初一下册数学第五章知识点

合集下载

七年级下册数第五章知识点

七年级下册数第五章知识点

七年级下册数第五章知识点七年级下册数学第五章:知识点第一节:分式1.分式的定义及分类分式是指一个数除以另一个数得到的结果,通常用a/b表示。

分类:普通分式、埃及分式、连分式、底数为变量的分式等。

2.分式与整式的运算分式和整式的加、减、乘、除运算,需要将分母相同或通分。

3.分式的约分与通分分式的约分是指将分式中分子、分母同乘或同除一个数,使得其结果化为最简。

分式的通分是指将分母不同的两个或多个分式化为相同分母的分式。

4.分式与分数的比较分式和分数可以通过通分来进行比较大小,也可以通过将分式转化为小数进行比较。

第二节:直线方程1.点斜式点斜式是指已知一点和直线的斜率,求出直线方程的一种方法。

点斜式的公式为y-y1=k(x-x1)。

2.截距式截距式是指已知直线与x轴、y轴的交点坐标,求出直线方程的一种方法。

截距式的公式为y=kx+b。

3.两点式两点式是指已知直线上两个点的坐标,求出直线方程的一种方法。

两点式的公式为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

第三节:三角形1.三角形的分类三角形根据边和角的性质可以分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形。

2.三角形的周长与面积三角形的周长是指三角形的三条边的长度之和。

三角形的面积是指以三角形三边为边所围成的面积。

三角形的面积公式为S=1/2×底×高,其中底为三角形的一条边,高为这条边垂直于另一条边的高度。

3.三角形内角和定理三角形内角和定理是指三角形的三个内角和等于180度(π),即α+β+γ=π。

4.三角形外角定理三角形外角定理是指三角形的一个角的外角等于其余两个内角之和,即∠ADE=∠B+∠C。

第四节:勾股定理勾股定理是指直角三角形中,直角边的平方等于其他两条边的平方和。

勾股定理的公式为a²+b²=c²(其中c为直角边)。

总结本章主要介绍了分式、直线方程、三角形和勾股定理等知识点。

北师大七年级下册数学知识点总结(生活中的轴对称)和经典例题对接

北师大七年级下册数学知识点总结(生活中的轴对称)和经典例题对接
★知识点一:轴对称实例
▶▶典例分析
1.下列说法中,不正确的是()
A.等腰三角形底边上的中线就是它的顶角平分线
B.等腰三角形底边上的高就是底边的垂直平分线的一部分
C.一条线 段可看作以它的垂直平分线为对称轴的轴对称图形
D.两个三角形能够重合,它们一定是轴对称的
1.下列图形中,轴对称图形的个数是()
A.4个B.3个C.2个D.1个
3.如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.
4.如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分
线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.
二、选择题
1、国旗是一个国家的象征,观察下面的国旗,是轴对称图形的是()
A.加拿大、哥斯达黎加、乌拉圭B.加拿大、瑞典、澳大利亚
C.加拿大、瑞典、瑞士D.乌拉圭、瑞典、瑞士
加拿大哥斯达黎加澳大利亚乌拉圭瑞典瑞士
2、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为()
A、7cm B、3cm C、7cm或3cm D、5cm
11、判定一个三角形是等腰三角形常用的两种方法:
(1)两条边相等的三角形是等腰三角形;
(2)如果一个三角形有两个角相等,那么它们所对的边也相等相等,简写为“等角对等边”。
六、等边三角形
1、等边三角形是指三边都相等的三角形,又称正三角形,是最特殊的三角形。
2、等边三角形是底与腰相等的等腰三角形,所以等边三角形具备等腰三角形的所有性质。
8.如图,两个三角形关于某直线对称,则x=

人教版七年级数学下第五章知识点

人教版七年级数学下第五章知识点

第五章平等线与相交线1、同角或等角的余角相等,同角或等角的补角相等。

2、对顶角相等3、判断两直线平行的条件:1)同位角相等,两直线平行。

( 2)内错角相等,两直线平行。

3 )同旁内角互补,两直线平行。

( 4 )如果两条直线都和第三条直线平行4、平行线的特征:(1 )同位角相等,两直线平行。

( 2)内错角相等,两直线平行。

( 3)同旁内角互补,两直线平行。

5、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果⋯⋯,那么⋯⋯”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么” 开始的部分是结论。

6、平移平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。

(1 )把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。

(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。

连接各组对应点的线段平行且相等。

第六章平面直角坐标系1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b )2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

(1).x轴上的点的纵坐标为零; y 轴上的点的横坐标为零。

(2). 第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

(3). 在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

4.点到轴及原点的距离点到 x 轴的距离为 |y| ;点到 y 轴的距离为 |x| ;点到原点的距离为 x 的平方加 y 的平方再开根号;在平面直角坐标系中对称点的特点:1.关于 x 成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

七下数学人教版课本知识点总结非常完整

七下数学人教版课本知识点总结非常完整

七下数学课本知识点总结非常完整人教版七年级数学下册知识点第五章 相交线与平行线一、1、在同一平面内,不重合的两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。

如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是 邻补角。

邻补角的性质: 邻补角互补 。

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。

对顶角的性质:对顶角相等。

如图1所示,∠1与∠3互为对顶角。

∠1=∠3;∠2与∠4互为对顶角,∠2=∠45、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直, 其中一条叫做另一条的垂线。

如图2所示,当 ∠1 = 90°时, a ⊥ b 。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

性质3:如图2所示,当 a ⊥ b 时,∠1 = ∠2 = ∠3 = ∠4 = 90°。

点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

6、同位角、内错角、同旁内角基本特征:①在两条直线(被截线)的 同一方 ,都在第三条直线(截线)的 同一侧 ,这样的两个角叫 同位角 。

同位角呈“F ” ②在两条直线(被截线) 之间 ,并且在第三条直线(截线)的 两侧 ,这样的两个角叫 内错角 。

内错角呈“Z ”③在两条直线(被截线)的 之间 ,都在第三条直线(截线)的 同一旁 ,这样的两个角叫 同旁内角 。

同旁内角呈“U ” 7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

数学七年级下册第五章知识点

数学七年级下册第五章知识点

数学七年级下册第五章知识点数学七年级下册第五章知识点1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。

性质是对顶角相等。

2、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

3、两条直线被第三条直线所截:同位角F(在两条直线的同一旁,第三条直线的同一侧)内错角Z(在两条直线内部,位于第三条直线两侧)同旁内角U(在两条直线内部,位于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。

其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

5、垂直三要素:垂直关系,垂直记号,垂足6、垂直公理:过一点有且只有一条直线与已知直线垂直。

7、垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度。

9、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

如果b//a,c//a,那么b//c10、平行线的判定:①同位角相等,两直线平行。

②内错角相等,两直线平行。

③同旁内角互补,两直线平行。

11、推论:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行。

12、平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

13、平面上不相重合的两条直线之间的位置关系为_______或________14、平移:①平移前后的两个图形形状大小不变,位置改变。

②对应点的线段平行且相等。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

15、命题:判断一件事情的语句叫命题。

人教版数学初一下册第五章 相交线与平行线 5.3.2:命题、定理、证明(1)课件

人教版数学初一下册第五章 相交线与平行线  5.3.2:命题、定理、证明(1)课件
如果两个数互为相反数,那么这两个数相加得0; (4)同旁内角互补;
如果两个角是同旁内角,那么这两个角互补;
(5)对顶角相等.如果两个角是对顶角,那么这两个角相等.
16
知识点一:命题
学以致用
2、改写成“如果……那么……”的形式。并指出下列各命题 的题设和结论,
①、内错角相等; ②、两条平行线被第三直线所截,同位角相等; ③、同角的余角相等; ④、同平行于一直线的两直线平行; ⑤、直角三角形的两个锐角互余; ⑥、等角的补角相等; ⑦、正数与负数的和为0。
①如果一个数能被4整除,那么它也能被2整除。 ②如果两个角互补,那么它们是邻补角。
③相等的角是对顶角.
1
2
1 2
20
知识点二:真命题和假命题
归纳总结
判断一个命题真假的方法:
利用已有的知识,通过观察、验证、推理、举 反例等方法。
判断一个命题是假命题的方法:
判断一个命题是假命题,只要举出一个例子, 说明该命题不成立就可以了,这种方法称为举反例。
,那么..."的形式,会区分命题的题设和结论。 2.知道真命题和假命题的概念,会通过举反例判 断一个命题是假命题.
重点难点 重点:命题的概念以及真命题和假命题的概念.
难点:区分命题的题设和结论.
3
知识点一:命题
新知探究
刚刚我们复习了平行线的性质与判定,这些语句都对某 一件事情作出判断,如:同位角相等,两条直线平行.
(2)题设是“两直线平行”,结论是“同位角相等”;
(3)题设是“两个角是邻补角”,结论是“这两个角互补”.
13
知识点一:命题
互动探究
先独立完成导学案互动探究2,再同桌相互交流, 最后小组交流;

七下数学第五章知识点整理

七下数学第五章知识点整理

七下数学第五章知识点整理一、图形的认识1.图形的分类:封闭图形和非封闭图形。

2.图形的基本元素:边和顶点。

二、多边形1.多边形的定义:由线段组成的封闭图形。

2.多边形的特点:边、角、对角线、顶点个数。

3.多边形的分类:三角形、四边形、五边形、六边形、七边形、八边形、九边形、十边形等等。

4.三角形的分类:等边三角形、等腰三角形、普通三角形。

5.四边形的分类:矩形、正方形、菱形、平行四边形、梯形。

6.四边形的性质:对角线性质、边和角性质。

三、正方形和长方形1.正方形的性质:四边相等、四个内角为直角、对角线相等、对角线垂直。

2.长方形的性质:相对边相等、两对内角为直角、对角线相等。

四、等边三角形和等腰三角形1.等边三角形的性质:三条边相等、三个内角相等。

2.等腰三角形的性质:两条边相等、两个底角相等、顶角等于底角的补角。

五、普通三角形和直角三角形1.普通三角形的性质:三条边都不相等、三个内角也不相等。

2.直角三角形的性质:一个内角为直角、两个锐角或两个钝角。

3.直角三角形的勾股定理:直角边的平方和等于斜边的平方。

4.直角三角形的特殊性质:斜边长度大于任一直角边的和。

六、平行四边形1.平行四边形的性质:对边平行、对角线互相平分。

2.平行四边形的面积计算公式:面积=底边长×高。

七、菱形和梯形1.菱形的性质:四边相等、对角线互相垂直、对角线互相平分。

2.菱形的面积计算公式:面积=对角线之积的一半。

八、三角形的面积1.任意三角形的面积计算公式:面积=1/2×底边长×高。

2.通过边长计算三角形面积的海伦公式。

七年级下册数学知识点归纳

七年级下册数学知识点归纳

七年级下册第五章相交线与平行线一、知识结构图相交线相交线垂线同位角、内错角、同旁内角平行线平行线及其判定平行线的判定平行线的性质平移命题、定理二、知识定义邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

三、定理与性质对顶角的性质:对顶角相等。

垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

第六章平面直角坐标系一、知识结构图有序数对平面直角坐标系平面直角坐标系用坐标表示地理位置坐标方法的简单应用用坐标表示平移二、知识定义有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一下册数学第五章知识点
初一下册数学第五章知识点
相交线
有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。

两条直线相交有4对邻补角。

有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。

两条直线相交,有2对对顶角。

对顶角相等。

两条直线相交,所成的'四个角中有一个角是直角,那么这两条
直线互相垂直。

其中一条直线叫做另一条直线的垂线,它们的交点
叫做垂足。

平行线及其判定
性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的性质
性质1两条平行线被第三条直线所截,同位角相等。

简单说成:两直线平行,同位角相等。

性质2两条平行线被第三条直线所截,内错角相等。

简单说成:两直线平行,内错角相等。

性质3两条平行线被第三条直线所截,同旁内角互补。

简单说成:两直线平行,同旁内角互补。

★★★。

平行线的性质。

★★★
平移
向左平移a个单位长度,可以得到对应点(x-a,y)
向上平移b个单位长度,可以得到对应点(x,y+b)
向下平移b个单位长度,可以得到对应点(x,y-b)。

相关文档
最新文档