激光的特点(特性)
激光原理复习自整理资料

第一章 激光的特性:1.方向性好,最小发散角约等于衍射极限角2.单色性好3.亮度高4.相干性好 波尔兹曼定律:根据统计规律,大量粒子组成的系统,在热平衡条件下,原子数按能级分布服从波尔兹曼定律:kT E i i i eg -∞n 推论:假设gi=gj1.当E2-E1很小,且12-E E E =∆<< kT 时,112n =n , 2.当E2>E1时,n2<n1. 说明高能粒子数密度总是较小3.当E1为基态,E2距离很远时,即E2>E1,012n =n ,说明绝大多数粒子为基态 普朗克公式:11h 8hv 33v -=kT e c v πρ 爱因斯坦关系:自发辐射,受激辐射,受激吸收之间的关系332121hv 8cB A π= 212121g B g B = 光子简并度g :处于同一光子态的光子数。
含义:同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数自发辐射:处于高能级E2的一个原子自发的向E1跃迁,并产生一个能量为hv的光子 特点:1各粒子自发,独立的发射光子;2非相干光源光功率密度:212)()t (q A t hvn =自受及辐射:处于高能级E2的一个原子在频率为v的辐射场作用下,向E1跃迁,并产生一个能量为hv的光子特点:1只有外来光频率满足12hv E E -=;2 受激辐射所发射的光子与外来光特征完全相同,相干光源【频率,相位,偏振方向,传播方向】,光场中相同光子数量增加,光强增加,入射光被放大,即光放大过程光功率密度:v B t hvn t ρ212)()(q =激光功率密度比:v v hv ρπλρπh88c q q 333==自激 增益系数:光通过单位长度激活物质后光强增长的百分数增益饱和:在抽运速率一定的条件下,当入射光的光强很弱时,增益系数是一个常数;当入射光的光强增大到一定程度后,增益系数随光强的增大而减小。
谱线宽度:线型函数在ν0时有最大值,下降至最大值的一半,对应得宽度。
激光的基础知识

激光的基础知识相信激光这名词对大家来说一点也不陌生。
在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。
在工业上,激光常用于切割或微细加工。
在军事上,激光被用来拦截导弹。
科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。
激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。
激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。
(1)激光的高亮度:一般规律认为,光源在单位面积上向某一方向的单位立体角内发射的功率,就称为光源在该方向上的亮度。
激光在亮度上的提高主要是靠光线在发射方向上的高度集中。
激光的发射角极小(一般用毫弧度表示),它几乎是高度平等准直的光束,能实现定向集中发射。
因此,激光有高亮度性。
固体激光器的亮度更可高达1011W/cn2Sr 。
不仅如此,一束激光经过聚焦后,由于其高亮度性的特点,能产生强烈的热效应,其焦点范围内的温度可达数千度或数万度,能熔化甚至于气化对激光有吸收能力的生物组织或非生物材料。
如工业上精密器件的焊接、灯孔、切割;医学上切割组织(光刀)、气化表浅肿瘤以及显微光谱分析等这些新技术都是利用激光的高亮度性所产生的高温效应。
激光功率密度的单位为mw/cm2或W/cm2,能量密度为焦尔/厘米2。
(2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有0.001弧度,接近平行。
1962年人类第一次使用激光照射月球,地球离月球的距离约38万公里,这两点都是激光加工的重要条件。
(3)激光的高单色性:光的颜色由光的波长(或频率)决定。
一定的波长对应一定的颜色。
太阳光的波长分布范围约在0.76微米至0.4微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。
激光的产生与特点

激光的产生与特点一、激光的产生激光的英文名字Laser,所以又称镭射,是受激辐射引起的光放大。
1.三种光辐射过程(1)自发辐射是指高能态粒子自发地向低能态跃迁。
(2)受激辐射是指高能态粒子在外来光子的激发下向低态跃迁。
(3)受激吸收是指低能态粒子吸收外来光子能量向高能态跃迁。
在激光器中是受激辐射,即高能态粒子在外来光子激发下向低能态跃迁,其频率、相位、偏振状态与外来光子相同。
只有受激辐射占优势时,外来光放大以后,才能发出激光,如高能态粒子数为N2,大于低能态粒子数N,时(即N,>N,时),才能把外来光放大,发出激光。
2.必要条件和充分条件产生激光的必要条件是要有使低能态粒子跃迁的激励过程,又称泵浦过程。
产生激光的充分条件是要有小损耗的谐振腔。
3.产生激光的三个条件1)实现粒子数反转。
2)满足阈值条件。
3)满足谐振条件。
泵浦过程实现了粒子数的反转,谐振腔内的两个反射镜,使受激辐射光在其中来回反射,满足阈值条件后发出激光。
二、激光的特点激光是以受激辐射的光放大为基础的发光现象,用以自身辐射为基础的光源相比,具有单色性好、方向性好、亮度高以及相干性好等特点。
1.单色性好对于单色性,有如下几点说明:1)单色光的波长范围很小,谱线宽度窄,所以,波长范围很小的辐射,谱线宽度越窄的光,其单色性越好。
2)激光是受激辐射,谐振腔有选频作用,所以输出光的谱线宽度很小,因而能具有好的单色性。
3)单色性好的光越易于调制,因而在光通信中得到广泛的应用。
2.方向性好用光的发散角来描写方向性,发散角小,方向性好。
激光的发散角可达10弧度,所以方向性非常好。
3.亮度高高度是指单位面积的光源在给定方向上单位立体角范围内发出的辐射功率。
有书记载:激光可达104W,比太阳的亮度还高出上千亿倍。
4.相干性好相干性是指两束光能够发生干涉,形成明暗相间干涉图缘的特性。
激光是完全相干的,接近电磁波。
所以在光通信、全息摄影、精密测量中得到广泛应用。
激光基本概述范文

激光基本概述范文激光是一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是一种能产生激光的装置,通常由激发源、增益介质和光腔三部分组成。
激光由于其特殊的性质,在科研、医疗、通信、材料加工等多个领域有着广泛的应用。
激光的单色性是指激光具有极窄的频率谱线,一般能够达到很高的频率稳定性。
这是由于激光的产生依赖于特定的能级跃迁,因此能够产生具有固定频率的光波。
与其他光源相比,激光的单色性使得其具有更强的穿透力和辨识能力。
激光的相干性是指激光光束中的光波具有非常好的相位关系。
这种相位关系使得激光光束能够形成明亮、锐利、高对比度的干涉条纹。
相干性使得激光在干涉、衍射和散射等方面有着独特的应用,例如激光干涉测量和激光全息术等。
激光的方向性是指激光光束能够在相当长的距离上保持较小的光束发散角度。
这是由于激光的光波具有在空间上高度一致的波前形状,能够通过适当设计的光学系统将光束聚焦成较小的点。
激光的方向性使得其在光通信、激光雷达等领域有着广泛的应用。
激光器是产生激光的装置,根据辐射介质的不同,可分为气体激光器、固体激光器和半导体激光器等。
气体激光器利用气体放电产生激发能级,再通过受激辐射过程产生激光。
常见的气体激光器包括氦氖激光器、二氧化碳激光器等。
固体激光器利用固体增益介质,通过光泵浦方式产生激发能级,再进行受激辐射过程得到激光。
常见的固体激光器有Nd:YAG激光器、激光二极管等。
半导体激光器是利用半导体材料的特殊性质产生激光,这类激光器尺寸小、功耗低,广泛应用于光通信和激光打印等领域。
激光的应用十分广泛,其中激光切割是一种主要的激光材料加工方法,广泛应用于金属、塑料、木材等材料的切割和雕刻领域。
激光打印技术利用激光的单色性和方向性,可以高速、高质量地实现文件和图像的打印。
此外,激光还在医疗领域有着广泛的应用,例如激光治疗和激光手术等。
总之,激光作为一种特殊的光辐射,具有单色性、相干性和方向性等特点。
激光器是产生激光的装置,根据辐射介质的不同有气体激光器、固体激光器和半导体激光器等。
激光的主要特点

激光的主要特点1、激光主要有四大特性:激光高亮度、高方向性、高单色性和高相干性激光的高亮度:固体激光器的亮度更可高达1011W/cm2Sr。
不仅如此,具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。
激光的高方向性:激光的高方向性使其能在有效地传递较长的距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。
激光的高相干性:相干性主要描述光波各个部分的相位关系。
正是激光具有如上所述的奇异特性因此在工业加工中得到了广泛地应用。
目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等2、激光(LASER)是上实际60年代发明的一种光源。
LASER是英文的“受激放射光放大”的首字母缩写。
激光器有很多种,尺寸大至几个足球场,小至一粒稻谷或盐粒。
气体激光器有氦-氖激光器和氩激光器;固体激光器有红宝石激光器;半导体激光器有激光二极管,像CD机、DVD机和CD-ROM里的那些。
每一种激光器都有自己独特的产生激光的方法。
激光有很多特性:首先,激光是单色的,或者说是单频的。
有一些激光器可以同时产生不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的。
其次,激光是相干光。
相干光的特征是其所有的光波都是同步的,整束光就好像一个“波列”。
再次,激光是高度集中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象。
3、激光告警设备主要由光学接收系统、光电传感器、信号处理器和显示与告警装置等部分组成。
光学接收系统用于截获敌方激光束、滤除大部分杂散光后将激光束会聚到光电传感器上,光电传感器将光信号转变为电信号送至信号处理器,经信号处理器处理后送至显示器,显示器可显示出目标类型、威胁等级以及方位等有关信息,并发出告警信号。
激光的原理与特点

激光的原理与特点
激光,是指具有高度一致的光波振荡特性的一种光束。
激光的原理是通过三级系统(包括基态、激发态和亚稳态)之间的电磁辐射相互作用而产生的。
具体来说,激光的原理包括光放大、光共振、正反馈等。
激光的特点主要有以下几个方面:
1. 高度的单色性:激光的频率非常纯净,只有极少的频率成分,因此它具有非常高的单色性。
这是由于激光光波是由一个频率极为准确的谐振振荡系统所产生的。
2. 高度的方向性:激光光束具有非常高的方向性,激光光束在传播过程中很少发生散射,能够以非常窄的角度进行定向传播。
这是由于激光的振荡介质是一个长而细的谐振腔。
3. 高度的相干性:激光光束具有非常高的相干性,所有的光波的振幅和相位都高度一致。
这是由于激光光波是由许多同样频率和相位的原子或分子发射的。
4. 高度的能量密度:激光光束具有非常高的能量密度,能够集中大量的能量在一个很小的空间范围内。
由于激光的强度非常大,因此它可以用来进行高精度的切割、焊接等工业加工。
总之,激光作为一种特殊的光线,具有高度的单色性、方向性、相干性和能量密度,这些特点使得激光被广泛应用于科学、医学、工业等多个领域。
激光的分类和特点-概述说明以及解释

激光的分类和特点-概述说明以及解释1.引言1.1 概述激光是一种具有高度相干性、能量聚焦、单色性和高亮度的光源。
在现代科技领域中,激光技术已经得到广泛应用,包括通信、医疗、制造、军事等领域。
本文将介绍激光的分类和特点,以及在不同领域的应用,旨在探讨激光技术的重要性和未来发展方向。
1.2 文章结构文章结构部分的内容应该包括对整篇文章的布局和内容安排进行介绍和概述。
在激光的分类和特点的讨论中,我们首先会介绍激光的分类,包括按波长、按输出方式等分类方法,然后讨论不同类型激光的特点和应用领域。
接着,我们将展示激光在医疗、通信、制造等领域的应用案例,说明激光技术的重要性和广泛应用。
最后,我们将总结激光技术的重要性和展望未来激光技术的发展方向,以及对激光技术的发展前景进行展望。
通过文章的结构设计,读者可以系统地了解激光技术的分类、特点和应用领域,以及对激光技术未来发展的展望。
1.3 目的本文的目的是对激光进行分类和介绍其特点,帮助读者更全面地了解激光技术。
通过对不同类型的激光进行分类和对其特点进行详细解释,读者可以深入了解激光技术的基本原理和应用领域。
同时,本文还将探讨激光在不同领域的应用,展示其在科学研究、医学、工业等领域的重要作用。
通过这些内容,读者可以对激光技术有更深入的认识,同时也可以了解激光技术对各行业的影响和未来发展趋势。
希望本文能够为读者提供有益的知识,增进对激光技术的了解,并为相关领域的研究和发展提供参考。
2.正文2.1 激光的分类激光是一种具有高度相干性、高能量密度和直线传输特性的光源。
根据激光器的工作原理和发射特性,可以将激光分为不同的类型。
主要的激光分类包括:1.气体激光器:气体激光器是最早被发明的激光器之一,通常使用激活气体(如氦氖、氩氖等)在电场或光场的作用下发射激光。
气体激光器具有较高的功率和波长可调性,广泛应用于医疗、材料加工等领域。
2.固体激光器:固体激光器利用稀土元素(如Nd:YAG、Nd:YVO4等)或其他固体材料(如晶体、玻璃等)作为工作介质,通过光泵浦激发发射激光。
激光的特性及应用

激光的特性及应用激光(laser)是一种高度聚焦的、单色性和相干性极高的光束。
它具有独特的特性,因此在各个领域有广泛的应用。
本文将介绍激光的特性以及一些常见的激光应用。
一、激光的特性1. 高度聚焦:激光束可以被聚焦到极小的直径,因此可以实现高精度和高分辨率的操作。
这种属性使激光在医疗、材料加工和通信领域得到广泛应用。
2. 单色性:激光是单色光,即它的频率非常纯净。
这使得激光在光谱分析、光学传感器和高精度测量中具有重要作用。
3. 相干性:激光的光波是相干的,即光的波峰和波谷保持稳定的相对位置。
这种特性使激光在干涉测量、全息术和激光雷达等领域得到广泛应用。
4. 高能量密度:激光具有高能量密度,可以在很小的空间范围内提供大量的能量。
这使得激光在切割、焊接和打孔等材料加工过程中非常有效。
二、激光的应用1. 医疗领域:激光在医疗领域有着广泛的应用。
例如,激光手术可以实现精确的组织切割和病变去除,减少手术风险和恢复时间。
激光还可以用于激光治疗中的照射,用于促进伤口愈合和病症治疗。
2. 通信领域:激光在光纤通信中起到关键作用。
激光作为信息传输的光源,可以提供高速、高带宽的数据传输。
此外,激光器还可以用于激光雷达系统,提供高分辨率和远距离测量。
3. 制造业:激光在制造业中有广泛应用。
例如,激光切割机可以用于精确切割金属和非金属材料,激光焊接机可以实现高质量的焊接工艺,激光打标机可以在产品上进行纹理、标记和刻字。
4. 科学研究:激光在科学研究中也扮演重要角色。
例如,激光光谱学被广泛应用于化学和物理领域的分析和研究。
激光还可以用于量子物理实验、原子和分子物理学研究等领域。
5. 军事应用:激光在军事领域有着重要的应用。
激光器可以作为导引系统用于精确制导导弹和飞行器。
激光还可以用于激光武器系统,具有远射程、高精度和强杀伤力等特点。
综上所述,激光作为一种特殊的光束,具有高度聚焦、单色性、相干性和高能量密度等特性。
这些特性使得激光在医疗、通信、制造和科学研究等领域都得到了广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光的特点
1、相干性好
2、方向性强
3、单色性好
1、相干性好
一个几十瓦的电灯泡,只能用作普通照明。
如果把它的能量集中到1m直径的小球内,就可以得到很高的光功率密度,用这个能量能把钢板打穿。
然而,普通光源的光是向四面八方发射的,光能无法高度集中。
普通光源上不同点发出的光在不同方向上、不同时间里都是杂乱无章的,经过透镜后也不可能会聚在一点上。
激光与普通光相比则大不相同。
因为它的频率很单纯,从激光器发出的光就可以步调一致地向同一方向传播,可以用透镜把它们会聚到一点上,把能量高度集中起来,这就叫相干性高。
一台巨脉冲红宝石激光器的亮度可达1015w/cm2•sr,比太阳表面的亮度还高若干倍。
具有高亮度的激光束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。
2、方向性强
激光的方向性比现在所有的其他光源都好得多,它几乎是一束平行线。
如果把激光发射到月球上去,历经38.4万公里的路程后,也只有一个直径为2km左右的光斑。
3、单色性好:
受激辐射光(激光)是原子在发生受激辐射时释放出来的光,其频率组成范围非常狭窄,通俗一点讲,就是受激辐射光单色性非常好,激光的“颜色”非常的纯(不同颜色,实际就是不同频率)。
激光的单色性是实现激光加工的重要因素。
我们可以通过简单的物理实验来说明这个问题。
我们使用三棱镜,可以将一束太阳光分解成七色光谱带,其原理是日光其实是多种波长的光混合在一起的复色光,不同波长的光透过同一介质时,由于在介质中折射率的不同,使各色光的传播方向发生不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱带。
典型灯泵浦YAG激光器原理
在一个截面为椭圆形的腔体内,两个焦点上分别放置激光棒和氪灯,在一个焦点上(氪灯)发出一定波长的光,经过反射腔体内壁的反射,会聚在腔体的另一个焦点上(激光棒),使工作物质里的粒子受到激发,粒子受激吸收后,处于低能态的原子由于吸收了外界辐射而发生能级跃迁,继而释放出激光,产生的激光在全反射镜片和部分反射镜片之间进行来回振荡,当能量达到一定值时,就可以从部分反射镜片透过,这就实现了激光的输出。