ks Kd / Ks
2
Water Gas
P-wave velocity
Vp (K 4 /3)/
再了解一 下文件中 包括哪些 内容:测 了那些曲 线(单极 、偶极) 、采样率 等
处理前的 质量控制
波形振相的线性 度
波形的相关性(需 与仪器匹配)
提波
要注意提纵波、 横波、斯通利波 的滤波器类型、 时窗长度、步长 及频率范围
处理后的 质量监控



1.慢度与联合相关的对 比 2.走时曲线与波形的叠 加 3.相关图上的次级大值 的离散度
AZ
GR
CAL
Breakout
区分应力和裂缝造成的各向异性
单极波列
Receiver Offset (ft) 15.5 12
快地层可根据单极子横波 分裂现象来判断 慢地层的快慢横波的频散 曲线交叉现象来判断。
Time (microseconds) 3500
Time (microseconds)
Fast shear Compressional Slow shear
波形与时窗叠加 拟合残差的比较
S1ISO高: 各向异性估计 的很可靠 S2ISO高: 交叉分量能量高 S1S2高: 快、慢横波方位 稳定
处理时窗


快慢横波分裂 快横波方位 vs. 仪器方位
残差分析
波形与时窗的叠 加
&
各向异性 方位
vs.
快 & 慢横波分裂
仪器方位
各向异性图
包括各向异 性的大小 和方位
Receivers
应用过程中的问题

渗透性


采集噪声
井眼变化
波的属性


地层变化
泥饼
要把非渗透性影响 去除
53
解决方法

处理 压制数据中的噪声和散射

模拟 模拟数据没有渗透性时的属性进而与实际数 据比较发现渗透性指示
反演

估算渗透率
54
斯通利波数据
835
925 2 TIME (ms) 6
55
4000-8000
FIR
200-400
100-200
斯通利波 500-4000
FFT
1000-1500
500-800
阵列声波资料的地质应用


识别岩性 计算孔隙度 利用斯通利波估算渗透率 评价裂缝位置 识别含气储层 评价砂泥岩薄层 利用斯通利波计算TI各向 异性及水平渗透率 评价地层各向异性
DEPTH (feet)
波分离
56
反射系数的计算
DWVTR
DEPTH
REFL
RWVRT
REFL0
RLAG TIME
57
波分离 成果图
包括直达波的中 心频率、斯通利 波慢度、原始反 射系数、处理过 的反射系数、伽 马曲线、下行波 相对直达波的时 间延迟、以及分 离开的直达波、 下行波、上行波
2、求渗
裂隙造成的各向异性
在快速地层,各向异性的 大小和裂缝的发育程 度有明显的联系。
应力造成的各向异性
Borehole Breakout and Acoustic Anisotropy
Anisotropy 40 (%)
Acoustic Image
N E S W N
Anisotropy Map
N E S W N
fracman
利用上步输出的杨氏模量、剪切模量、
体积模量、泊松比等岩石弹性参数结合 岩性密度曲线计算破裂压力梯度、闭合 压力梯度,进而预测地层破裂压力及裂 缝的纵向延伸。
42
预测破裂压力为34Mpa,施 工值为34.8Mpa,预测最 小闭合压力为20Mpa,施 工值为27.5Mpa
( PO PP ) PP 1
通过调节泥浆压力P来控制出砂
q x
p
P 不能太大,防止井眼破裂
r
P FP ; Maximum mud pressure
P 也不能太小,防止出砂
y
P Ps 0 s cos 0 sin PP ; Minimum mud pressure
快横波 = XX cos2q + (XY + YX) sinq cosq + YYsin2q 慢横波 = XX sin2q - (XY + YX) sinq cosq + YYcos2q
处理前的质量控制
波形偏移的线性度 波形和和波谱相关性 X&Y波形的匹配程度
波 形
波 谱
Gamma Ray
0 API 160
部分岩性及矿物 砂岩
Wyllie平均时间公式
55.5 43.5 51 53(50-58) 52 46.5
骨架慢度 (us/ft)
纵横波速度比 1.59
t (1 )tma 1.85 t f 石灰岩 47.5
白云岩 花岗岩 玄武岩 硬石膏 方解石 1.75 2 1.82 1.89
理想泥浆比重
P Ps 0 PP
生产压差
P Pp Ps PP ( rs Pp )
33
岩石特性分析mechprop
选岩石参 数时,这 儿要给砂 岩骨架值 ,如果是 cra处理的 要在下面 一栏里填 组成矿物 的骨架值
泥岩值按本井情况 选取,要选两个值 ,如果本井没有较 纯泥岩,则按邻井 值或地区值选取
快速地层中的单极波传播
快速地层:
接收器
纵波
Vs > Vf
横波
发射器
地层
快速地层中的单极波列
Receiver Array
Monopole Transmitter
慢速地层中的单极波传播
纵 首波 波
慢速地层: Vs < Vf
斯通利波 横波
慢速地层中的单极波列
纵波 3.35 斯通利波波
4.42 1000
接收器偏置 (m)
时间 (微秒)
5000
偶极 (横波) 仪器
板状声源产生的弯曲波在井壁
传播
在低频时 (< 2 kHz) 它以地层
的横波速度传播
8 接收器阵列
弯曲震动的声源波在井中流体
中产生的弯曲只能用对弯曲波 敏感的接收器接收
分隔器
单极发射器 T1 发射器部分 偶极发射器 T3
偶极发射器 T4
动态模量与静态模量
井眼附近的应力
径向, 切向, 和剪切应力
x
p
q rq r
x y R 2 pR 2 x y R4 R2 r 1 1 3 4 4 2 cos 2q 2 r2 r2 2 r r x y R 2 pR 2 x y R4 q 1 1 3 4 cos 2q 2 r2 r2 2 r x y R4 R2 rq 1 3 4 2 2 sin 2q 2 r r

sandan2006
47
斯通利波估算渗透率
斯通利波(单极)

由井壁引起的压力脉冲
斯通利波
3.35
Stoneley waves displacement
4.42
Source
Formation fluid movement
RECEIVER OFFSET (m)
Stoneley waves travel direction
相关文档
最新文档