数值分析法 曲线拟合法插值建模法
数值计算方法插值与拟合

数值计算方法插值与拟合数值计算方法在科学计算和工程应用中起着重要的作用,其中插值和拟合是其中两个常用的技术。
插值是指通过已知的离散数据点来构造出连续函数或曲线的过程,拟合则是找到逼近已知数据的函数或曲线。
本文将介绍插值和拟合的基本概念和常见的方法。
一、插值和拟合的基本概念插值和拟合都是通过已知数据点来近似表达未知数据的方法,主要区别在于插值要求通过已知数据点的函数必须经过这些数据点,而拟合则只要求逼近这些数据点。
插值更加精确,但是可能会导致过度拟合;拟合则更加灵活,能够通过调整参数来平衡拟合精度和模型复杂度。
二、插值方法1. 线性插值线性插值是一种简单的插值方法,通过已知数据点构造出线段,然后根据插值点在线段上进行线性插值得到插值结果。
2. 拉格朗日插值拉格朗日插值是一种基于多项式插值的方法,通过已知数据点构造出一个多项式,并根据插值点求解插值多项式来得到插值结果。
3. 分段线性插值分段线性插值是一种更加灵活的插值方法,通过将插值区间分成若干小段,然后在每个小段上进行线性插值。
三、拟合方法1. 最小二乘法拟合最小二乘法是一种常用的拟合方法,通过最小化实际观测点和拟合函数之间的残差平方和来确定拟合函数的参数。
2. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过选择合适的多项式次数来逼近已知数据点。
3. 曲线拟合曲线拟合是一种更加灵活的方法,通过选择合适的曲线函数来逼近已知数据点,常见的曲线包括指数曲线、对数曲线和正弦曲线等。
四、插值与拟合的应用场景插值和拟合在实际应用中具有广泛的应用场景,比如图像处理中的图像重建、信号处理中的滤波器设计、金融中的风险评估等。
五、插值与拟合的性能评价插值和拟合的性能可以通过多种指标进行评价,常见的评价指标包括均方根误差、相关系数和拟合优度等。
六、总结插值和拟合是数值计算方法中常用的技术,通过已知数据点来近似表达未知数据。
插值通过已知数据点构造出连续函数或曲线,拟合则找到逼近已知数据的函数或曲线。
数学建模插值及拟合详解Word版

数学建模插值及拟合详解Word版插值和拟合实验⽬的:了解数值分析建模的⽅法,掌握⽤Matlab进⾏曲线拟合的⽅法,理解⽤插值法建模的思想,运⽤Matlab⼀些命令及编程实现插值建模。
实验要求:理解曲线拟合和插值⽅法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。
实验内容:⼀、插值1.插值的基本思想·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数 y= f(x)产⽣;·构造⼀个相对简单的函数 y=P(x);·使P通过全部节点,即 P (xk) = yk,k=0,1,…, n ;·⽤P (x)作为函数f ( x )的近似。
2.⽤MATLAB作⼀维插值计算yi=interp1(x,y,xi,'method')注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值⽅法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:⽴⽅插值;缺省时:线性插值)。
注意:所有的插值⽅法都要求x是单调的,并且xi不能够超过x的范围。
练习1:机床加⼯问题x035791112131415y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6⽤程控铣床加⼯机翼断⾯的下轮廓线时每⼀⼑只能沿x⽅向和y⽅向⾛⾮常⼩的⼀步。
表3-1给出了下轮廓线上的部分数据但⼯艺要求铣床沿x⽅向每次只能移动0.1单位.这时需求出当x坐标每改变0.1单位时的y坐标。
试完成加⼯所需的数据,画出曲线.步骤1:⽤x0,y0两向量表⽰插值节点;步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline');步骤3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on0510150.511.522.53.⽤MATLAB 作⽹格节点数据的插值(⼆维) z=inte rp2(x0,y0,z0,x,y,’method’) 注:z —被插点值的函数值;x0,y0,z0—插值节点;x ,y —被插值点;method —插值⽅法(‘nearest’ :最邻近插值;‘linear’ :双线性插值; ‘cubic’ :双三次插值;缺省时:双线性插值)。
数值分析之曲线拟合

xi 强度 ¿ Ç È ¶ yi
5.5 5 5.5 6.4 6 5.3 6.5 7 8.5 8 8.1 8.1
9
纤维强度随拉伸 倍数增加而增加 并且24个点大致分 布在一条直线附近
因此可以认为强度 y与拉伸倍数x的主 要关系应是线性关系
8 7 6 5 4 3 2 1
1
2
3
4
5
6
7
8
9
10
y( x) 0 1 x
即
[ a ( x ) ( x ) f ( x )] 0
i 0 j 0 n j j i k i i k i
m
n
a ( x ) ( x ) f ( x )
i 0 j 0 j j i k i i 0 i k i
m
m
a ( x ) ( x ) f ( x )
定义2 设 ψn(x) 是[a,b]上首项系数 an≠0 的 n次多项 式,ρ(x)为[a,b]上权函数,如果多项式序列 满足关系式:
则称为多项式序列 为在[a,b]上带权ρ(x)正交, 称ψn(x)为[a,b]上带权ρ(x)的n次正交多项式。
只要给定区间[a,b]及权函数ρ(x), 均可由一族 线性无关的幂函数 { 1 , x , … , xn , … } 利用逐个正交化手续(Gram-Schmidt正交化方法):
j 0
n
* 2 称为最小二乘解的平方 误差
在确定了拟合函数 S( x)后, 如何求拟合系数 a j ( j 0,1,, n)
使得S *( x ) a* j j ( x ) 满足拟合条件(3)呢?
j 0 n
2
三、法方程组
由
S ( x ) a j j ( x )
常用数值分析方法3插值法与曲线拟合

p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度.插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。
相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍.§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。
与此有关的一类问题是当原始数据),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。
1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来.如果b x x x a n =<<<= 10那么分段线性插值公式为n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=----- 可以证明,当分点足够细时,分段线性插值是收敛的。
其缺点是不能形成一条光滑曲线。
例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分mm ).根据地图的比例,18 mm 相当于40 km 。
根据测量数据,利用MATLAB 软件对上下边界进行线性多项式插值,分别求出上边界函数)(2x f ,下边界函数)(1x f ,利用求平面图形面积的数值积分方法—将该面积近似分成若干个小长方形,分别求出这些长方形的面积后相加即为该面积的近似解。
曲线拟合和插值运算原理和方法

实验10 曲线拟合和插值运算一. 实验目的学会MATLAB 软件中软件拟合与插值运算的方法。
二. 实验内容与要求在生产和科学实验中,自变量x 与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。
当要求知道观测点之外的函数值时,需要估计函数值在该点的值。
要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。
根据测量数据的类型有如下两种处理观测数据的方法。
(1) 测量值是准确的,没有误差,一般用插值。
(2) 测量值与真实值有误差,一般用曲线拟合。
MATLAB 中提供了众多的数据处理命令,有插值命令,拟合命令。
1.曲线拟合已知离散点上的数据集[(1x ,1y ),………(n x ,n y )],求得一解析函数y=f (x),使f(x)在原离散点i x 上尽可能接近给定i y 的值,之一过程叫曲线拟合。
最常用的的曲线拟合是最小二乘法曲线拟合,拟合结果可使误差的平方和最小,即使求使21|()|n i ii f x y =-∑ 最小的f(x).格式:p=polyfit(x,Y ,n).说明:求出已知数据x,Y 的n 阶拟合多项式f(x)的系数p ,x 必须是单调的。
[例 1.9]>>x=[0.5,1.0,1.5,2.0,2.5,3.0]; %给出数据点的x 值>>y=[1.75,2.45,3.81,4.80,7.00,8.60]; %给出数据点的y 值>>p=polyfit (x,y,2); %求出二阶拟合多项式f(x)的系数>>x1=0.5:0.05:3.0; %给出x 在0.5~3.0之间的离散值>>y1=polyval(p,1x ); %求出f(x)在1x 的值>>plot(x,y,‟*r ‟, 11,x y ‟-b ‟) %比较拟合曲线效果计算结果为:p=0.5614 0.8287 1.1560即用f(x)=0.56142x +0.8287x+1.1560拟合已知数据,拟合曲线效果如图所示。
插值法和曲线拟合的主要差异

插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。
《数值分析》第5章 曲线拟合与函数插值

例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析法相关知识在生产和科学实验中,自变量x 与因变量y 间的函数关系()y f x =有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。
当要求知道其它点的函数值时,需要估计函数值在该点的值。
为了完成这样的任务,需要构造一个比较简单的函数()y x ϕ=,使函数在观测点的值等于已知的值,或使函数在该点的导数值等于已知的值,寻找这样的函数()y x ϕ=有很多方法。
根据测量数据的类型有以下两类处理观测数据的方法。
(1)测量值是准确的,没有误差,一般用插值。
(2)测量值与真实值有误差,一般用曲线拟合。
曲线拟合法已知离散点上的数据集1122{(,),(,),,(,)}n n x y x y x y ,即已知在点集12{,,,}n x x x 上的函数值12{,,,}n y y y ,构造一个解析函数(其图形为一曲线)使()f x 在原离散点i x 上尽可能接近给定的i y 值,这一过程称为曲线拟合。
曲线拟合的一般步骤是先根据实验数据,结合相关定律,将要寻求的最恰当的拟合曲线方程形式预测出来,再用其他的数学方法确定经验公式中的参数。
对于事先给定的一组数据,确定经验公式一般可分为三步进行:(1)、确定经验公式的形式:根据系统和测定的数据的特点,并参照已知图形的特点确定经验公式的形式。
(2)、确定经验公式中的待定系数:计算待定系数的方法有许多常用的法有图示法、均值法、差分法、最小二乘法、插值法等。
(3)、检验:求出经验公式后,还要将测定的数据与用经验公式求出的理论数据作比较,验证经验公式的正确性,必要时还要修正经验公式。
关于确定经验公式的形式,可从以下几个方面入手:(1)、利用已知的结论确定经验公式形式,如由已知的胡克定律可以确定在一定条件下,弹性体的应变与应力呈线性关系等。
(2)、从分析实验数据的特点入手,将之与已知形式的函数图形相对照,确定经验公式的形式。
(3)、描点作图法:将已知的点用光滑的曲线连接起来,寻找曲线的形式。
(4)、多项式近似、线性插值或样条插值等。
多项式近似是工程中十分常见的方法,它首先需要确定多项式的次数,一般可以用差分法、差商法来估计。
<一>、差分方程法<1>、差分方程:差分方程反映的是关于离散变量的取值与变化规律。
通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。
(1)、说明:差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。
通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。
(2)、应用:差分方程模型有着广泛的应用。
实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。
差分方程模型有着非常广泛的实际背景。
在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。
可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。
<2>、基本知识: 基本概念 1、 差分算子:设数列{}n x ,定义差分算子n n n x x x -=∆∆+1:为n x 在n 处的向前差分,而1--=∆n n n x x x 为n x 在n 处的向后差分。
(以后我们都是指向前差分),可见n x ∆是n 的函数。
从而可以进一步定义n x ∆的差分:n n x x 2)(∆=∆∆称之为在n 处的二阶差分,它反映的是的增量的增量。
类似可定义在n 处的k 阶差分为:))((1n k n k x x -∆∆=∆2、 差分算子 、不变算子、平移算子:记n n n n x Ix x Ex ==+,1,称E 为平移算子,I 为不变算子 。
则有:n n n n x I E Ix Ex x )(-=-=∆ I E -=∆∴ 由上述关系可得:i n ki ik i k n iki ik ik n kn kx C x E C x I E x +=-=-∑∑-=-=-=∆00)1()1()( (1)这表明n x 在n 处的k 阶差分由n x 在k n n n ++....1,,处的取值所线性决定。
反之,由 n n n x x x -=∆+1 得 n n n x x x ∆+=+1: n n n n x x x x +-=∆++1222,得:n n n n x x x x 2122∆++-=++,这个关系表明:第n+2项可以用前两项以及相邻三项增量的增量来表现和计算。
即一个数列的任意一项都可以用其前面的k 项和包括这项在内的k+1 项增量的增量的增量……..第k 层增量所构成。
……..,)1(1k n i n k i ik ik n kx x C x ++-=-+-=∆∑得: n k i n k i ik ik k n x x C x ∆+--=+-=-+∑1)1( (2)可以看出:k n x +可以由n k n n x x x ∆∆,...,,的线性组合表示出来3、 差分方程:由n x 以及它的差分所构成的方程),...,,,(1n k n n n k x x x n f x -∆∆=∆ (3)称之为k 阶差分方程。
由(1)式可知(3)式可化为:),...,,,(11-+++=k n n n k n x x x n F x (4)故(4)也称为k 阶差分方程(反映的是未知数列n x 任意一项与其前,前面k 项之间的关系)。
由(1)和(2)可知,(3)和(4)是等价的,我们经常用的差分方程的形式是(4)式。
4、 差分方程的解与有关概念:(1)、如果n x 使k 阶差分方程(4)对所有的n 成立,则称n x 为方程(4)的解。
(2)、如果-=x x n (-x 为常数)是(4)的解,即),...,,(---=x x n F x则称-=x x n 为(4)的平衡解或叫平衡点。
平衡解可能 不只一个。
平衡解的基本意义是:设n x 是(4)的解,考虑n x 的变化性态,其中之一是极限状况,如果x x n n =∞→lim ,则方程(4)两边取极限(x 就存在在这里面),应当有 ),...,,(---=x x n F x(3)、如果(4)的解n x 使得--x x n 既不是最终正的,也不是最终负的,则称n x 为关于平衡点-x 是振动解。
(4)、如果令:--=x x y n n ,则方程(4)会变成),...,,(1-++=k n n k n y y n G y(5)则 0=y 成为(5)的平衡点。
(5)、如果(5)的所有解是关于0=y 振动的,则称k 阶差分方程 (5)是振动方程。
如果(5)的所有解是关于0=y 非振动的,则称k 阶差分方程(5)是非振动方程。
(6)、如果(5)有解n y ,使得对任意大的y N 有:>≥n N n y Sup y则称n y 为正则解。
(即不会从某项后全为零)(7)、如果方程(4)的解n x 使得-∞→=x x Lim n n ,则称n x 为稳定解。
5、差分算子的若干性质(1)n n n ny x y x ∆+∆=+∆βαβα)(.)((2))(1)(1n n n n nn n n y x x y y y y x ∆-∆=∆+(3)n n n n n n y x x y y x ∆+∆=∆+1)((4)∑∑==+++∆+-=∆bak kk a bak a b b k k y x y x y x x y111(5)∑=∆=+∆==ni iin nnnx C x I x E x 0000)( 6、Z 变换:定义:对于数列n x ,定义复数级数∑∞=-==0)()(k kk n z x x Z z X (6) 这是关于z 洛朗级数。
它的收敛域是:21R z R <<,其中2R 可以为∞,1R 可以为0。
称)(n x Z 为n x 的z -变换。
由复变函数展开成洛朗级数的唯一性可知:z 变换是一一对应的,从而有逆变换,记为:))((1z X Z x n -= (7)z 变换是研究数列的有效工具 。
z 变换的若干重要性质:(1)线性性:)()()(n n n n y Z x Z y x Z βαβα+=+(2)平移性质: ])([)(10∑-=-+-=N k kk NN n z x z X z x Zz 变换举例:(1)⎩⎨⎧≠=∞=0,00,)(n n n δ, 则∑∞==--=⨯==001)1()())((k k kk z z k n Z δδ(2)⎩⎨⎧<≥=0,00,1)(k k n u ,则∑∑∞=∞=-->-===00,1,1)())((k k kk z z z z z k u n u Z (3)设,)(na n f =则∑∞=->>-==0,0,,)(k kk na a z az zz a a Z (4)设,!1)(n n f =则0,!1)!1(01>==∑∞=-z e z k n Z k z k<3>、差分方程常用解法与性质分析: 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (8)其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (9)为方程(8)对应的齐次方程。
如果(9)有形如nn x λ=的解,带入方程中可得:0 (11)10=++++--k k k ka a a a λλλ (10)称方程(10)为方程(8)、(9)的特征方程。
显然,如果能求出(10)的根,则可以得到(9)的解。
基本结果如下:(1)、若(10)有k 个不同的实根,则(9)有通解:nkk n n n c c c x λλλ+++=...2211,(2)、若(10)有m 重根λ,则通解中有构成项:n m m nc n c c λ)...(121----+++ (3)、若(10)有一对单复根βαλi ±=,令:ϕρλi e±=,αβϕβαρarctan ,22=+=,则(9)的通解中有构成项:n c n c nnϕρϕρsin cos 21--+(4)、若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有构成项:n n c n c c n nc n c c n m m m m nm m ϕρϕρs i n )...(cos )...(1221121---++---+++++++综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。