五函数及其图像

合集下载

高中五种函数图像总结归纳

高中五种函数图像总结归纳

高中五种函数图像总结归纳在高中数学的学习中,我们经常会遇到各种函数,而函数的图像对于理解函数的性质和规律起着至关重要的作用。

在高中数学中,常见的五种函数:常数函数、一次函数、二次函数、指数函数和对数函数。

本文将对这五种函数的图像进行总结归纳,帮助读者更好地理解和应用。

1. 常数函数:常数函数的定义域和值域都是全体实数,其图像为一条水平的直线。

设常数为a,函数公式可以用f(x) = a表示,表示x的取值不影响函数值,即所有的f(x)都是常数a。

因此,常数函数的图像是一条水平直线,且与x轴的交点为(a, 0)。

无论常数为正数、负数还是零,其图像都不会发生变化。

2. 一次函数:一次函数的定义域和值域也是全体实数。

一次函数的一般形式为f(x) = kx + b,其中k和b为常数,k表示斜率,b表示截距。

一次函数的图像是一条斜率为k的直线,斜率为正代表向上倾斜,斜率为负代表向下倾斜。

当斜率为0时,直线平行于x轴。

截距b表示直线与y轴的交点。

3. 二次函数:二次函数的定义域为全体实数,值域为[最小值, +∞)或(-∞, 最小值],这取决于二次函数的开口向上还是向下。

二次函数可以表示为f(x) =ax² + bx + c,其中a≠0。

二次函数的图像为一个抛物线,开口的方向由二次系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a))。

4. 指数函数:指数函数的定义域为全体实数,值域为(0, +∞)。

指数函数可以表示为f(x) = a^x,其中a>0且a≠1。

指数函数的图像是一个逐渐增长或递减的曲线,a的大小决定了曲线的陡峭程度。

当a>1时,曲线是递增的;当0<a<1时,曲线是递减的。

指数函数的图像一定会经过点(0, 1),因为任何数的0次方都等于1。

5. 对数函数:对数函数的定义域为(0, +∞),值域为全体实数。

五个重要的初等函数的图像和性质

五个重要的初等函数的图像和性质

五个重要的初等函数的图像和性质:一、羊角线:y=|x-a|(1)图像性质:单调性,对称性,(2)应用:①方程|x-2|=2a-1有两个不等实根,求a 的取值范围;②|x-2|=(1/2)x+a 有两个不等实根,求a 的取值范围;③若y=|x-2a+1|是偶函数,求a 的取值范围;二、槽形线:y=|x-a|+|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1有2个不等实根,求a 的取值范围;②|x-2|+|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|+|x-3a+1|是偶函数,求a 的值;④若|x-2|+|x-3|> 3,求a 的取值范围.三、Z 形线:y=|x-a|-|x-b|(1)图像:值域,单调性,对称性(2)应用:①方程|x-2|+|x-3|=2a-1仅有一个实根,求a 的取值范围;②若|x-2|-|x-3|> 2a+1恒成立,求a 的取值范围;③若y=|x-2a|-|x-3a+1|是奇函数,求a 的值;④若|x+2|-|x-3|> 3,求a 的取值范围.引申:无解问题,有解问题 四、最简分式函数:bc)ad 0,(c dcx b ax y ≠≠++= (1)图像:定义域、值域、单调性、对称性、对称中心原式化为:dcx c a d cx b d cx y c ad bc c ad ca ++=++-+=-)(,移项整理则有:)(c d cad bc c ad bc x d cx c a y --=+=---故有: ⅰ⎪⎪⎪⎩⎪⎪⎪⎨⎧≠⎪⎩⎪⎨⎧=-=-≠≠++=;)2(),,()1(),0(的一切实数值域为渐近线为双曲线中心为c a y c a y c d x c a c d bc ad c d cx b ax y ; ⅱ当02>-cad bc 即ad bc >时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,再经过横向的伸缩变换(102<-<c ad bc 时横向伸长,21cad bc -<时横向缩短)而得; ⅲ当20cad bc -<即ad bc <时,函数由反比例函数将对称中心按向量),(c a c d -=ξ平移,然后做关于X 轴的对称变换,再经过横向的伸缩变换而得(1||02<-<c ad bc 时横向伸长,||12cad bc -<时横向缩短)而得。

高考中所有的函数图像大汇总

高考中所有的函数图像大汇总

专项二 高考用到的函数图像总结高考中用到的函数图像是指:一次函数图像、反比例函数图像、二次函数图像、幂函数图像(五种)、对勾(也称对号)函数图像、指数函数图像、对数函数图像、简单的三角函数图像、简单的三次函数图像一、一次函数图像(1)函数)0(≠+=k b kx y 叫做一次函数,它的定义域是R ,值域是R ; (2)一次函数的图象是直线,这条直线不能竖直,所以一次函数又叫线性函数;(3)一次函数)0(≠+=k b kx y 中,k 叫直线的斜率,b 叫直线在y 轴上的截距; 0>k 时,函数是增函数,0<k 时,函数是减函数;注意截距不是距离的意思,截距是一个可正可负可为零的常数 (4)0=b 时该函数是奇函数且为正比例函数,直线过原点;0≠b 时,它既不是奇函数,也不是偶函数; (5)作一次函数图像时,一般先找到在坐标轴上的两个点,然后连线即可 二、反比例函数图像 (一)反比例函数的概念1.()可以写成()的形式,注意自变量x 的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x 轴、y 轴无交点.(二)反比例函数及其图象的性质函数解析式:(),自变量的取值范围:越大,图象的弯曲度越小,曲线越平直.图像越远离坐标轴越小,图象的弯曲度越大.图像越靠近坐标轴 当时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 当时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.(3)对称性:图象关于原点对称,即若(a ,b )在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a ,b )在双曲线的一支上,则(,)和(,)在双曲线的另一支上. 4.k 的几何意义如图1,设点P (a ,b )是双曲线上任意一点,作PA ⊥x 轴于A 点,PB ⊥y 轴于B 点,则矩形PBOA的面积是(三角形PAO 和三角形PBO 的面积都是).如图2,由双曲线的对称性可知,P 关于原点的对称点Q 也在双曲线上,作QC ⊥PA 的延长线于C ,则有三角形PQC 的面积为.图1 图2 三、二次函数图像(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递减; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增 在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增; 在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减 对称性函数的图象关于x =-b2a对称(2的交点位置、顶点所在位置,而不能随手一条曲线,就当做二次函数的图像了。

第五节函数图像

第五节函数图像

第五节(函数图像)第五节函数的图象[知识能否忆起]一、利用描点法作函数图象其基本步骤是列表、描点、连线,首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点);最后:描点,连线.二、利用基本函数的图象作图1.平移变换(1)水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.(2)竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.2.对称变换(1)y=f(-x)与y=f(x)的图象关于y轴对称.(2)y=-f(x)与y=f(x)的图象关于x轴对称.(3)y=-f(-x)与y=f(x)的图象关于原点对称.(4)要得到y=|f(x)|的图象,可将y=f(x)的图象在x 轴下方的部分以x轴为对称轴翻折到x轴上方,其余部分不变.(5)要得到y=f(|x|)的图象,可将y=f(x),x≥0的部分作出,再利用偶函数的图象关于y轴的对称性,作出x<0时的图象.3.伸缩变换(1)y=Af(x)(A>0)的图象,可将y=f(x)图象上所有点的纵坐标变为原来的A倍,横坐标不变而得到.(2)y=f(ax)(a>0)的图象,可将y=f(x)图象上所有点的横坐标变为原来的1a倍,纵坐标不变而得到.[小题能否全取]1.一次函数f(x)的图象过点A(0,1)和B(1,2),则下列各点在函数f(x)的图象上的是()A.(2,2)B.(-1,1)C.(3,2) D.(2,3)解析:选D一次函数f(x)的图象过点A(0,1),B(1,2),则f(x)=x+1,代入验证D满足条件.2.函数y=x|x|的图象大致是()解析:选A函数y=x|x|为奇函数,图象关于原点对称.3.(教材习题改编)在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是下列四个图象中的()解析:选B因a>0且a≠1,再对a分类讨论.4.(教材习题改编)为了得到函数y=2x-3的图象,只需把函数y=2x的图象上所有的点向______平移______个单位长度.答案:右 35.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是________.解析:由题意a =|x |+x令y =|x |+x =⎩⎨⎧ 2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.答案:(0,+∞)1.作图一般有两种方法:直接作图法、图象变换法.其中图象变换法,包括平移变换、伸缩变换和对称变换,要记住它们的变换规律.[注意] 对于左、右平移变换,可熟记口诀:左加右减.但要注意加、减指的是自变量,否则不成立.2.一个函数的图象关于原点(y 轴)对称与两个函数的图象关于原点(y 轴)对称不同,前者是自身对称,且为奇(偶)函数,后者是两个不同的函数对称.作函数的图象典题导入[例1] 分别画出下列函数的图象:(1)y =|lg x |;(2)y =2x +2;(3)y =x 2-2|x |-1.[自主解答] (1)y =⎩⎨⎧lg x ,x ≥1,-lg x ,0<x <1.图象如图1. (2)将y =2x 的图象向左平移2个单位.图象如图2. (3)y =⎩⎨⎧x2-2x -1,x ≥0,x 2+2x -1,x <0.图象如图3.由题悟法画函数图象的一般方法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,但要注意变换顺序,对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.以题试法1.作出下列函数的图象:(1)y =|x -x 2|;(2)y =x +2x -1. 解:(1)y =⎩⎨⎧x -x 2,0≤x ≤1,-(x -x 2),x >1或x <0,即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎪⎫x -122-14,x >1或x <0, 其图象如图1所示(实线部分).(2)y =(x -1)+3x -1=1+3x -1,先作出y =3x 的图象,再将其向右平移1个单位,并向上平移1个单位即可得到y =x +2x -1的图象,如图2.识图与辨图典题导入[例2] (2012·湖北高考)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()[自主解答] 法一:由y =f (x )的图象知f (x )=⎩⎪⎨⎪⎧x (0≤x ≤1),1(1<x ≤2). 当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎨⎧ 1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎨⎧-1(0≤x ≤1),x -2(1<x ≤2).法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.[答案] B由题悟法“看图说话”常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.以题试法2.(1)如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝ ⎛⎭⎪⎫1f (3)的值等于________.(2)(2012·东城模拟)已知函数对任意的x∈R有f(x)+f(-x)=0,且当x>0时,f(x)=ln(x+1),则函数f(x)的图象大致为()解析:(1)∵由图象知f(3)=1,∴1 f(3)=1.∴f⎝⎛⎭⎪⎫1f(3)=f(1)=2.(2)∵对∀x∈R有f(x)+f(-x)=0,∴f(x)是奇函数.f(0)=0,y=f(x)的图象关于原点对称,当x<0时,f(x)=-f(-x)=-ln(-x+1)=-ln(1-x),由图象知符合上述条件的图象为D.答案:(1)2(2)D函数图象的应用典题导入[例3](2011·新课标全国卷)已知函数y=f(x)的周期为2,当x∈[-1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共有()A.10个B.9个C.8个D.1个[自主解答]根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:可验证当x=10时,y=|lg 10|=1;0<x<10时,|lg x|<1;x>10时|lg x|>1.结合图象知y=f(x)与y=|lg x|的图象交点共有10个.[答案] A若本例中f(x)变为f(x)=|x|,其他条件不变,试确定交点个数.解:根据f(x)的性质及f(x)在[-1,1]上的解析式可作图如下:由图象知共10个交点.由题悟法1.利用函数的图象研究函数的性质对于已知或易画出在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应关系.2.利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f(x)=0的根就是函数f(x)图象与x轴的交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象的交点的横坐标.以题试法3.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是________.(注意:min 表示最小值)解析:画出示意图(实线部分),⎩⎪⎨⎪⎧2-x 2(x ≤-2),x (-2<x <1),2-x 2(x ≥1), f (x )*g (x )=其最大值为1. 答案:1[典例] (2012·天津高考)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则 实数k 的取值范围是________.[解析] 因为函数y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,所以函数y =kx -2的图象恒过点(0,-2),根据图象易知,两个函数图象有两个交点时,0<k <1或1<k <4.[答案] (0,1)∪(1,4)[题后悟道] 所谓数形结合思想,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.解答本题利用了数形结合思想,本题首先作出y=|x2-1|x-1的图象,然后利用图象直观确定直线y=kx-2的位置.作图时应注意不包括B、C两点,而函数y=kx-2的图象恒过定点A(0,-2),直线绕A点可以转动,直线过B、C两点是关键点.针对训练1.(2012·长春第二次调研)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.解析:如图作出函数f(x)=|x+a|与g(x)=x-1的图象,观察图象可知:当且仅当-a≤1,即a≥-1时,不等式f(x)≥g(x)恒成立,因此a 的取值范围是[-1,+∞).答案:[-1,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( )A .(1,3)B .(0,3)C .(0,2)D .(0,1)解析:选D 因为方程f (x )-a =0的根,即是直线x =a 与函数f (x )=⎩⎪⎨⎪⎧ |2x -1|,x <2,3x -1,x ≥2的图象交点的横坐标,画出函数图象进行观察可以得知,a 的取值范围是(0,1).1.函数f (x )=2x 3的图象( )A .关于y 轴对称B .关于x 轴对称C .关于直线y =x 对称D .关于原点对称 解析:选D 显然函数f (x )=2x 3是一个奇函数,所以其图象关于原点对称.2.函数y =⎩⎨⎧x 2,x <0,2x -1,x ≥0的图象大致是( )解析:选B 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x 的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.3.(2012·北京海淀二模)为了得到函数y =12log 2(x -1)的图象,可将函数y =log 2x 的图象上所有的点的( )A.纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位长度B.纵坐标缩短到原来的12,横坐标不变,再向左平移1个单位长度C.横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位长度D.横坐标伸长到原来的2倍,纵坐标不变,再向左平移1个单位长度解析:选A本题考查图象的平移和伸缩.将y=log2x的图象横坐标不变,纵坐标缩短到原来的12,得y=12log2x的图象,再将y=12log2x的图象向右平移1个单位长度即可.4.(2011·陕西高考)设函数f(x)(x∈R)满足f(-x)=f(x),f(x+2)=f(x),则y=f(x)的图象可能是()解析:选B表达式“f(x)=f(-x)”,说明函数是偶函数,表达式“f(x+2)=f(x)”,说明函数的周期是2,再结合选项图象不难看出正确选项为B.5.(2012·济南模拟)函数y=lg 1|x+1|的大致图象为()解析:选D由题知该函数的图象是由函数y=-lg|x|的图象左移一个单位得到的,故其图象为选项D中的图象.6.(2011·天津高考)对实数a和b,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,32 B.⎝⎛⎦⎤-∞,-2∪⎝⎛⎭⎪⎪⎫-1,-34 C.⎝⎛⎭⎪⎪⎫-1,14∪⎝ ⎛⎭⎪⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎪⎫-1,-34∪⎣⎢⎢⎡⎭⎪⎪⎫14,+∞ 解析:选B由题意可知f (x )=错误! =⎩⎪⎨⎪⎧ x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32作出图象,由图象可知y =f (x )与y =c 有两个交点时,c ≤-2或-1<c <-34, 即函数y =f (x )-c 的图象与x 轴恰有两个公共点时实数c 的取值范围是(-∞,-2]∪⎝⎛⎭⎪⎪⎫-1,-34. 7.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.解析:当f (x )>0时,函数g (x )=log 2f (x )有意义, 由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 答案:(2,8]8.函数f (x )=x +1x 图象的对称中心为________.解析:f (x )=x +1x =1+1x ,把函数y =1x 的图象向上平移1个单位,即得函数f (x )的图象.由y =1x 的对称中心为(0,0),可得平移后的f (x )图象的对称中心为(0,1).答案:(0,1)9.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析:当-1≤x ≤0时,设解析式为y =kx +b ,则⎩⎨⎧ -k +b =0,b =1,得⎩⎨⎧k =1,b =1. ∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1,∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案:f (x )=⎩⎨⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 10.已知函数f (x )=错误! (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x取什么值时f(x)有最值.解:(1)函数f(x)的图象如图所示.(2)由图象可知,函数f(x)的单调递增区间为[-1,0],[2,5].(3)由图象知当x=2时,f(x)min=f(2)=-1,当x=0时,f(x)max=f(0)=3.11.若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,求a的取值范围.解:当0<a<1时,y=|a x-1|的图象如图1所示,由已知得0<2a<1,即0<a<12.当a>1时,y=|a x-1|的图象如图2所示,由已知可得0<2a<1,即0<a <12,但a >1,故a ∈∅. 综上可知,a 的取值范围为⎝⎛⎭⎪⎪⎫0,12. 12.已知函数f (x )的图象与函数h (x )=x +1x +2的图象关于点A (0,1)对称.(1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围.解:(1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上,∴2-y =-x +1-x+2, ∴y =x +1x ,即f (x )=x +1x .(2)由题意g (x )=x +a +1x ,且g (x )=x +a +1x ≥6,x ∈(0,2].∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2],q (x )=-x 2+6x -1=-(x -3)2+8,∴x ∈(0,2]时,q (x )max =q (2)=7,故a 的取值范围为[7,+∞).1.(2013·威海质检)函数y =f (x )(x ∈R)的图象如图所示,下列说法正确的是( )①函数y =f (x )满足f (-x )=-f (x );②函数y =f (x )满足f (x +2)=f (-x );③函数y =f (x )满足f (-x )=f (x );④函数y =f (x )满足f (x +2)=f (x ).A .①③B .②④C .①②D .③④解析:选C 由图象可知,函数f (x )为奇函数且关于直线x =1对称,所以f (1+x )=f (1-x ),所以f [1+(x +1)]=f [1-(x +1)],即f (x +2)=f (-x ).故①②正确.2.若函数f (x )的图象经过变换T 后所得图象对应函数的值域与函数f (x )的值域相同,则称变换T 是函数f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中变换T 不属于函数f (x )的同值变换的是( )A .f (x )=(x -1)2,变换T 将函数f (x )的图象关于y 轴对称B .f (x )=2x -1-1,变换T 将函数f (x )的图象关于x轴对称C .f (x )=2x +3,变换T 将函数f (x )的图象关于点(-1,1)对称D .f (x )=sin ⎝ ⎛⎭⎪⎪⎫x +π3,变换T 将函数f (x )的图象关于点(-1,0)对称解析:选B 对于A ,与f (x )=(x -1)2的图象关于y 轴对称的图象对应的函数解析式为g (x )=(-x -1)2=(x +1)2,易知两者的值域都为[0,+∞);对于B ,函数f (x )=2x -1-1的值域为(-1,+∞),与函数f (x )的图象关于x 轴对称的图象对应的函数解析式为g (x )=-2x -1+1,其值域为(-∞,1);对于C ,与f (x )=2x +3的图象关于点(-1,1)对称的图象对应的函数解析式为2-g (x )=2(-2-x )+3,即g (x )=2x +3,易知值域相同;对于D ,与f (x )=sin ⎝⎛⎭⎪⎪⎫x +π3的图象关于点(-1,0)对称的图象对应的函数解析式为g (x )=sin ⎝⎛⎭⎪⎪⎫x -π3+2,其值域为[-1,1],易知两函数的值域相同.3.已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图象关于直线x =2对称;(2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1,求x ∈[-4,0]时的f (x )的表达式.解:(1)证明:设P(x0,y0)是函数y=f(x)图象上任一点,则y0=f(x0),点P关于直线x=2的对称点为P′(4-x0,y0).因为f(4-x0)=f(2+(2-x0))=f(2-(2-x0))=f(x0)=y0,所以P′也在y=f(x)的图象上,所以函数y =f(x)的图象关于直线x=2对称.(2)因为当x∈[-2,0]时,-x∈[0,2],所以f(-x)=-2x-1.又因为f(x)为偶函数,所以f(x)=f(-x)=-2x-1,x∈[-2,0].当x∈[-4,-2]时,4+x∈[0,2],所以f(4+x)=2(4+x)-1=2x+7.而f(4+x)=f(-x)=f(x),所以f(x)=2x+7,x∈[-4,-2].所以f (x )=⎩⎨⎧ 2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].1.设D ={(x ,y )|(x -y )(x +y )≤0},记“平面区域D 夹在直线y =-1与y =t (t ∈[-1,1])之间的部分的面积”为S ,则函数S =f (t )的图象的大致形状为()解析:选C 如图平面区域D为阴影部分,当t =-1时,S =0,排除D ;当t =-12时,S >14S max ,排除A 、B.2.(2012·深圳模拟)已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2);③f (x 1)+f (x 2)2<f ⎝ ⎛⎭⎪⎫x 1+x 22. 其中正确结论的序号是________.(把所有正确结论的序号都填上)解析:①错误,①即为f (x 2)-f (x 1)x 2-x 1>1,在(0,1)上不恒成立;由题图知,0<x 1<x 2<1时,f (x 1)x 1>f (x 2)x 2,②正确;图象是上凸的,③正确.答案:②③。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

函数图像和变换解读

函数图像和变换解读

函数图像及其变换师大学附属外国语中学 庆兵函数是整个高中数学的重点和难点,高中阶段对函数性质的研究往往是通过研究函数图像及其变换得到的,所以函数图像及其变换也就成为高考的固定考点。

历年高考考试大纲中都明确要求,学生要“会运用函数图像理解和研究函数的性质”,并且与前几年比较可以发现,近几年高考对于函数图像方面的考查已经不再局限于对几个常见函数本身的单一的考查,而是结合函数的运算,更为深刻地考查函数与函数、函数与方程、函数与不等式、函数与其他学科或现实生活等方面的联系。

这就要求我们不仅要熟练掌握一些基本函数的图像特征及函数图像变换的几种常见方法,而且要会灵活运用。

下面笔者就结合近几年的一些高考试题,谈一些函数图像及其变换和应用方面的问题,希望能引起正在忙于备考的高三教师和学子们的重视,并给他们带来一些启发。

(一)平移变换及其应用:函数00)(y x x f y +-=的图像可以看作是由函数)(x f y =的图像先向左0(x >0)或向右(0x <0)平移||0x 个单位,再向上0(y >0)或向下(0y <0)平移||0y 个单位得到。

如:例1、(2008理11)方程0122=-+x x 的解可视为函数2+=x y 的图象与函数xy 1=的图象交点的横坐标。

若方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x i i =均在直线x y =的同侧,则实数a 的取值围是 。

(图一) (图二)分析:由题意,方程044=-+ax x 的解可视为函数a x y +=3的图象与函数xy 4=的图象交点的横坐标。

这些交点可以看作是由函数3x y =的图象经过上下平移得到,由图(1)可知,函数3x y =与函数xy 4=的图象分别交于点P 、Q ,且点P 在直线上方,点Q 在直线x4=下方,要使得方程044=-+ax x 的各个实根)4(,,,21≤k k x x x x 所对应的点),,2,1)(4,(k i x x ii =均在直线x y =的同侧,只须将函数3x y =图像上下平移,将点Q 移至函数x y 4=图像与直线x y =交点A )2,2(--左侧或将点P 移至函数xy 4=图像与直线x y =交点B )2,2(右侧即可。

代数第05章 函数及其图像

代数第05章 函数及其图像

平面直角坐标系、函数及其图像【知识梳理】一、平面直角坐标系1. 各象限点的坐标的符号: 3. 坐标轴上的点的坐标特征: 4. 坐标对称,如P (x ,y ):5. 两点之间的距离,如A (x 1,y 1)、B (x 2,y 2):6. 两点的中点坐标,如A (x 1,y 1)、B (x 2,y 2): 二、函数的概念1.概念:2.自变量的取值范围:(1) (2)3.函数的表示方法:(1) (2) (3)【例题精讲】例1. 函数22y x =-中自变量x 的取值范围是 ; 函数23y x =-中自变量x 的取值范围是 .例2. 已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = .例3. 如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.例4. 阅读以下材料:对于三个数a,b,c 用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:{}123412333M -++-==,,; min{-1,2,3}=-1;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,, 解决下列问题:(1)填空:min{sin30o ,sin45o ,tan30o }= ;B CAy xOMD 例3图(2)①如果M{2,x+1,2x}=min{2,x+1,2x},则x= ;②根据①,你发现了结论“如果M{a,b,c}= min{a,b,c},那么 ”. ③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}, 则x + y= .(3)在同一直角坐标系中作出函数y=x+1, y=(x-1)2,y=2-x 的图象(不需列表描点). 通过观察图象,填空:min{x+1, (x-1)2,2-x}的最大值为 .【当堂检测】1.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .(-4,3)B .(-3,-4)C .(-3,4)D .(3,-4) 2.已知点P(x,y)位于第二象限,并且y≤x+4 , x,y 为整数,写出一个..符合上述条件的点P 的坐标: .3.点P(2m-1,3)在第二象限,则m 的取值范围是( )A .m>0.5B .m≥0.5C .m<0.5D .m≤0.5 4.如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. ⑴由图观察易知A (0,2)关于直线l 的 对称点A '的坐标为(2,0),请在图中分 别标明B (5,3) 、C (-2,5) 关于直线l 的对 称点B '、C '的位置,并写出他们的坐标: B ' 、C ' ; ⑵结合图形观察以上三组点的坐标,你会 发现:坐标平面内任一点P (a ,b )关于第一、 三象限的角平分线l 的对称点P '的坐标为 (不必证明);⑶已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距 离之和最小,并求出Q 点坐标.xyO例4图123456-1-2-3-4-5-6-1-2-3-4-5-61234567O xylABA'D'E'C(第22题图)第4题图一次函数图象和性质【知识梳理】1.正比例函数的一般形式是 ,一次函数的一般形式是 。

第五讲 函数及其图象

第五讲  函数及其图象

第五讲 函数及其图像学习目标1、知道平面直角坐标系、函数的定义、函数的图像。

2、知道点的坐标的特征并会应用。

一、知识回顾知识点1、平面直角坐标系⑴. 坐标平面上的点与有序实数对构成一一对应; ⑵. 各象限点的坐标的符号;点的位置 横坐标符号 纵坐标符号 第一象限 第二象限 第三象限 第四象限⑶. 坐标轴上的点的坐标特征.x 轴上的点______坐标为0, y 轴上的点______坐标为0. ⑷.各象限角平分线上的点的坐标特征⑴第一、三象限角平分线上的点,横、纵坐标 。

⑵第二、四象限角平分线上的点,横、纵坐标 。

⑸. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a⑹.两点之间的距离⑺.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=知识点2、函数的概念⑴ 常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量.⑵ 函数:在某一变化过程中的两个变量x 和y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值和它对应,那么y 就叫做x 的函数,其中x 做自变量,y 是因变量. ⑶自变量取值范围的确定①整式函数自变量的取值范围是全体实数.②分式函数自变量的取值范围是使分母不为0的实数.22122121222111)()()()()1(y y x x P P y x P y x P -+-=, ,,,③二次根式函数自变量的取值范是使被开方数是非负数的实数若涉及实际问题的函数,除满足上述要求外还要使实际问题有意义. ⑷)函数值:对于自变量在取值范围内的一个值所求得的函数的对应值.⑸ 函数常用的表示方法:(1)图象法:形象、直观;(2)列表法:具体、准确;(3)解析法:抽象、全面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五《函数及其图像》【三】反比例函数
一自主学习与检测
1已知2
2)1(--=m x
m y
是反比例函数,则m = 。

2已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是 3在反比例函数3
k y x
-=
图象的每一支曲线上,y 都随x 的增大而增大,则k 的取值范围是 ( )
A .k >3
B .k >0
C .k <3
D . k <0
4已知双曲线(0)k
y k x
=
≠经过(-2,-3))(11y x ,,)(22y x ,,)(33y x ,四个点,其中 3210x x x <<<,则1y ,2y ,3y 的大小关系是( )
A .321y y y <<
B .312y y y <<
C .213y y y <<
D .123y y y <<
5如图,若点A 在反比例函数(0)k
y k x
=
≠的图象上, AM x ⊥轴于点M ,AMO △的面积为3,则k = .
6某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体
体积V ( m 3
) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )
A .不小于54m 3
B .小于54m 3
C .不小于45m 3
D .小于45m 3
7.点P(1,a )在反比例函数x
k
y =
的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求此反比例函数的解析式。

8如图,一次函数y kx b =+的图象与反比例函数m
y x
=
的图象相交于A 、B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式
(2)求不等式kx+b-x
m
>0的解集(直接写出答案). 9如图,Rt △ABO 的顶点A 是双曲线k
y x
=与直线()1y x k =--+在第二象限的交点,
AB ⊥x 轴于B 且S △ABO =3
2
.
(1)求这两个函数的解析式;
(2)求直线与双曲线的两个交点A ,C 的坐标和△AOC 的面积。

10已知:如图,在平面直角坐标系xOy 中,直线分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,
1tan 422
ABO OB OE ∠===,,.求:
y
x A
直线AB 和反比例函数的解析式.
二 练习拓展
1反比例函数1
232)12(---=k k x k y 的图象位于第二、四象限,则k 的值是
2已知函数x
y 3
=
,当x <0时,函数图象在第 象限,y 随x 的增大而 . 3、如果矩形的面积为6cm 2
,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致
( )
4y=x k y x
=(,的值为 。

5直线)0(<=k kx y 与双曲线x
y 2
-=交于),(),,(2211y x B y x A 两点,则122183y x y x -的值为___________
6已知反比例函数)0(<=k x
k
y 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是 ( )
A 正数
B 负数
C 非正数
D 不能确定
7函数y ax a =-与a
y x
=
(a ≠0)在同一直角坐标系中的图象可能是( ) 8若正比例函数y =2kx 与反比例函数y =
k
x
(k ≠0)的图象交于点A (m ,1),则k 的值是( ). A
B .
2或-2 C .2
D 9.若正方形OABC 的顶点B 和正方形ADEF 的顶点
E 都在函数 1
y x
=(0x >) 的图象上,则点E 的坐标是( , ).
10如图,已知一次函数1y x =+的图象与反比例函数k
y x
=
的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为1,则AC 的长为 (保
x
留根号).
11如图,已知一次函数y=kx+b(k ≠0)的图象与x 轴,y 轴分别交于点, 且与反比例函数y=
m
x
(m ≠0)的图象的第一象限交A 、B 两
于点C,CD 垂直于x 轴,垂足为D,若OA= OB=OD=1, 求:(1)求点A 、B 、D 的坐标.
(2)求一次函数和反比例函数的解析式。

12已知:如图,在平面直角坐标系x O y 中,Rt △OCD 的一边OC 在x 轴上,∠C=90°,点D 在第一象限,OC=3,DC=4,反比例函数的图象经过OD 的中点A . (1)求该反比例函数的解析式;
(2)若该反比例函数的图象与Rt △OCD 的另一边DC 交于点B ,求过A 、B 两点的直线的解析式.
y
O A
C B。

相关文档
最新文档