椭圆偏振仪测量薄膜厚度和折射率PPT课件

合集下载

椭圆偏振仪测量薄膜厚度和折射率演示课件

椭圆偏振仪测量薄膜厚度和折射率演示课件
13
实验操作
将1/4波片快轴转到+450位置 仔细调节检偏器A和起偏器P,使目镜内的亮点最暗,
即检流计值最小。计下A、P的刻度值,测得两组消 光位置数值 将1/4波片快轴转到-450位置 重复2的工作。
其中:A分别取大于900和小于900 两种情况。
14
测试结果点
15
16
17
18
19
和 称为椭圆偏参量(椭圆偏角)
8
和的物理意义
光的复数形式 EEexpi() 反射前后p和s分量的振幅比 ta nErpEis/ErsEip
反射前后p和s分量的位相差 (rp r)s(ipis )
9
问题的简化
入射光为等幅椭圆偏振光 Eis / Eip 1
反射光为线性偏振光 rprs0()
20
21
22
23
24
25
26
27
28
29
30
10
简化目的
ta n Erp/Ers 恰好是反射光p和s的幅值比,通过 检偏器角度A可求;
(ipis)0() 为光经过膜位相的改变,可通 过起偏器的角度P求得
11
简化条件的节起偏器的角度就可以使入射光的位相差连
续可调.
12
仪器校准
•自准法调光路水平和共轴 •利用布儒斯特角调节检偏器 •利用检偏器和起偏器的关系调节起偏器 •确定1/4波片
一束自然光经偏振器变成偏振光,再经过1/4波 片使它变成椭圆偏振光入射在待测膜上;
反射时,光的偏振状态发生变化;
通过检测这种变化,便可推算出待测膜面的膜 厚度和折射率.
6
多光反射示意图
p s
d
n1 n2 n3

用椭偏仪测薄膜厚度与折射率

用椭偏仪测薄膜厚度与折射率

103实验十二 用椭偏仪测薄膜厚度与折射率随着半导体和大规模集成电路工艺的飞速发展,薄膜技术的应用也越加广泛。

因此,精确地测量薄膜厚度与其光学常数就是一种重要的物理测量技术。

目前测量薄膜厚度的方法很多。

如称重法、比色法、干涉法、椭圆偏振法等。

其中,椭圆偏振法成为主要的测试手段,广泛地应用在光学、材料、生物、医学等各个领域。

而测量薄膜材料的厚度、折射率和消光系数是椭圆偏振法最基本,也是非常重要的应用之一。

实验原理由于薄膜的光学参量强烈地依赖于制备方法的工艺条件,并表现出明显的离散性,因此,如何准确、快速测量给定样品的光学参量一直是薄膜研究中一个重要的问题。

椭圆偏振法由于无须测定光强的绝对值,因而具有较高的精度和灵敏度,而且测试方便,对样品无损伤,所以在光学薄膜和薄膜材料研究中受到极大的关注。

椭圆偏振法是利用椭圆偏振光入射到样品表面,观察反射光的偏振状态(振幅和位相)的变化,进而得出样品表面膜的厚度及折射率。

氦氖激光器发出激光束波长为632.8nm 的单色自然光,经平行光管变成单色平行光束,再经起偏器P 变成线偏振光,其振动方向由起偏器方位角决定,转动起偏器,可以改变线偏振光的振动方向,线偏振光经1/4波片后,由于双折射现象,寻常光和非寻常光产生π/2的位相差,两者的振动方向相互垂直,变为椭圆偏振光,其长、短轴沿着1/4波片的快、慢轴。

椭圆的形状由起偏器的方位角来决定。

椭圆偏振光以一定的角度入射到样品的表面,反射后偏振状态发生改变,一般仍为椭圆偏振光,但椭圆的方位和形状改变了。

从物理光学原理可以知道,这种改变与样品表面膜层厚度及其光学常数有关。

因而可以根据反射光的特性来确定膜层的厚度和折射率。

图1为基本原理光路。

图2为入射光由环境媒质入射到单层薄膜上,并在环境媒质——薄膜——衬底的两个界面上发生多次折射和反射。

此时,折射角满足菲涅尔折射定律332211sin sin sin ϕϕϕN N N ==(1)104 其中N 1,N 2和N 3分别是环境媒质、= n – i k );ϕ1为入射角、 ϕ2 和ϕ3分别为薄膜和衬底的折射角。

03.01.椭偏光法测量薄膜的厚度和折射率

03.01.椭偏光法测量薄膜的厚度和折射率

椭偏光法测量薄膜的厚度和折射率1. 实验目的(1) 了解椭偏光法测量原理和实验方法; (2) 熟悉椭偏仪器的结构和调试方法; (3) 测量介质薄膜样品的厚度和折射率。

2. 实验原理本实验介绍反射型椭偏光测量方法。

其基本原理是用一束椭偏光照射到薄膜样品上,光在介质膜的交界面发生多次的反射和折射,反射光的振幅和位相将发生变化,这些变化与薄膜的厚度和光学参数(折射率、消光系数等)有关,因此,只要测出反射偏振状态的变化,就可以推出膜厚度和折射率等。

2.1 椭圆偏振方程图1所示为均匀、各向同性的薄膜系统,它有两个平行的界面。

介质1为折射率为n 1的空气,介质2为一层厚度为d 的复折射率为n 2的薄膜,它均匀地附在复折射率为n 3的衬底材料上。

φ1为光的入射角,φ2和φ3分别为薄膜中和衬底中的折射角。

光波的电场矢量可分解为平行于入射面的电场分量(p 波)和垂直于入射面的电场分量(s 波)。

用(I p )i 和(I s )i 分别代表入射光的p 分量和s 分量,用(I p )r 和(I s )r 分别代表各反射光O p ,I p ,II p ···中电矢量的p 分量之和及各束反射光s 分量之和。

定义反射率(反射系数)r 为反射光电矢量的振幅与入射光电矢量的振幅之比。

则由菲涅耳公式,有 对空气-薄膜界面I :r 1p =n 2cosφ1−n 1cosφ2n 2cosφ1+n 1cosφ2(1)r 1s =n 1cosφ1−n 2cosφ2n 1cosφ1+n 2cosφ2(2)对薄膜-衬底界面II :r 2p =n 3cosφ2−n 2cosφ3n 3cosφ2+n 2cosφ3(3)r 2s =n 2cosφ2−n 3cosφ3n 2cosφ2+n 3cosφ3图1 薄膜系统的光路示意图I pO pI pII p根据折射定律,有n1sinφ1=n2sinφ2=n3sinφ3(5) 由图1,可算出任意两相邻反射光之间的光程差为l=2n2dcosφ2相应的相位差为2δ=360°λl于是可得δ=360°λd(n22−n12sin2φ1)12⁄(6)另一方面,由多束光干涉原理来考察空气-薄膜-衬底作为一个整体系统的总反射系数,以R p 和R s分别表示这个系统对p波和s波的总反射系数,则由图1可知,对p波,R p由O p,I p,II p···各级反射光叠加合成。

(2020年整理)椭偏测量原理.pptx

(2020年整理)椭偏测量原理.pptx

光是一种电磁波,且是横波。电场强度 E 和磁场强度 H 与光的传播方向构成一个右旋 的正交三矢族。与光的强度、频率、位相等参量一样,偏振态也是光的基本量之一。如果 已 知入射光束的偏振态,当测得通过某薄膜后的出射光偏振态,就能确定该薄膜影响系统 光学 性能的某些物理量,如折射率、薄膜厚度等。
如图 7-1 所示,一束自然光(非偏振激光)经过起偏器后变成线偏振光,改变起偏器 的方位角可以改变线偏光的振动方向。此线偏光穿过 1/4 波片后,由于双折射效应分成两 束光,即 o 光和 e 光。对正晶体的 1/4 波片,o 光沿快轴方向偏振,e 光沿慢轴方向偏振, o 光的振动位相超前 e 光 /2;对负晶体的 1/4 波片情况反之。因此,o 光 e 光合成后的光 矢 量端点形成椭圆偏振光。当椭圆偏振光入射到待测的膜面上时,如图 7-2 所示,反射光 的偏振态将发生变化,对于一定的样品,总可以找到一个起偏方位角,使反射光由椭圆偏
(7 2)
Rp
Erp E ip
, RS
Ers E
is
考虑光从空气中入射到薄膜上,则 n1=1。在下界面,考虑两束相邻的反射光,其光程 差(是否有/2 的相位差取决于 n2和 n3的关系)
n2(ACCB) AD
(7-3)
因为
d AC CB , AD AB sin i 2d sin i tan i
i2
2
-
ei
81tan
R -27r
r1
-136i
e1
2
i2
p
rre i2 1
p
2
1 p
-13s
s
-13R r r e r
s
12
1
re 2
-13p p

椭圆偏振光法测量薄膜的厚度和折射率

椭圆偏振光法测量薄膜的厚度和折射率

椭圆偏振光法测量薄膜的厚度和折射率摘要:本实验中,我们用椭圆偏振光法测量了MgF 2,ZrO 2,TiO 2三种介质膜的厚度和折射率,取MgF 2作为代表,测量薄膜折射率和厚度沿径向分布的不均匀性,此外还测量了Au 和Cr 两种金属厚膜的折射率和消光系数。

掌握了椭圆偏振光法的基本原理和技术方法。

关键词:椭偏法,折射率,厚度,消光系数 引言:薄膜的厚度和折射率是薄膜光电子器件设计和制备中不可缺少的两个参数。

因此,精确而迅速地测定这两个参数非常重要。

椭圆偏振光法就是一个非常重要的方法。

将一束单色椭圆偏振光投射到薄膜表面,根据电动力学原理,反射光的椭偏状态与薄膜厚度和折射率有关,通过测出椭偏状态的变化,就可以推算出薄膜的厚度和折射率。

椭圆偏振光法是目前测量透明薄膜厚度和折射率时的常用方法,其测量精度高,特别是在测量超薄薄膜的厚度时其灵敏度很高,因此常用于研究薄膜生长的初始阶段,而且由于这种方法时非接触性的,测量过程中不破坏样品表面,因而可用于薄膜生长过程的实时监控。

本实验的目的是掌握椭偏法测量薄膜的厚度和折射率的原理和技术方法。

测量几种常用介质膜的折射率和厚度,以及金属厚膜的复折射率。

原理:1. 单层介质膜的厚度和折射率的测量原理(1)光波在两种介质分界面上的反射和折射,有菲涅耳公式:121122112112211122322323223223322233cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos cos p s p s n n r n n n n r n n n n r n n n n r n n ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ-⎧=⎪+⎪-⎪=⎪+⎪⎨-⎪=⎪+⎪-⎪=⎪+⎩(tp-1); (2)单层膜的反射系数图1 光波在单层介质膜中传播以上各式中1n 为空气折射率,2n 为膜层的折射率,3n 为衬底折射率。

1ϕ为入射角,2ϕ,3ϕ分别为光波在薄膜和衬底的折射角。

椭圆偏振法测量薄膜的厚度和折射率

椭圆偏振法测量薄膜的厚度和折射率
( AP ) r / ( AP ) i tgψ = ( AS ) r / ( AS ) i源自iβ Pii β Si
( A P ) i = ( AS ) i
( AP ) r tg ψ = ( AS ) r
i[(β − β ) − (β − β ) i( β r − β i ) i Δ Pr Sr Pi Si e =e =e
−1
= tg ψ e iΔ
tanψ exp(iΔ ) = f (n2 , φ1 , n3 , d , λ )
大学物理实验讲座
椭圆参量 ψ、Δ
(E P r ) = (A ) e P r i β Pr
(E ) = ( A ) e S r S r
(E ) = ( A ) e S i S i
iβ Sr
(E ) = ( A ) e P i P i
• 对于一定的薄膜系统 Δ一定,只要改变ϕ (即改变起偏器的透光方向就改变了 β i ) 使出射光为线偏振光。(在薄膜反射光路 上放上一个检偏器,如果产生消光现象就 可以知道出射线偏振光,此线偏振光的方 位与 ψ 有关)
Δ = βr − βi
大学物理实验讲座
β
r
⎧ 0 = ⎨ ⎩π
实验仪器
• • • • • 激光器(氦氖或半导体) 分光计 黑色反光玻璃镜和薄膜样品 起偏器 检偏器
大学物理实验讲座
入射光为等幅椭圆偏振光
四分之一波片的快轴(FA)倾斜+45°时,所有角度的相对 位置下有
β i = β Pi − β Si = 2ϕ - 90
四分之一波片的快轴(FA)倾斜-45°时,所有角度的相对 位置下有 i Pi Si
β = β − β = 90 - 2ϕ
大学物理实验讲座

椭偏光法测量薄膜的厚度和折射率

椭偏光法测量薄膜的厚度和折射率

其中:这时需测四个量,即分别测入射光中的两分量振幅比和相位差及反射光中的两分量振幅比和相位差,如设法使入射光为等幅椭偏光,/ = 1,则tg ψ=|/|;对于相位角ip E is E rp E rs E ,有:∆因为入射光-连续可调,调整仪器,使反射光成为线偏光,即-=0或π,则ip βis βrp βrs βΔ=-(-)或Δ=π-(-),可见Δ只与反射光的p 波和s 波的相位差有关,可从ip βis βip βis β起偏器的方位角算出。

对于特定的膜,Δ是定值,只要改变入射光两分量的相位差(-ip β),肯定会找到特定值使反射光成线偏光,-=0或π。

is βrp βrs β2.椭偏法测量和的实验光路∆ψ1)等幅椭圆偏振光的获得,如图1-2。

2)平面偏振光通过四分之一波片,使得具有±π/4相位差。

3)使入射光的振动平面和四分之一波片的主截面成45°。

图 1-2反射光的检测将四分之一波片置于其快轴方向f 与x 方向的夹角α为π/4的方位,E0为通过起偏器后的电矢量,P 为E0与x 方向间的夹角。

,通过四分之一波片后,E0沿快轴的分量与沿慢轴的分量比较,相位上超前π/2。

在x 轴、y 轴上的分量为:由于x 轴在入射面内,而y 轴与入射面垂直,故就是,就是。

x E ip E y E is E图 1-3由此可见,当α=π/4时,入射光的两分量的振幅均为E0 / √2,它们之间的相位差为2P-π/2,改变P 的数值可得到相位差连续可变的等幅椭圆偏振光。

这一结果写成:实验仪器:本实验使用多功能激光椭圆偏振仪,由JJY型1'分光计和激光椭圆偏振装置两部分组成,仪器安装调试后如图19.6所示,其各部件功能如下:光源:包括激光管和激光电源。

激光管装在激光器座上,可以作水平、高低方位角调节和上下升降调节,发射632.8nm的单色光1.He-Ne激光管2.小孔光闸3.平行光管4.起偏器5.1/4 波片6.被测样品7.载物台8.光孔盘9.检偏器10.塑远镜筒11.白屏镜小孔光闸:保证激光器发出的激光束垂直照射在起偏器中心。

椭偏仪测量薄膜厚度和折射率

椭偏仪测量薄膜厚度和折射率

实验背景介绍椭圆偏振测量(椭偏术)是研究两媒质界面或薄膜中发生的现象及其特性的一种光学方法,其原理是利用偏振光束在界面或薄膜上的反射或透射时出现的偏振变换。

椭圆偏振测量的应用范围很广,如半导体、光学掩膜、圆晶、金属、介电薄膜、玻璃(或镀膜)、激光反射镜、大面积光学膜、有机薄膜等,也可用于介电、非晶半导体、聚合物薄膜、用于薄膜生长过程的实时监测等测量。

结合计算机后,具有可手动改变入射角度、实时测量、快速数据获取等优点。

实验原理在一光学材料上镀各向同性的单层介质膜后,光线的反射和折射在一般情况下会同时存在的。

通常,设介质层为n1、n2、n3,φ1为入射角,那么在1、2介质交界面和2、3介质交界面会产生反射光和折射光的多光束干涉,如图(1-1)图(1-1)这里我们用2δ表示相邻两分波的相位差,其中δ=2πdn2cosφ2/λ ,用r1p、r1s 表示光线的p分量、s分量在界面1、2间的反射系数,用r2p、r2s表示光线的p分、s分量在界面2、3间的反射系数。

由多光束干涉的复振幅计算可知:其中E ip和E is分别代表入射光波电矢量的p分量和s分量,E rp和E rs分别代表反射光波电矢量的p分量和s分量。

现将上述E ip、E is、E rp、E rs四个量写成一个量G,即:我们定义G为反射系数比,它应为一个复数,可用tgψ和Δ表示它的模和幅角。

上述公式的过程量转换可由菲涅耳公式和折射公式给出:G是变量n1、n2、n3、d、λ、φ1的函数(φ2、φ3可用φ1表示) ,即ψ=tg-1f,Δ=arg| f |,称ψ和Δ为椭偏参数,上述复数方程表示两个等式方程:[tgψe iΔ]的实数部分=的实数部分[tgψe iΔ]的虚数部分=的虚数部分若能从实验测出ψ和Δ的话,原则上可以解出n2和d (n1、n3、λ、φ1已知),根据公式(4)~(9),推导出ψ和Δ与r1p、r1s、r2p、r2s、和δ的关系:由上式经计算机运算,可制作数表或计算程序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反射光为线性偏振光 rprs0()
.
10
简化目的
ta n Erp/Ers 恰好是反射光p和s的幅值比,通过 检偏器角度A可求;
(ipis)0() 为光经过膜位相的改变,可通 过起偏器的角度P求得
.
11
简化条件的实现
起偏器加上1/4波片即可得到等幅椭圆偏振光; 调节起偏器的角度就可以使入射光的位相差连
ta n•Rp/Rs
和 称为椭圆偏参量(椭圆偏角)
.
8
和的物理意义
光的复数形式 EEexpi() 反射前后p和s分量的振幅比 ta nErpEis/ErsEip
反射前后p和s分量的位相差 (rp r)s(ipis )
.
9
问题的简化
入射光为等幅椭圆偏振光 Eis / Eip 1
其中:A分别取大于900和小于900 两种情况。
.
14
测试结果点
.
15
.
16
.
17
.
18
.
19
.
20
.
21
.
22
.
23
.
24
.
25
.
பைடு நூலகம்
26
.
27
.
28
.
29
.
30
椭圆偏振仪 测量薄膜厚度和折射率
.
1
实验目的
(1) 了解椭圆偏振法测量薄膜参数的 基本原理;
(2)掌握椭圆偏振仪的使用方法,会 利用椭偏仪对薄膜厚度和折射率进 行测量.
.
2
实验仪器
半导体激光器 椭圆偏振仪 数字检流计
.
3
利用椭偏仪测量优点
精度高 较灵敏 非破坏性
.
4
实验原理装置
.
续可调.
.
12
仪器校准
•自准法调光路水平和共轴 •利用布儒斯特角调节检偏器 •利用检偏器和起偏器的关系调节起偏器 •确定1/4波片
.
13
实验操作
将1/4波片快轴转到+450位置 仔细调节检偏器A和起偏器P,使目镜内的亮点最暗,
即检流计值最小。计下A、P的刻度值,测得两组消 光位置数值 将1/4波片快轴转到-450位置 重复2的工作。
5
实验原理
一束自然光经偏振器变成偏振光,再经过1/4波 片使它变成椭圆偏振光入射在待测膜上;
反射时,光的偏振状态发生变化;
通过检测这种变化,便可推算出待测膜面的膜 厚度和折射率.
.
6
多光反射示意图
p s d
.
n1 n2 n3
7
理论推导
总反射系数
Rp Erp/Eip
Rs Ers/Eis
引入两个物理量
相关文档
最新文档