扭转实验报告

合集下载

扭转实验报告

扭转实验报告

扭转实验报告
目录
1. 标题
1.1 概述
1.2 背景
2. 实验设计
2.1 实验目的
2.2 实验材料
2.3 实验步骤
2.4 实验结果
3. 结论
3.1 总结
3.2 展望
概述
本实验报告旨在讨论扭转实验的设计与结果。

扭转实验是一项常见的科学实验,旨在验证某种理论或假设。

通过实验,科学家们可以检验他们的研究假设,并从中获取有益的信息。

背景
扭转实验在科学研究中占据重要地位,其过程严谨而详尽。

通过扭转实验,科学家可以验证其研究假设的正确性,为进一步研究提供基础。

实验设计
实验目的
扭转实验的目的是验证特定理论或假设的有效性,并获取实验证据。

实验材料
实验所需材料包括实验装置、样本等。

实验步骤
1. 准备实验装置并调试。

2. 收集所需样本并进行前期处理。

3. 进行实验操作并记录数据。

4. 分析数据并得出结论。

实验结果
实验结果表明……
结论
总结
本次扭转实验验证了研究假设的有效性,结果具有重要的科学意义。

展望
未来可以进一步深入研究扭转实验的应用,探索更广泛的科学领域。

扭转实验的实验报告

扭转实验的实验报告

引言概述:本文是《扭转实验的实验报告(二)》。

扭转实验是一种用于研究材料的力学性质的实验方法。

在本次实验中,我们通过对不同材料的扭转实验进行了测试和分析,并总结了实验结果,以期进一步了解材料的力学性能和变形行为。

正文内容:一、实验目的:1.1研究不同材料在扭转载荷下的力学性能;1.2分析不同材料在扭转载荷下的变形行为;1.3比较不同材料的扭转刚度和扭转强度。

二、实验装置和材料:2.1实验装置:我们使用了一台扭转试验机进行实验。

该试验机能够提供控制扭转载荷的功能,并能够测量样品的扭转角度和扭矩;2.2实验材料:我们选择了不同种类的材料进行实验,包括金属材料、塑料材料和复合材料等。

三、实验方法:3.1样品制备:我们按照一定规格和尺寸制备了不同材料的样品。

样品的形状和尺寸应符合国际标准,以保证实验结果的可比性;3.2扭转实验参数设置:我们在实验过程中设置了一定的扭转载荷和扭转速度,并保持其他实验参数不变,以探究不同载荷和速度对材料力学性能的影响;3.3数据采集和分析:我们使用实验装置提供的数据采集系统记录样品的扭转角度和扭矩,并进行数据分析和统计。

四、实验结果:4.1不同材料的扭转刚度比较:我们对不同材料的扭转刚度进行了比较。

实验结果显示,金属材料具有较高的扭转刚度,而塑料材料和复合材料的扭转刚度较低;4.2不同材料的扭转强度比较:我们对不同材料的扭转强度进行了比较。

实验结果显示,金属材料具有较高的扭转强度,而塑料材料和复合材料的扭转强度较低;4.3不同材料的变形行为分析:我们对不同材料在扭转载荷下的变形行为进行了分析。

实验结果显示,金属材料变形较小且具有较高的弹性恢复性,而塑料材料和复合材料的变形较大且难以恢复;4.4不同材料的破坏形态观察:我们对不同材料在扭转载荷下的破坏形态进行了观察。

实验结果显示,金属材料在破坏前具有明显的塑性变形,而塑料材料和复合材料的破坏形态主要表现为断裂;4.5材料力学性能与组织结构的关系:我们分析了材料力学性能与其组织结构之间的关系。

扭转实验报告实验目的

扭转实验报告实验目的

一、实验目的1. 理解扭转实验的基本原理和实验方法;2. 掌握扭转实验的操作步骤和数据处理方法;3. 分析不同材料的扭转性能,了解其力学特性;4. 比较不同实验条件下的扭转性能,探讨影响因素;5. 培养学生的实验操作能力和分析问题、解决问题的能力。

二、实验原理扭转实验是力学实验中的一种基本实验,用于研究材料在扭转应力作用下的力学性能。

扭转实验的原理是:当材料受到扭转力矩的作用时,材料内部的应力分布会发生变化,从而产生剪切应力。

通过测量材料的扭转角度、扭矩和扭转刚度等参数,可以分析材料的扭转性能。

扭转实验的基本原理如下:(1)扭转应力分布:在扭转应力作用下,材料内部的应力分布呈环状,即剪切应力τ沿半径r的变化规律为τ=τ0(1-3cosθ/r),其中τ0为最大剪切应力,θ为扭转角度,r为半径。

(2)扭矩与扭转角度的关系:在扭转实验中,扭矩M与扭转角度θ之间存在如下关系:M=2πTθ,其中T为扭转刚度,表示材料抵抗扭转变形的能力。

(3)扭转刚度:扭转刚度T是衡量材料扭转性能的重要参数,其计算公式为T=GI/P,其中G为剪切模量,I为截面惯性矩,P为扭矩。

三、实验方法1. 实验材料:选择具有代表性的材料,如钢、铝、塑料等。

2. 实验设备:扭转试验机、电子秤、游标卡尺、量角器等。

3. 实验步骤:(1)准备实验材料:根据实验要求,截取一定长度的材料,确保材料尺寸满足实验要求。

(2)安装实验设备:将扭转试验机、电子秤、游标卡尺、量角器等设备安装调试到位。

(3)测量材料尺寸:使用游标卡尺测量材料的直径、长度等尺寸,并记录数据。

(4)施加扭矩:将材料固定在扭转试验机上,逐步施加扭矩,记录扭矩值。

(5)测量扭转角度:在施加扭矩的过程中,使用量角器测量材料的扭转角度,并记录数据。

(6)数据处理:根据实验数据,计算材料的扭转刚度、最大剪切应力等参数。

四、实验结果与分析1. 实验结果:通过实验,得到了不同材料的扭转刚度、最大剪切应力等参数。

扭转破坏实验报告

扭转破坏实验报告

一、实验目的1. 掌握扭转试验机的操作方法。

2. 测定低碳钢的剪切屈服极限和剪切强度极限。

3. 比较低碳钢和铸铁在扭转过程中的变形及其破坏形式。

4. 分析试件断口形貌,了解两种材料的扭转性能差异。

二、实验设备与仪器1. 扭转试验机2. 游标卡尺3. 低碳钢圆轴试件4. 铸铁圆轴试件三、实验原理扭转试验是材料力学实验中的一种基本试验,通过测定材料在扭转过程中的应力、应变和破坏情况,来研究材料的扭转性能。

在扭转过程中,材料内部的应力分布呈环形分布,最大应力出现在试件的边缘,最小应力出现在试件中心。

四、实验步骤1. 将低碳钢和铸铁圆轴试件分别安装在扭转试验机上。

2. 使用游标卡尺测量试件的直径,记录数据。

3. 设置扭转试验机,选择合适的加载速度。

4. 开启试验机,开始进行扭转试验。

5. 观察试件的变形情况,记录屈服扭矩和破坏扭矩。

6. 取下试件,观察断口形貌,分析破坏原因。

五、实验结果与分析1. 低碳钢试件的扭转实验结果如下:- 剪切屈服极限:σs = 220 MPa- 剪切强度极限:σb = 300 MPa低碳钢在扭转过程中,当扭矩达到屈服扭矩时,试件表面出现屈服现象,扭矩基本不变。

随着扭矩的继续增大,试件进入强化阶段,变形增加,扭矩随之增加。

当扭矩达到破坏扭矩时,试件发生断裂。

2. 铸铁试件的扭转实验结果如下:- 剪切强度极限:σb = 150 MPa铸铁在扭转过程中,当扭矩达到剪切强度极限时,试件发生断裂。

由于铸铁为脆性材料,其扭转过程中的变形较小,几乎没有屈服现象。

3. 对比两种材料的扭转性能:- 低碳钢具有较好的扭转性能,剪切屈服极限和剪切强度极限较高,适合用于承受扭转载荷的结构件。

- 铸铁的扭转性能较差,剪切强度极限较低,不适合用于承受扭转载荷的结构件。

4. 分析试件断口形貌:- 低碳钢试件断口为纤维状断口,表明其断裂原因主要是由于拉伸断裂。

- 铸铁试件断口为解理断口,表明其断裂原因主要是由于剪切断裂。

扭转实验报告

扭转实验报告

扭转实验1、实验目的测定材料在扭转破坏时的剪切流动极限,剪 切强度极限,为 在扭转情况下工作的转轴提供设计依据。

2、实验原理扭转试样一般为圆截面。

低碳钢试样扭转时,在表面上画上两条纵向线和两条圆周线,以观察扭转变形。

低碳钢在比例极限内,T 与Ф成线性关系。

横截面上的切应力沿半径线性分布。

随着T 的增大横截面边缘处的切应力首先到达剪切极限 S τ,而且塑性区逐渐向圆心扩展,形成环形塑性区。

但中心部分仍然是弹性的,所以 T 仍可以增加,T 和Ф的关系成为曲线。

直到整个截面几乎都是塑性区,在 T- Ф上出现屈服平台,示力度盘的指针基本不动或轻微摆动,相应的扭矩为T S 。

如认为这时整个圆截面皆为塑性区,则 T S 与S τ的关系为s t S W T τ34=或t s s W T ⋅=43τ 式中 163d W t π=为抗扭截面系数。

过屈服阶段后,材料的强化使扭矩又有缓慢的上升。

但变形非常显著,试样的纵向线变成螺旋线,直至到达极限值 Tb,试样被扭断。

与Tb 相应的剪切强度极限b τ 仍约定由下面公式计算,tb b W T ⋅=43τ 铸铁试样受扭时,变形很小即突然断裂。

其T-Ф图接近直线,剪切强度极限b τ可按线弹性公式计算,即tb b W T =τ 3、实验仪器设备:NJ-100B 扭转实验机;0~150mm 游标卡尺4、实验步骤:用游标卡尺测量标距截面的直径;在低碳钢试样表面画一条纵向线;根据试样的有效面积估算最大扭矩,然后转动量程手轮选好度盘,接通电源调指针指零;根据试样大小选定夹块和衬套大小,然后装试件,此时指针不在零点调电机手轮;选定主动夹头转速,把开关拨到 0~360°/分档,将从动针转至与主动针重合;根据选好的旋向按下“正”或“反”按钮,拧动多圈电位器,加载速度低碳钢和铸铁在屈服前用低速,而后用高速。

低碳钢要测出下屈服扭矩 TS 、最大扭矩Tb ,铸铁要测出最大扭矩 Tb ;断裂后停机,记下被动针指出的数值和刻度环上的扭转角,整圈数螺线;把扭断的试件对起来,量一下长度 L1 和直径d1 ,把数据填入表中。

材料力学实验报告扭转实验

材料力学实验报告扭转实验

材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。

2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。

3、熟悉扭转试验机的工作原理和操作方法。

二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。

扭矩与扭转角之间的关系可以通过试验机测量得到。

对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。

当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。

四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。

2、安装试件,确保其中心线与试验机的轴线重合。

3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。

4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。

5、继续加载,直至试件断裂,记录极限扭矩$T_b$。

6、取下试件,观察其破坏形式。

六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。

扭转实验的实验报告(一)2024

扭转实验的实验报告(一)2024

扭转实验的实验报告(一)引言概述:本实验报告旨在描述和分析扭转实验的过程和结果。

扭转实验是一种用于测量材料抵抗扭转力的实验方法,通过对材料样品施加扭转力并记录变形情况,可以得出材料的剪切模量和剪切应力等重要参数。

本报告将从实验设计、实验步骤、数据处理和结果分析等方面进行详细阐述。

正文内容:1. 实验设计1.1 确定实验目的和要求1.2 选择合适的实验材料和样品形状1.3 设计实验方案和流程1.4 准备实验所需仪器和设备1.5 保证实验的安全性和可重复性1.6 制定实验数据记录和分析的方法2. 实验步骤2.1 准备试样并测量尺寸2.2 安装实验设备和传感器2.3 施加扭转力并记录数据2.4 测量扭转角和变形情况2.5 重复以上步骤以获得可靠的实验数据3. 数据处理3.1 对实验数据进行初步筛选和整理3.2 计算材料的剪切模量和剪切应力3.3 绘制力-变形曲线和应力-应变曲线3.4 分析曲线特征和趋势3.5 比较不同样品的实验结果并得出结论4. 结果分析4.1 分析实验数据的准确性和可信度4.2 探讨材料的力学性能和变形特点4.3 解释实验结果和观察现象的原因4.4 对实验中的不确定因素进行讨论4.5 提出改进建议和进一步研究的方向5. 总结5.1 总结实验目的和主要结果5.2 简要回顾实验步骤和实验设计5.3 强调实验的局限性和不足之处5.4 提出对未来实验的改进和扩展建议5.5 结束语通过本实验报告的详细叙述和分析,我们可以对扭转实验的目的、步骤、数据处理、结果和意义有一个全面的了解。

实验结果对于材料的力学性能和变形特点的研究具有重要意义,并为未来的相关研究和实验提供了参考。

扭转实验的实验报告

扭转实验的实验报告

扭转实验的实验报告篇一:低碳钢和铸铁的扭转实验报告一、试验目的扭转试验报告1、测定低碳钢的剪切屈服极限τs。

和剪切强度极限近似值τb。

2、测定铸铁的剪切强度极限τb。

3、观察并分析两种材料在扭转时的变形和破坏现象。

二、设备和仪器1、材料扭转试验机2、游标卡尺三、试验原理1、低碳钢试样对试样缓慢加载,试验机的绘图装置自动绘制出T-φ曲线(见图1)。

最初材料处于图1 低碳钢是扭转试验弹性状态,截面上应力线性分布,T-φ图直线上升。

到A点,试样横截面边缘处剪应力达到剪切屈服极限τs。

以后,由屈服产生的塑性区不断向中心扩展,T-φ图呈曲线上升。

至B点,曲线趋于平坦,这时载荷度盘指针停止不动或摆动。

这不动或摆动的最小值就是屈服扭矩Ts。

再以后材料强化,T-φ图上升,至C点试样断裂。

在试验全过程中,试样直径不变。

断口是横截面(见图2a),这是由于低碳钢抗剪能力小于抗拉能力,而横截面上剪应力最大之故。

图2 低碳钢和铸铁的扭转端口形状据屈服扭矩?s?3Ts (2-1)4Wp按式2-1可计算出剪切屈服极限τs。

据最大扭矩Tb可得:?b?3Tb(2-2)4Wp按式2-2可计算出剪切强度极限近似值τb。

说明:(1)公式(2-1)是假定横截面上剪应力均达到τs后推导出来的。

公式(2-2)形式上与公式(2-1)虽然完全相同,但它是将由塑性理论推导出的Nadai公式略去了一项后得到的,而略去的这一项不一定是高阶小量,所以是近似的。

(2)国标GB10128-88规定τs和τb均按弹性扭转公式计算,这样得到的结果可以用来比较不同材料的扭转性能,但与实际应力不符。

II、铸铁试样铸铁的曲线如图3所示。

呈曲线形状,变形很小就突然破裂,有爆裂声。

断裂面粗糙,是与轴线约成45°角的螺旋面(见图1-3-2b)。

这是由于铸铁抗拉能力小于抗剪能力,而这面上拉应力最大之故。

据断裂前的最大扭矩Tb按弹性扭转公式1-3-3可计算抗扭强度τb。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的和要求
1、测定低碳钢的剪切屈服点s τ、剪切强度b τ,观察扭矩-转角曲线(φ-T 曲线)。

2、观察低碳钢试样扭转破坏断口形貌。

3、测定低碳钢的剪切弹性模量G 。

4、验证圆截面杆扭转变形的胡克定律(p GI Tl /=φ)。

5、依据低碳钢的弹性模量,大概计算出低碳钢材料的泊松比。

二、试验设备和仪器
1、微机控制扭转试验机。

2、游标卡尺。

3、装夹工具。

三、实验原理和方法
遵照国家标准(GB/T10128-1998)采用圆截面试样的扭转试验,可以测定各种工程材料在纯剪切情况下的力学性能。

如材料的剪切屈服强度点s τ和抗剪强度b τ等。

圆截面试样必须按上述国家标准制成(如图1-1所示)。

试验两端的夹持段铣削为平面,这样可以有效地防止试验时试样在试验机卡头中打滑。

图 1-1
试验机软件的绘图系统可绘制扭矩-扭转角曲线,简称扭转曲线(图1-2中的曲线)。

图3-2
从图1-2可以看到,低碳钢试样的扭转试验曲线由弹性阶段(oa 段)、屈服阶段(ab 段)和强化阶段(cd 段)构成,但屈服阶段和强化阶段均不像拉伸试验曲线中那么明显。

由于强化阶段的过程很长,图中只绘出其开始阶段和最后阶段,破坏时试验段的扭转角可达π10以上。

从扭转试验机上可以读取试样的屈服扭矩s T 和破坏扭矩b T 。

由和
T s s W T 4/3=τ计算材料的剪切屈服强度s τ和抗剪强度b τ,式中:16
/30d W T π=为试样截面的抗扭截面系数。

当圆截面试样横截面的最外层切应力达到剪切屈服点s τ时,占横截面绝大部分的内层切应力仍低于弹性极限,因而此时试样仍表现为弹性行为,没有明显的屈服现象。

当扭矩继续增加使横截面大部分区域的切应力均达到剪切屈服点s τ时,试样会表现出明显的屈服现象,此时的扭矩比真实的屈服扭矩s T 要大一些,对于破坏扭矩也会有同样的情况。

图1-3所示为低碳钢试样的扭转破坏断口,破坏断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。

图 1-3
材料的剪切弹性模量G 遵照国家标准(GB/T10128-1988)可由圆截面试样的扭转试验测定。

在弹性范围内进行圆截面试样扭转试验时,扭矩和扭转角之间的关系符合扭转变形的胡克定律p GI Tl =Φ,式中:
3240d I P π=为截面的极惯性矩。

当试样长度l 和极惯性矩P I 均为已知时,只要测取扭矩增量T ∆和相应的扭转角增量∆Φ,可由式
P I l
T G ⋅∆Φ⋅∆=
计算得到材料的剪切弹性模量。

实验通常采用多级等增量加载法,这样不仅可以避免人为读取数据产生的误差,而且可以通过每次载荷增量和扭转角增量验证扭转变形的胡克定律。

四、实验步骤
1、测量低碳钢试样直径d 1,长度L ;
2、装夹试样;在试样上安装扭角测试装置,将一个定位环夹盒套在试样的一端,装上卡盘,将螺钉拧紧。

再将另一个定位环夹套在试样的另一端,装上另一卡盘;根据不同的试样标距要求,将试样搁放在相应的的V 形块上,使两卡盘与V 形块的两端贴紧,保证卡盘与试样垂直,以确保标距准确,将卡盘上的螺母拧紧。

3、将试验机两端夹头对正,清零、装夹紧试件,进行保护。

4、运行POWERTEST软件,选择剪切弹性模量测定试验方案;
表1-1 实验程序
4、按软件“运行”键,开始试验;
5、记录多级等增量加载实验数据;
6、试样被扭断后停机,取下试样,注意观察试样断口形貌;
7、结束实验,将试验机复位并整理现场。

五、实验数据及处理结果
1、低碳钢扭转试验数据
表1-1 直径测量表
则依据试验可知低碳钢的相关参数: 44036.968mm d I P ==π
30
31.1942mm d I W P t ==
表1-2 低碳钢剪切屈服强度、抗剪强度计算表
由上表可得低碳钢的剪切屈服强度,抗剪强度。

010
20
30
40
50
60
70
80
90
图1-4 低碳钢扭角(度)—扭矩(N*m )破坏曲线图
_
图1-5 低碳钢扭转破坏弹性阶段拟合曲线 最佳线性拟合曲线函数为32934.0305.25+=x y ,故可以得出低碳钢的剪切弹性模量。

p I TL G φ∆∆=0 度度/m N 25305/305.25m m N T ⋅=⋅=∆∆φ
GPa I TL G o
p 9.7414
.336.96818050253050=⨯⨯⨯=∆∆=φ
低碳钢扭转破坏后的形式:
试件表面出现45度螺旋线,试样的断面与横截面重合,断面是最大切应力作用面,断口较为平齐,可知为剪切破坏。

六、实验注意事项
1、推动试验机移动支座时,切忌用力过大,以免损坏试样或传感器。

2、进入软件前请确认试验机电源已打开。

3、退出软件前请确定试验机电源已关闭。

七、试验总结与思考
1、弹性阶段的拟合曲线未经过原点,原因是装试样时并未完全夹紧,机器运转时产生松动。

2、试验操作时,对试验步骤不熟悉,不知道标距是怎样定义的,不知道V形块和卡盘的作用,导致无法正确的安装试件,以后要做好预习工作。

3、整理试验报告最大的问题在于怎么处理数据,对于利用Matlab、Excel软件不够熟悉,课后要加强这方面的学习。

4、试验时忘记了记录保载时的数据,导致斜率只能通过软件进行拟合,所以要培养自己做实验的良好习惯,做实验时要想好每一步该如何操作,要测量什么数据,要记录什么数据,以保证实验数据处理顺利进行。

相关文档
最新文档