数量关系容斥原理
容斥原理

数量关系之容斥原理
容斥原理关键就两个公式:
1. 两个集合的容斥关系公式:A+B=A∪B+A∩B
2. 三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
【例1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( )
A.22
B.18
C.28
D.26
【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50; A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。
答案为A。
【例2】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:
A.22人
B.28人
C.30人
D.36人
【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52) A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)
B∩C=既喜欢看电影又喜欢看戏剧的人(16)
A∩B∩C=三种都喜欢看的人(12)
A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)
根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C
C∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)=148-(100+18+16-12)=26
所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C=52-16-26+12=22。
2015河北政法干警行测指导:数量关系之容斥原理

在政法干警考试行测题目中,对数量关系中容斥问题的考查内容也经常出现。
这类问题需要考生掌握容斥原理,否则在解答过程中就会遇到困难,甚至花费较长的时间,也很难得出正确的答案。
出现这样的情况,是政法干警行测笔试过程中的大忌。
因为答题的时间有限,保证题目的正确率也至关重要。
所以,考生一定要对容斥原理有一个非常清晰的认识。
容斥原理又称排容原理,主要的工作就是计算时,排斥掉重复计算的部分,保证最后的数据结果无遗漏和重复。
【实例分析】例1. 某班有50人,会游泳的有27人,会体操的有18人,都不会的有15人。
问既会游泳又会体操的有多少人?解析:因至少会游泳或体操的人数为50-15=35(人),所以根据两个集合的容斥原理,可以得到既会游泳又会体操的人数=27+18-35=10(人)。
例2. 某专业有学生50人,现开设有甲、乙、丙三门选修课程。
有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人。
问三门课程均未选的有多少人?解析:根据题干叙述选修甲课程的对应为集合A=40,选修乙课程的对应为集合B=36,选修丙课程的对应集合C=30。
兼选甲、乙的对应为A∩B=28,兼选甲、丙的对应为A∩C=26,兼选乙、丙的对应为B∩C=24。
甲、乙、丙均选的对应为A∩B∩C=20。
三门课程均未选的对应为50-A∪B∪C。
根据A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C=40+36+30-28-26-24+20=48三门均未选的有50-A∪B∪C=50-48=2。
故三门课程均未选的有2人。
文章来源:更多信息请关注承德中公教育网/?wt.mc_id=bk4828。
3招秒杀容斥原理-2022公务员联考行测解题技巧

3招秒杀容斥原理-2022公务员联考行测解题技巧在数量关系题型中,常考的有两种题型,分别是二集合容斥原理和三集合容斥原理。
解决容斥原理常用的方法有公式法和画图法,其中公式法解决容斥原理是特别快速的解题方法,只要学会公式,理解并能够娴熟应用公式,那么容斥原理是考场中比较简单拿分的一种题型。
两集合容斥原理公式为:满意条件1的个数+满意条件2的个数-两者都满意的个数=总个数-两者都不满意的个数;三集合容斥原理分成标准型和非标准型两种。
三集合标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-满意两个条件的个数+三者都满意的个数=总个数-三者都不满意的个数。
三集合非标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-“只”满意两个条件的个数-2×三者都满意的个数=总个数-三者都不满意的个数。
【例1】学校有300个同学选择参与地理爱好小组,生物爱好小组或者两个小组同时参与。
假如80%同学参与地理爱好小组,50%同学参与生物爱好小组。
问同时参与地理和生物爱好小组的同学人数是多少?A.240B.150C.90D.60答案:C【解析】第一步,本题考查容斥问题,属于二集合容斥类,用公式法解题。
其次步,共两个爱好小组,其中80%的同学参与地理爱好小组、50%的同学参与生物爱好小组,依据两集合容斥原理公式:满意条件1的个数+满意条件2的个数-两者都满意的个数=总个数-两者都不满意的个数,设同时参与两个爱好小组的同学占比为x,则有80%+50%-x=100%-0,解得x=30%,那么同时参与两个爱好小组的共有300×30%=90(人)。
因此,选择C选项。
【例2】学某单位共有240名员工,其中订阅A期刊的有125人,订阅B期刊的有126人,订阅C期刊的有135人,订阅A、B期刊的有57人,订阅A、C期刊的有73人,订阅3种期刊的有31人,此外,还有17人没有订阅这三种期刊中的任何一种。
行测数量关系容斥问题

行测数量关系容斥问题引言:在行测考试中,数量关系容斥问题是一个常见的考点。
掌握了该问题的解题方法,能够帮助考生更好地应对这一类题型。
本文将从概念、解题思路以及实例分析等方面进行详细讲解,以帮助考生更好地理解和掌握数量关系容斥问题。
一、概念解释:数量关系容斥问题是指在求解满足多个条件的情况数量时,通过排除重复计数的方法来得到准确结果。
其基本思想是通过理清各个条件的关系,累加满足每个条件的情况数量,然后再减去同时满足不止一个条件的情况数量,以得到最终结果。
二、解题思路:1.理解问题要求:首先,要明确问题所要求的情况数量。
通常情况下,此类问题要求计算满足多个条件的情况数量。
2.列出条件:将题目中给出的条件进行列举,每个条件单独列成一行。
3.计算满足每个条件的情况数量:对于每个条件,可以单独计算满足该条件的情况数量。
这可以通过排列组合、分类讨论等方法来计算。
4.累加满足每个条件的情况数量:将每个条件满足的情况数量累加起来,得到初步的结果。
5.减去同时满足不止一个条件的情况数量:根据容斥原理,需要减去同时满足不止一个条件的情况数量,以避免重复计数。
通过分类讨论或使用其他方法计算同时满足不止一个条件的情况数量。
6.得到最终结果:将初步结果减去同时满足不止一个条件的情况数量,即可得到最终的结果。
三、实例分析:下面通过一个实例来进一步说明解题思路。
例题:某校有甲、乙、丙三位老师,每位老师选择在星期一至星期五中任意一天进行家访。
如果每位老师至少选择一天进行家访,那么共有多少种家访方式?条件:1.甲、乙、丙三位老师任选一天进行家访;2.甲、乙、丙三位老师至少选择一天进行家访。
解题思路:1.理解问题要求:题目要求计算满足两个条件的家访方式数量。
2.列出条件:条件1:甲、乙、丙三位老师任选一天进行家访;条件2:甲、乙、丙三位老师至少选择一天进行家访。
3.计算满足每个条件的情况数量:条件1满足的情况数量为3(每个老师有5种选择,共有3个老师);条件2满足的情况数量为5^3-1(每个老师有5种选择,减去同时不选择任意一天的情况数量)。
事业单位考试数量关系:容斥问题

容斥问题是考试中比较偏向技巧性和公式性的问题, 大部分同学对容斥问题是比较熟悉的。
但是其中容斥中的极值问题, 确实考试中一个难点和出题的方向。
何为容斥极值问题, 简而言之就是将容斥问题和极值问题结合起来进行考察的题目。
主要包含以下两种:一、公式法求解容斥极值问题, 如果我们求解的是几个集合公共部分的最小值问题, 下面给出了相应的公式, 我们只需要讲数据代入即可。
其中, 公式中的A.B.C.D分别集合,I代表的是全集。
例1、某班30人, 数学22人优秀, 语文25人优秀, 英语20人优秀, 这三科全部优秀的学生至少有多少人?A.7B.6C.5D.4【答案】A。
解析: 根据题意可得全集为30;将数学、语文以及英语分别看成是A.B.C三个集合, 每个集合的数据也已知;最后题目求三科全部优秀的学生至少有多少人, 即求三个集合相交的最小值, 直接用三集合相交的最小值。
三集合相交的最小值=A+B+C-2*I=22+25+20-2*30=7二、极限思想在容斥极值问题中, 若并非求得是几个集合公共部分的最小值问题, 那就不能直接使用上面的公式解决, 要结合具体题目运用极限思想分析, 下面通过一道例题进行说明:例2参加某部门招聘考试的共有120人, 考试内容共有6道题。
1至6道题分别有86人, 88人, 92人, 76人, 72人和70人答对, 如果答对3道题或3道以上的人员能通过考试, 那么至少有多少人能通过考试?A .72B .61 C.58 D .44【答案】D。
解析: 要使通过的人最少, 那么就是对1道, 2道的人最多, 并且应该是对2道的人最多(这样消耗的总题目数最多), 假设都只对了2道, 那120人总共对了240道, 而现在对了86+88+92+76+72+70=484, 比240多了244道, 每个人还可以多4道(这样总人数最少),244/4=61。
3.一次考试共有五道试题, 做对第1.2、3、4、5题的分别占考试人数的81%、91%、85%、79%、74%, 如果做对三道或三道以上为及格, 那么这次考试的及格率至少是多少?(参考第二题的思想, 一个类型)100-81,91,85,79,74=19+9+15+21+26=90 90/3=30, 100-30=70。
行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。
- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
- 通项公式:a_n=a_1q^n - 1。
- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。
- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。
3. 和数列。
- 定义:通过相邻项相加得到下一项的数列。
- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。
- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。
4. 积数列。
- 定义:通过相邻项相乘得到下一项的数列。
- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。
- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。
5. 多次方数列。
- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。
2018国考行测:数量关系之容斥原理

2018国考行测:数量关系之容斥原理容斥原理问题是公务员考试中一类常考题型,常见的容斥原理问题有三种:两集合容斥原理,三集合容斥原理标准型,三集合容斥原理非标准型。
在审题时大家要牢牢把握住题型的特征:当题目中出现“都满足”,“都不满足”时,就可以归为容斥问题。
河北省考中容斥问题相对来说不是太难,基本上直接套用公式就能解决,属于易于拿分的题型。
下面给大家整理一下容斥原理这三种题型的公式以及用法。
一、两集合容斥原理公式:A+B-AB=总个数- 两者都不满足的个数。
其中A、B分别代表满足不同条件的数量,AB代表两个条件都满足的数量。
【例1】某班有60人,参加物理竞赛的有30人,参加数学竞赛的有32人,两者都没有参加的有20人。
同时参加物理、数学两科竞赛的有多少人?()A.28人B.26人C.24人D.22人D【解析】这是一道两集合的容斥问题。
根据公式:60-20=30+32-两者都参加的人,解得答案为D。
二、三集合容斥原理标准型公式:A+B+C-(AB+BC+AC)+ABC=总个数-都不满足的个数。
其中A、B、C代表满足不同条件的数量,AB、BC、AC代表分别满足其中两个条件的数量,ABC代表三个条件都满足的数量。
【例2】100个学生只有2人没学过外语,学过英语的有40人,学过德语的有45人,学过法语的有43人,学过英语也学过德语的有15人,学过英语也学过法语的有12人,学过法语也学过德语的有10人。
问:三种语言都学过的有多少人?()A.4 B.6C.7 D.5C【解析】运用容斥原理可得:40+45+43-(15+12+10)+三种语言都学过的人数=100-2。
解得三种语言都学过的数量为7,因此,本题答案为C选项。
三、三集合非标准型容斥原理公式:A+B+C-只满足两个条件的数量-2×满足三个条件的数量=总个数-都不满足的个数。
【例3】为丰富职工业余文化生活,某单位组织了合唱、象棋、羽毛球三项活动。
数量关系之容斥问题解题原理及方法

数量关系之容斥问题解题原理及⽅法 ⼀、知识点 1、集合与元素:把⼀类事物的全体放在⼀起就形成⼀个集合。
每个集合总是由⼀些成员组成的,集合的这些成员,叫做这个集合的元素。
如:集合A={0,1,2,3,……,9},其中0,1,2,…9为A的元素。
2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A∪B,记号“∪”读作“并”。
A∪B读作“A 并B”,⽤图表⽰为图中阴影部分表⽰集合A,B的并集A∪B。
例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A∪B={1,2,3,5,6,10} 3、交集:A、B两个集合公共的元素,也就是那些既属于A,⼜属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表⽰: 例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。
4、容斥原理(包含与排除原理): (⽤|A|表⽰集合A中元素的个数,如A={1,2,3},则|A|=3) 原理⼀:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进⾏: 第⼀步:先求出∣A∣+∣B∣(或者说把A,B的⼀切元素都“包含”进来,加在⼀起); 第⼆步:减去∣A∩B∣(即“排除”加了两次的元素) 总结为公式:|A∪B|=∣A∣+∣B∣-∣A∩B∣ 原理⼆:给定三个集合A,B,C。
要计算A∪B∪C中元素的个数,可以分三步进⾏: 第⼀步:先求∣A∣+∣B∣+∣C∣; 第⼆步:减去∣A∩B∣,∣B∩C∣,∣C∩A∣; 第三步:再加上∣A∩B∩C∣。
即有以下公式: ∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣B∩C∣- |C∩A|+|A∩B∩C∣ ⼆、例题分析: 例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。
分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求∣A∪B∣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有392人,两个提案都反对的有17人。问赞成第一个提案且反对第二个提案的有几人?()
A.56人B.67人
C.83人D.84人
【练习8】在1至1000的1000个自然数中,既不是4的倍数,也不是5的倍数的数共有多少个?( )
A.600B.550
丙的有6种,含乙、丙的有9种,三种维生素都不含的有7种,则三种维生素都含的有多少种?( )
A.4B.6
C.7D.9
【练习15】某乡镇对集贸市场36种食品进行检查,发现超过保质期的7种,防
腐添加剂不合格的9种,产品外包装标识不规范的6种。其中,两项同时不合格
的5种,三项同时不合格的2种。问三项全部合格的食品有多少种?()
考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有
46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?()
A.120B.144
C.177D.192
【练习11】如下图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。问阴影部分的面积是多少?()
C.30人D.36人
【练习13】外语学校有英语、法语、日语教师共27人,其中只能教英语的有8
人,只能教日语的有6人,能教英、日语的有5人,能教法、日语的有3人,能
教英、法语的有4人,三种都能教的有2人,则只能教法语的有()。
A.4人B.5人
C.6人D.7人
【练习14】对39种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17种,含乙的有18种,含丙的有15种,含甲、乙的有7种,含甲、
A.1B.2
C.3D.5
方法:
知识点:
第十讲思维导图
第十讲课堂练习
【必做题】
【练习1】现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,
化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有
()。
A.27人B.25人
C.19人D.10人
【练习2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二
C.35D.40
【练习4】一批游客中每人都去了A、B两个景点中至少一个。只去了A的游客和没去A的游客数量相当,且两者之和是两个景点都去了的人数的3倍。则只去一个景点的人数占游客总人数的比重为()。
A.2/3B.3/4
C.4/5D.5/6
【练习5】小明和小强参加同一次考试,如果小明答对的题目占题目总数的3/4,小强答对了27道题,他们两人都答对的题目占题目总数的2/3,那么两人都没有答对的题目共有()。
A.3道B.4道
C.5道D.6道
【练习6】运动会上100名运动员排成一列,从左向右依次编号为1-100,选出
编号为3的倍数的运动员参加开幕式队列,而编号为5的倍数的运动员参加闭幕式队列。问既不参加开幕式又不参加闭幕式队列的运动员有多少人?( )
A.46B.47
C.53D.54
【练习7】某委员会有成员465人,对2个提案进行表决,要求必须对2个提案
A.24B.27
C.30D.33
方法:
知识点:
【例7】某工作组有12名外国人,其中6人会说英语,5人会说法语,5人会说西班牙语;有3人既会说英语又会说法语,有2人既会说法语又会说西班牙语,
有2人既会说西班牙语又会说英语;有1人这三种语言都会说。则只会说一种语言的人比一种语言都不会说的人多多少人?()
A.15B.16
C.14D.18
【练习12】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有()。
A.22人B.28人
B.30%
D.50%
方法:
知识点:
三集合
【例4】某专业有学生50人,现开设有甲、乙、丙三门必修课。有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?( )
A.20B.30
C.24D.26
方法:
知识点:
【例3】工厂组织职工参加周末公益活动,有80%的职工报名参加,报名参加周六活动的人数与报名参加周日活动的人数比为2:1,两天的活动都报名参加的为只报名参加周日活动的人数的50%,问未报名参加活动的人数是只报名参加周
六活动的人数的?(
)
A.20%
C.40%
A.1人B.2人
C.3人D.4人
方法:
知识点:
【例5】某乡镇举行运动会,共有长跑、跳远和短跑三个项目。参加长跑的有49
人,参加跳远的有36人,参加短跑的有28人,只参加其中两个项目的有13人,参加全部项目的有9人。那么参加该次运动会的总人数为()
A.75B.82
C.88D.95
方法:
知识点:
【例6】工厂组织工人参加技能培训,参加车工培训的有17人,参加钳工培训的有16人,参加铸工培训的有14人,参加两项及以上培训的人占参加培训总人数的2/3,三项培训都参加的有2人,问总共有多少人参加了培训?( )
A.14B.21
C.23D.32
第二章题型精讲
第十节 容斥原理
题型综述:
两集合
【例1】某乡有32户果农,其中有26户种了柚子树,有24户种了橘子树,还
有5户既没有种柚子树也没有种橘子树,那么该乡同时种植柚子树和橘子树的果农有()。
A.23户B.22户
C.21户D.24户方法:Fra bibliotek知识点:
【例2】某企业共有职工100多人,其中,生产人员与非生产人员的人数之比为4:5,而研发与非研发人员的人数之比为3:5,已知生产人员不能同时担任研发人员,则该企业不在生产和研发两类岗位上的职工有多少人?()
C.500D.450
【练习9】某单位派60名运动员参加运动会开幕式,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人?()
A.12B.14
C.15D.29
【练习10】某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机
次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。
A.22B.18
C.28D.26
【练习3】某服装厂生产出来的一批衬衫中大号和小号各占一半。其中25%是白色,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?()
A.15B.25