指数函数及其图像

合集下载

指数,对数,幂函数的图像和性质

指数,对数,幂函数的图像和性质

指数函数的图像是一条向上开口的曲线,通常表示为y=a^x(a>0,a≠1)。

指数函数的性质有:
1.在y 轴上的截距为1。

2.对于不同的指数函数,它们的图像形状是相同的,只有位置不同。

如果改变指数函数的
指数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的指数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

对数函数的图像是一条向右开口的曲线,通常表示为y=loga(x)(a>0,a≠1)。

对数函数的性质有:
1.在y 轴上的截距为0。

2.对于不同的对数函数,它们的图像形状是相同的,只有位置不同。

如果改变对数函数的
底数,则会改变函数的斜率,即函数图像会发生平移。

3.对于相同的对数函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生
伸缩。

幂函数的图像可以是一条向上开口的曲线,也可以是一条向右开口的曲线,通常表示为y=x^n(n为常数)。

幂函数的性质有:
1.当n>0 时,幂函数的图像是一条向上开口的曲线。

2.当n<0 时,幂函数的图像是一条向右开口的曲线。

3.当n=0 时,幂函数的图像是一条水平直线。

4.幂函数的图像在y 轴上的截距为1。

5.对于不同的幂函数,它们的图像形状是相同的,只有位置不同。

如果改变幂函数的指数,
则会改变函数的斜率,即函数图像会发生平移。

6.对于相同的幂函数,如果改变函数的系数,则会改变函数的尺度,即函数图像会发生伸
缩。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xy Ox y =2x y =21xy =1-=xy 3x y = O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。

三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

3. 指数函数图像

3. 指数函数图像
x x 1 x 1 2 x 0 ,即x 1 ,或x 0 ,
当0 x 1 时,y 0 ;当x 1 时,y 0 , 故选B
4.翻折变化:
1 y f x 去掉y 轴左边图,保 留y 轴右 边图 y f x 将y 轴右边的图像翻折到左边去
① f x ex f x = e x
② f x = e x f x 2 = e x-2
指数函数的图象
知识点
1.当 当0a

1 a
时, 底数a 越大,图象在x 1 时,底数a 越小,图象在x
0
时越接近y 轴,在x 0 0 时越接近x 轴,在x
时越接近x 轴 0 时越接近y 轴
2.平移变换:左加右减
1 f x 向左平移a 个单位 f x a 2 f x 向上平移 a个单位 f x a 3 f x 向右平 移 a个单位 f x a 4 f x 向下平移a个单位 f x a

解析:① 有界性:由函数的定义域得x 0 , A错; 当x 0 时,y 0 ,B错;
② 指数爆炸,当x , y 0 ,D错
例7 函数y x3 x 2 x 的图象大致是

解析:① 奇偶性:f x x3 x 2 x f x ,故函数为奇函数,C错; ② 有界性:令y 0 ,则 x3 x 2 x 0
D. a b 1 d c
例2 已知1 n m 0 ,则指数函数① y mx ,
② y nx 的图象为
例3 已知函数y ax b a 0且 a 1 的图象经过
第二、三、四象限,则有

A. 0 a 1 ,b 1

指数函数的图像和性质1

指数函数的图像和性质1
列表
x ... -2 -1 0 1 2 3 ... 10 ...
y=2x ... 0.25 0.5 1 2 4 8 ... 1 024 ...
y=3x ... 0.11 0.33 1 3 9 27 ... 59 049 ...
做一做
描点画出图像
y 3x
y 2x
(1)当x<0时,总有2x>3x;
指数函数 的图像和性质
观察,归纳
指数函数在底数a>1及0<a<1,两种情况的图象和性质如下:
a>1
0< a < 1
图 象
(1)定义域:R
性 (2)值域:( 0 ,+∞ )
(3)过点(0,1),即x=0时,
质 y(4=)当1 x>0时,y>1;x<0时0<y<1 (4)当x>0时,0<y<1;x<0时y>1
(2)当x>0时,总有2x<3x;
(3)当x>0时,y=3x比y=2x的函
数值增长得快.
a>b>1时,
(1)当x<0时,总有ax<bx<1;
(2)当x=0时,总有ax=bx=1;
(3)当x>0时,总有ax>bx>1;
(4)指数函数的底数越大,当x>0时,其函数值增
长得就越快.
y 3x
y 2x
(2)因为y=0.75x是R上的减函数,0.1>-0.1,所以 0.750.1<0.75-0.1.
练习:
比较下列各题中两个值的大小.
(1)1.7 2.5, 1.7 3 (2) 0.8 –0.1, 0.8 –0.2 (3) 1.7 0.3, 0.9 3.1

指数函数的图像和性质

指数函数的图像和性质

2 1 0.5 0.25 …
动手操作, 画出图像
y
y (1)x
2
4
y=2x
3
2
1
-3 -2 -1
01
23
x
-1
动手操作, 画出图像
y


1 2
x
y


1 3

x
y 3x
y2x
观察以上四个函数的图象,你发现了什么特征?有何异同?
观察图像, 得出性质
a>1
0<a<1

y
y=ax
(a>1)
y=1
y=ax
y
(0<a<1)
(0,1)
y=1
(0,1)

0
x
0
x
定义域: R

值 域: (0,+ ∞ )
过定点:( 0 , 1 ) ,即 x = 0 时, y = 1 .
质 在 R 上是增函数
在 R 上是减函数
的底数是多少?这个函数的
1 2
,

1 2
0

,

1 2
1

,

1 2

2
,

1 2

2
;
y


1 2
x

函数值?? 什么函数?
引入概念
我们从两列指数式和一个实例抽象得到两个函数:
y

2x
与y


1 2

x
这两个函数有 何特点?
1.指数函数的定义:

指数函数及图像.ppt

指数函数及图像.ppt

[规律方法] 1.求含有指数型的函数定义域时,要注意考 虑偶次根式的被开方数大于等于0,分母不为0等限制条件.
2.求含有指数式的复合函数的值域时,要结合指数函数的 单调性和定义域来考虑,不要遗漏了指数函数的值域大于0.
【活学活用 3】 求下列函数的定义域与值域:
(1)y=
;(2)y= 1-3x.
解 (1)由 x-2≥0,得 x≥2.
R.因为5-x>0,所以5-x-1>-1,
所以函数的值域为(-1,+∞)
课堂小结
1.指数函数的定义域为(-∞,+∞),值域为(0,+∞),
且f(0)=1.
2. 当a>1时,a的 值 越 大,图 象 越 靠 近y轴 ,递增速度越 快.当0<a<1时,a的值越小,图象越靠近y轴,递减的速
度越快.
历史ⅱ岳麓版第13课交通与通讯 的变化资料
”;此后十年间,航空事业获得较快发展。
筹办航空事宜

三、从驿传到邮政 1.邮政 (1)初办邮政: 1896年成立“大清邮政局”,此后又设 , 邮传邮正传式部脱离海关。 (2)进一步发展:1913年,北洋政府宣布裁撤全部驿站; 1920年,中国首次参加 万国。邮联大会
2.电讯 (1)开端:1877年,福建巡抚在 架台设湾第一条电报线,成为中国自 办电报的开端。
二、水运与航空
1.水运 (1)1872年,
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“

《指数函数》PPT课件

《指数函数》PPT课件

商的乘方
商的乘方等于乘方的商。 如:$(a/b)^n = a^n div b^n$。
指数函数的极限与连续
极限性质
当底数大于1时,指数函数随着指 数的增大而趋于无穷大;当底数 在0到1之间时,指数函数随着指 数的增大而趋于0。
连续性
指数函数在其定义域内是连续的, 即对于任意两个相邻的点,函数值 之间的差可以无限小。

工程学
在工程学中,指数函数可用于 描述材料疲劳、信号处理等问
题。
计算机科学
在计算机科学中,指数函数可 用于算法分析、图像处理等领
域。
THANKS
感谢观看
02 指数函数的运算 性质
指数函数的四则运算
加法运算
同底数指数相加,指数 不变,底数相乘。如:
$a^m + a^m = 2a^m$。
减法运算
同底数指数相减,指数 不变,底数相除。如: $a^m - a^m = 0$。
乘法运算
同底数指数相乘,指数 相加,底数不变。如:
$a^m times a^n = a^{m+n}$。
级数展开的定义
将指数函数表示为无穷级数的形式,便于分析和 计算。
泰勒级数展开
通过泰勒公式将指数函数展开为幂级数,适用于 函数在某点的局部逼近。
麦克劳林级数展开
特殊形式的泰勒级数,用于在原点处展开指数函 数。
指数函数的傅里叶变换
傅里叶变换的概念
01
将时间域的函数转换为频域的函数,便于分析信号的频率特性
指数函数在生物学中的应用
细菌增长模型
指数函数可以描述细菌在适宜环 境下的增长情况,用于预测细菌
数量。
药物代谢动力学
指数函数可以模拟药物在体内的 代谢过程,用于计算药物浓度随

指数函数的图像和性质-课件

指数函数的图像和性质-课件


0.80.2

(3)0.3 −0.3 ,, 0.2−0.3 ;
(4)1.70.3, 0.93.1 。
同底比较大小
不同底数幂比大小
,利用指数函数图像
与底的关系比较
利用函数图像
或中间变量进行
比较
不同底但同指数
底不同,指数也不同
小结: 比较两个幂的形式的数大小的方法:
(1)同底数指数幂比大小,构造指数函数,利用
2

指数函数的性质
通过研究对比不同底数的指数函数图像,
整理出了,指数函数与底数的关系以及
函数性质。
2
4
指数函数的图像
1
通过比较 = 2 , = 3 , = ( )
1
2
, = ( ) 的图像,我们归纳出了指数
3
函数 = 的一般像。

应用和检测
看指数函数图像比底数
比较两个幂的形式的数大小
1.75 , 41.75
(4) 3
1 −2 −3
(6) ( ) 3 , 2 5
3
当堂检测:
如图4.2-7.某城市人口呈指数增长.
(1)根据图象,估计该城市人口每翻一番所需的时间(倍增期);
(2)该城市人口从80万人开始,经过20年会增长到多少万人?
课堂小结
1
3
复习指数函数的概念
指数函数的定义
1
指数函数y = 2x ,y = ( )x 的图像与性


( >
1) 与 x轴
下面的指数
函数有无公
有无 公共点 ?
共点?
函数的 定义
讨论函数的
域是什么?
单调性?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 已知指数函数 f (x) a x (a 0且a 1)
的图象经过点(3, π),求 f (0), f (1), f (3)
解 :∵ f (x) ax 的图象过点(3,π)
1
a3 a 3
1 x
x
f (x) 3 3

1
f (0) 0 1 f (1) 3 3
(3)y 4x3
( ×)
要点:
1、定义域 2、a的范围 3、解析式
(4)y 23x (5)y 3 4x
( √) ( ×)
指数函数的特点:
y 1ax
经过化简后指数位置仅仅 是x,即自变量的系数为1
函数的系数为1 底数为正常数且不为1
函数的共同特点:
(1)指数是自变量,底数是常量 (2)函数的系数为1 (3)自变量的系数也为1 (4)底数为正常数且不为1 (5)不能有常数项
y=3x 0.11 0.19 0.33 0.58 1 1.732 3 5.20 9
描点作图:
y
y 2x
1
0
x
y
y 3x
1
0
x
思考2:函数 y 2x与 y (1)x 2x 的图象有
2
什么关系?
函数 y 3x 与 y (1)x 3的图象有
什么关系?
3
思考3:一般地,指数函数的图象可分为几类? 其大致形状如何?
问题1 据国务院发展研究中心2002年发表的《未来 20年我国发展前景分析》判断,未来20年,我国GDP (国内生产总值)年平均增长率可望达到7.3%,那么, 设x年后我国的GDP为2000年的y倍,求其关系式
y 1.073x (x N*, x 20)
问题2 一种放射性物质不断衰减为其它物质,每经过一 年剩留量约是原来的84%,如设2000发现时含量为1,求 出这种物质经过 x 年的剩留量 y 与 x 的关系式
y 0.84x
观察下列关系:
y
1.073x
xR
y 0.84x x R
它们是否能构成函数?共同特征是什么?
定义:一般地,函数 y a x (a 0,且a 1)叫
做指数函数,其中x是自变量,函数的定 义域是R。
例题1 判断下列函数哪些是指数函数:
(1)y 4x x [1,1(] ×) (2)y ( 4)x ( × )
y ax (a 1)
y
1
0
x
y ax (0 a 1)
y
1
0
x
例3 求下列函数的定义域:
1
(1) y 5 x1 ;(2) y 2 x4 .
小结
知识点:
1.指数函数定义 2.指数函数的图象 作业 P58练习:1,2. P59习题2.1A组:5,6.
f
(3)


1 3
3



1

1

知识探究(二):指数函数的图象 思考1:研究函数的基本特性,一般先研究其
图象.你有什么方法作函数 y 2x 和 y 3x
的图象?
列表: y 32x
X -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
y=2x 0.25 0.35 0.5 0.71 1 1.41 2 2.83 4
相关文档
最新文档