两角和与差及二倍角公式讲义,例题含答案

合集下载

(完整版)两角和与差及二倍角公式经典例题及答案

(完整版)两角和与差及二倍角公式经典例题及答案

成功是必须的:两角和与差及其二倍角公式知识点及典例知识要点: 1、 两角和与差的正弦、余弦、正切公式 C( a — 3 ): cos( a — 3 )= S( a + 3 ): sin( a + 3 )=T( a + 3 ): tan( a + 3 )=2、 二倍角的正弦、余弦、正切公式 S 2 : sin2 a = C( a + 3 ): cos( a + 3 )= S( a — 3 ): T( a — 3 ): 2h例 2 设 cos a —21 9’T 2 : tan2 . asin 2 — 23,其中n 2,n0, 2,求 cos( a+ 3).sin( a — 3 )= tan( a — 3 )= C 2 : cos2 a =— — ,3、 在准确熟练地记住公式的基础上 ,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。

如T( a± 3可变形为:tan a± tan 3= 考点自测: 1、已知tan A 、7 11 B、 tan 3 = 3, 7 11 变式2:已知03.ncos(— 4 435,sin( 4)—,求 sin( a + 3 )的值. 13则 tan( a C 、? 13 tan a an 3= 3)=( 13 题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;值(要求该三角函数应在角的范围内严格单调 );(3)求出角。

1 1例 3 已知 a, 3^ (0, n,且 tan (a — 3 ="2, tan 3=— 7 求 2 a — 3 的值.(2)求角的某一个三角函数n a — 6 +A —症A . 5 2、已知cos 3、在厶ABC 中,若 sin a= 43」 B辺B.5 4 q 5cosA = 5,cosB = 13, B 56 B.65sin 7 n a+舀的值是( C . — 4 5 则cosC 的值是( c 丄或56 C.65或65 4、若 cos2 9+ cos 0= 0,贝U sin2 0+ sin B 的值等于( )C . 0 或 3 4D ・516 65 0或土 3A . 0B . ± 3 一.卜 2cos55 — j‘3sin55、二角式 A 辽 2 题型训练 题型1给角求值 一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 cos5B.o■值为( 例 1 求[2si n50 sin 10 (1 3tan10)]? 2sin 280 的值• 11变式3:已知tan a =, tan 3 =-,并且a , 3均为锐角,求a +23的值.7 3题型4辅助角公式的应用J 22asinx bcosx a b sin x (其中 角所在的象限由 a, b 的符号确定,角的值由btan —确定)在求最值、化简时起着重要作用。

两角和与差及二倍角公式定理讲义,例题含规范标准答案

两角和与差及二倍角公式定理讲义,例题含规范标准答案

3.3 两角和与差及二倍角公式(答案)3.3 两角和与差及二倍角公式一.【复习要求】1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.2.掌握二倍角的正弦、余弦、正切公式.2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回顾】1.两角和与差的三角函数sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ;2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。

sin2α= ;cos2α= = =tan 2α= 。

3.降幂公式2sin α= ; 2cos α= .注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用4.辅助角公式证明:)sin cos x x y x x +=+=sin sin cos )x x ϕϕ+)x ϕ+其中,cos ϕ=sin ϕ=,tan baϕ=且角ϕ终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想如:sin cos αα+= ;sin cos αα-= 。

5.公式的使用技巧(1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++ (2)“1”的代换:22sin cos 1αα+=,sin 1,tan124ππ==(3)收缩代换:sin cos y x x =+=)x ϕ+,(其中,a b 不能同时为0) (4)公式的变形:tan tan tan()1tan tan αβαβαβ++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++tan tan tan()1tan tan αβαβαβ--=+→tan()tan tan tan()tan tan αβαβαβαβ-=---如:tan 95tan 3595tan 35-=oooo。

第35课两角和与差及二倍角公式

第35课两角和与差及二倍角公式

第35课 两角和与差及二倍角公式一、考纲要求:1、掌握两角和与差的正弦、余弦、正切公式;2、掌握二倍角的正弦、余弦、正切公式;3、能灵活运用公式进行三角函数的求值。

二、知识结构:1、和、差角公式:sin αβ±=()cos αβ±=()tan αβ±=()2、二倍角公式:sin α=2 tan α=2cos α===2三、考点与典型例题:考点一:公式的应用:题组一、求函数值练习1、(《学案》P72例1)求下列各式的值: ⑴sin163cos 223sin 253cos313⋅+⋅ ⑵tan 20tan 403tan 20tan 40++⋅练习2、(《学案》P73变式1)求1tan151tan15+-的值:考点二:已知三角函数值求函数值或角题组二、求角的大小3、(《学案》P72例2:)在ABC ∆中,A 、B 为锐角,角A 、B 、C 所对边分别是a 、b 、c ,且5s i n 5A =,10sin 10B =。

求A B +的值。

练习4、(《学案》P73变式2)已知α、β为锐角,且1tan 7α= 且10sin 10β=,求2αβ+的值。

题组三、求第三个角的函数值 5、例5、已知3044ππβα<<<<,3cos()45πα-=, 35sin()413πβ+=,求sin()αβ+的值。

6、变式在例5条件下求cos()αβ-的值。

7、已知02πα<<,02πβ-<<,1cos()43πα+=, 3cos()423-=πβ,求cos()2βα+的值。

考点三:公式的综合应用8、《学案》P73变式3: 已知平面直角坐标系上的三点(0,1)A ,(2,0)B -,(cos ,sin )C θθ((0,)θπ∈)且BA 与OC共线。

⑴求tan θ的值;⑵sin()4πθ-的值。

9、练习: ⑴12sin(2)4cos παα--;⑵4222cos 2cos 0.52tan()sin ()44x x x x ππ-+-⋅+四、归纳反思:《学案》P73五、课后作业:《课时作业》P244 1-8。

两角和与差、二倍角的公式(二)

两角和与差、二倍角的公式(二)

05-03 两角和与差、二倍角的公式(二)点一点——明确目标掌握二倍角的三角函数公式,能熟练应用公式进行求值、化简、证明.做一做——热身适应1.若f (tan x )=sin2x ,则f (-1)的值是 . 解析:f (-1)=f [tan (-4π)]=-sin 2π=-1. 答案:-12.(2005年春季上海,13)若cos α=53,且α∈(0,2π),则tan 2α=____________. 解析一:由cos α=53,α∈(0,2π),得sin α=α2cos 1-=54, tan 2α=2cos 2sinαα=2cos2sin 22sin 22ααα=ααsin cos 1-=54531-=21. 解析二:tan 2α=ααcos cos 1+1-=531531+-=21. 答案:21 3.(2005年春季北京,11)已知sin 2θ+cos 2θ=332,那么sin θ的值为____________,cos2θ的值为____________.解析:由sin 2θ+cos 2θ=332,得1+sin θ=34,sin θ=31,cos2θ=1-2sin 2θ=1-2·91=97.答案:31 974.下列各式中,值为21的是A.sin15°cos15°B.2cos 212π-1C.230cos 1︒+ D.︒-︒5.22tan 15.22tan 2解析:︒-︒5.22tan 15.22tan 2=21tan45°=21. 答案:D 5.设a =sin14°+cos14°,b =sin16°+cos16°,c =66,则a 、b 、c 的大小关系是 A.a <b <c B.a <c <bC.b <c <aD.b <a <c解析:a =2sin59°,c =2sin60°,b =2sin61°,∴a <c <b . 答案:B理一理——疑难要点1.在公式S (α+β)、C (α+β)、T (α+β)中,当α=β时,就可得到公式S 2α、C 2α、T 2α,在公式S 2α、C 2α中角α没有限制在T 2α中,只有当α≠2πk +4π且α≠k π+2π时,公式才成立. 2.余弦二倍角公式有多种形式即cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.变形公式sin 2α=22cos 1α-,cos 2α=22cos 1α+.它的双向应用分别起到缩角升幂和扩角降幂作用. 3.要重视对遇到的问题中角、函数名及其整体结构的分析,提高公式选择的恰当性;三角变换中体现出的每一步化归过程,均应以“合乎情理”为原则.拨一拨——思路方法【例1】 试求函数y =sin x +cos x +2sin x cos x +2的最大值和最小值,若x ∈[0,2π]呢? 剖析:注意sin x +cos x 与sin x ·cos x 之间的关系,进行换元可将原函数转化成一元二次函数来解.解:令t =sin x +cos x =2sin (x +4π)∈[-2,2],则y =t 2+t +1∈[43,3+2],即最大值为3+2,最小值为43.当x ∈[0,2π]时,则t ∈[1,2],此时y 的最大值是3+2,而最小值是3.评述:此题考查的是换元法,转化思想,在换元时要注意变量的取值范围.【例2】 已知sin (x -4π3)cos (x -4π)=-41,求cos4x 的值. 剖析:4x 为2x 的二倍角,2x 为x 的二倍角. 解:由已知得sin (x -2π-4π)cos (x -4π)=-41, ∴cos 2(x -4π)=41. ∴sin2x =cos (2π-2x )=2cos 2(4π-x )-1=-87. ∴cos4x =1-2sin 22x =1-6498=-3217.【例3】 已知α为第二象限角,cos 2α+sin2α=-25,求sin 2α-cos 2α和sin2α+cos2α的值.解:由cos 2α+sin2α=-25平方得 1+2sin2αcos2α=45, 即sin α=41,cos α=-415.此时k π+4π<2α<k π+2π.∵cos2α+sin2α=-25<0, sin 2αcos 2α=81>0, ∴cos 2α<0,sin2α<0.∴2α为第三象限角.∴2k π+4π5<2α<2k π+2π3,k ∈Z . ∴sin2α<cos2α, 即sin 2α-cos 2α<0.∴sin2α-cos2α=-αsin 1-=-23, sin2α+cos2α=2sin αcos α+1-2sin 2α=8157-. 评述:由三角函数值判断2α的范围是关键.【例4】 (2004年东北三校高三第一次联考题)已知a =(cos 23x ,sin 23x ),b =(cos 2x ,-sin2x ),x ∈[0,2π]. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |的最小值是-23,求λ的值. 解:(1)a ·b =cos23x cos 2x -sin 23x sin 2x=cos2x . |a +b |=222sin 23sin 2cos 23cos)()(x x x x -++=2x 2cos =2cos x (∵x ∈[0,2π]). (2)f (x )=cos2x -4λcos x =2(cos x -λ)2-1-2λ2.∵x ∈[0,2π],∴cos x ∈[0,1]. ①当λ<0,cos x =0时,f (x )min =-1,矛盾. ②当0≤λ≤1,cos x =λ时,f (x )min =-1-2λ2,由-1-2λ2=-23,得λ=21. ③当λ>1,cos x =1时,f (x )min =1-4λ, 由1-4λ=-23,得λ=85<1,矛盾. 综上,λ=21为所求. 练一练——巩固提高1.若8cos (4π+α)cos (4π-α)=1,则sin 4α+cos 4α=_______. 解析:由已知得8sin (4π-α)cos (4π-α)=1, ∴4sin (2π-2α)=1.∴cos2α=41. sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α=1-21sin 22α=1-21(1-cos 22α) =1-21(1-161)=1-21×1615=3217. 答案:32172.若tan x =2,则xx x xcos sin 1sin 2cos 22+--=_______. 解析:原式=x x x x sin cos sin cos +-=x x tan 1tan 1+-=2121+-=1212--)(=22-3.答案:22-33.已知f (x )=x -1,当θ∈(4π5,2π3)时,f (sin2θ)-f (-sin2θ)可化简为 A.2sin θB.-2cos θC.-2sin θD.2cos θ解析:f (sin2θ)-f (-sin2θ)=θ2sin 1--θ2sin 1+=|sin θ-cos θ|-|sin θ+cos θ|.∵θ∈(4π5,2π3), ∴-1<sin θ<-22<cos θ<0. ∴cos θ-sin θ>0,cos θ+sin θ<0.∴原式=cos θ-sin θ+cos θ+sin θ=2cos θ.答案:D 4.若sin αcos β=21,求cos αsin β的取值范围. 解:令t =cos αsin β,则21t =41sin2αsin2β. ∴t =21sin2αsin2β∈[-21,21]. 5.化简xx x x x 2sin 1cos sin 1cos sin ))((+--+.解:原式=xxx x x 2sin 12sin 21sin 12sin 21sin 22))((++---+=xxx xx x x x x cos 2cos 2sin 42sin 22cos 2sin 22sin 22cos 2sin 222))((+- =xxxx x x x cos 2cos 2sin2sin 2cos 2sin 2cos ⋅+-))(( =x x x x x cos 2cos 2sin 2sin 2cos 22⋅-)(=xx xx cos 2cos 2sincos ⋅⋅=tan 2x . 6.(2004年江苏,17)已知0<α<2π,tan 2α+cot 2α=25,求sin (α-3π)的值. 解:由已知tan 2α+cot2α=αsin 2=25,得sin α=54. ∵0<α<2π,∴cos α=α2sin 1-=53. 从而sin (α-3π)=sin α·cos 3π-cos α·sin 3π=54×21-53×23=101(4-33).7.已知f (x )=2a sin 2x -22a sin x +a +b 的定义域是[0,2π],值域是[-5,1],求a 、b 的值.解:令sin x =t ,∵x ∈[0,2π],∴t ∈[0,1], f (x )=g (t )=2at 2-22at +a +b =2a (t -22)2+b .当a >0时,则⎩⎨⎧=+-=,,15b a b解之得a =6,b =-5. 当a <0时,则⎩⎨⎧-=+=,,51b a b解之得a =-6,b =1.8.(2004年湖北,17)已知6sin 2α+sin αcos α-2cos 2α=0,α∈[2π,π),求 sin (2α+3π)的值. 分析:本题考查三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能.解法一:由已知得(3sin α+2cos α)(2sin α-cos α)=0⇔3sin α+2cos α=0或2sin α-cos α=0.由已知条件可知cos α≠0,所以α≠2π,即α∈(2π,π). 于是tan α<0,∴tan α=-32. sin (2α+3π)=sin2αcos 3π+cos2αsin 3π =sin αcos α+23(cos 2α-sin 2α) =αααα22sin cos cos sin ++23×αααα2222sin cos sin cos +-=αα2tan tan +1+23×αα22tan tan 1+1-. 将tan α=32代入上式得 sin (2α+3π)=232132)()(-+-+23×22321321)()(-+--=-136+3265,即为所求. 解法二:由已知条件可知cos α≠0,则α≠2π, ∴原式可化为6tan 2α+tan α-2=0, 即(3tan α+2)(2tan α-1)=0.又∵α∈(2π,π).∴tan α<0,∴tan α=-32. 下同解法一. 想一想——拓展发散将一块圆心角为120°,半径为20 cm 的扇形铁片截成一块矩形,如图,有2种裁法:让矩形一边在扇形的一半径OA 上或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形,并求出这个最大值.A ABBMMO O 甲乙解:对图甲,设∠MOA =θ,则S 1=200sin2θ. ∴当θ=45°时,(S 1)max =200 cm 2.对图乙,设∠MOA =α, 则S 2=33800[cos (2α-60°)-cos60°]. 当α=30°时,(S 2)max =33400 cm 2. ∵33400>200,∴用乙种方法好.。

§5.3两角和、差及倍角公式

§5.3两角和、差及倍角公式

§5.3两角和、差及倍角公式【复习目标】1. 熟练掌握两角和与差及两倍角的正弦、余弦、正切公式;了解它的内在联系;2. 理解22cos 1sin 2αα-=,22cos 1cos 2αα+=在升、降幂中的作用;3. 能正确运用公式解决化简、求值等相关问题、运算问题. 【重点难点】在化简、求值等运算问题中,训练“变角”、活用公式、“范围意识” 【知识梳理】sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=;2222sin 22sin cos ;cos 2cos sin 2cos 112sin ααααααα==-=-=-22tan tan 21tan ααα=-; 221cos 21cos 2cos ;sin 22αααα+-==【课前预习】1. 求值:000029sin 91sin 181sin 119sin - = ; t a n c o t ___;88ππ-=000c o s 20c o s 40c o s 80____.=t a n 103t a n 10t a n 50t a n 50++= .2.若445sin cos ,sin 2___.9θθθθ+==为第三象限角,则3.设)17cos 17(sin 22+=a ,113cos 202-=b ,23=c ,则 ( )A .b a c <<B .a c b <<C .c b a <<D .c a b <<4.若cos()cos()0,sin 2____.4442πππθθθθ-+=<<=则5.求值:0sin 50(110)⋅+【典型例题】题型一:三角函数的化简问题例1.化简42212cos 2cos 22tan()sin ()44x x x x ππ-+-+例2.化简(1sin cos )(sincos))θθθθθπ++-<<题型二:三角函数的证明问题 例3.求证:1sin 4cos 4tan 21sin 4cos 4θθθθθ+-=++例4.求证:2cos 1sin 24cottan22αααα=-题型三:给角求值问题 例5.求值:0010cos 1)10tan 31(80sin 50sin 2+++题型四:给值求值问题 例6.若3123,cos(),sin()24135πβαπαβαβ<<<-=+=-,求cos 2,sin 2βα例7.若3177cos()45,124,x x πππ+=<<求2sin 22sin 1tan x xx+-的值。

第二讲:两角和与差及二倍角公式

第二讲:两角和与差及二倍角公式

第二讲:两角和与差及二倍角公式(一) 主要知识:1.两角和与差的三角函数公式;二倍角公式;2.降次公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=.3.三角函数求值问题的基本类型:(1)给角求值,即在不查表的前提下,求三角函数式的值;(2)给值求值,即给出一些三角函数,而求与这些三角函数式有某种联系的三角式的值; (3)给值求角,即给出三角函数值,求符合条件的角. 4.三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少; ④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.5.三角恒等式的证明要求:利用已知三角公式通过恒等变形,论证所给等式左、右相等.(二)主要方法:1.寻求所求结论中的角与已知条件中的角的关系,把握式子的变形方向,准确运用公式;2.三角变换主要体现在:函数名称的变换、角的变换、1的变换、和积的变换、幂的变换等方面;3.三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化. 4.应注意的几点:()1熟悉公式的正用、逆用,还要熟练掌握公式的变形应用.()2注意拆角、凑角技巧,如()ααββ=+-,()()2ααβαβ=++-等.()3注意倍角的相对性,如3α是23α的倍角.()4要时时注意角的范围的讨论.5.三角恒等式的证明:三角恒等式包括有条件的恒等式和无条件的恒等式.①无条件的等式证明的基本方法是化繁为简、左右归一、变更命题等,使等式两端的“异”化为“同”;②有条件的等式常用方法有:代入法、消去法、综合法、分析法等.(三)典型例题:例1.()1(07江西文)若tan 3α=,4tan 3β=,则tan()αβ-等于.A 3- .B 13-.C 3()2(06重庆)3,,4παβπ⎛⎫∈ ⎪⎝⎭,()3sin 5αβ+=-,12sin 413πβ⎛⎫-= ⎪⎝⎭,则cos 4πα⎛⎫+= ⎪⎝⎭例2.(07四川)已知1cos 7α=,13cos()14αβ-=,02πβα<<<,(Ⅰ)求α2tan 的值.(Ⅱ)求β例3.求值: ()1cos 20cos 40cos 60cos80︒︒︒︒()2(06江苏)cot 20cos10tan702cos40︒︒︒-︒ 2 例4.已知1sin sin αβ+=,1cos cos 3αβ+=,求值:()1()cos αβ-;()2(选作)()tan αβ+例5.已知tan 24πα⎛⎫+=⎪⎝⎭,求212sin cos cos ααα+例6.求证:()()sin 2sin 2cos sin sin αββαβαα+-+=;例7.已知()1tan 2αβ-=,1tan 7β=-,且(),0,αβπ∈,求2αβ-的值(四)巩固练习:1.(05重庆文)=+-)12sin12)(cos12sin12(cosππππ.A 23-.B 21- .C 212.(05江西文)已知tan32α=,则cos α= .A 54.C 154 .D 35- 4. 若α为锐角,且1sin 63πα⎛⎫-= ⎪⎝⎭,则cos α=.A .C .D5.(05江苏)1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭.B 13- .C 13 .D 796.(07陕西)已知sin 5α=,则44sin cos αα-的值为 .A 15- .C 15 .D 357.(07江苏)若1cos()5αβ+=,3cos()5αβ-=,则tan tan αβ⋅8.(07浙江)已知1sin cos 5θθ+=,且324θππ≤≤,则cos 2θ9.(06福建)已知3(,),sin 25παπα∈=则tan(4πα+=.B 7 .C 7- .D 7-10. (06湖北)已知2sin 23A =,()0,A π∈,则sin cos A A +=.B .C 53 .D 53-11.(06重庆文)若,(0,)2παβ∈,cos()2βα-=,1sin()22αβ-=-,则cos()αβ+=.A .C 12 .D12.(06陕西)cos 43cos77sin 43cos167︒︒+︒︒=13. 在ABC △中,(1cot )(1cot )2A B ++=,则14. 已知sin 2cos 0αα+=,则sin 2cos 2αα+=15.(06安徽文)已知40,sin 25παα<<=求值:()12sin sin 2cos cos 2αααα++;()25tan(4πα-16.(06天津文)已知5tan cot ,(,242ππααα+=∈求cos 2α和sin(2)4πα+的值17. 化简1tan151tan15+︒-︒等于.B .C 3 .D 118.(06萍乡模拟)tan tan tan6666ππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫-++-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.B3.C.D319.已知1tan7α=,1tan3β=,已知,αβ均为锐角,则2αβ+=.B54π.C4π或54π.Dπ20.(05全国Ⅲ文)22sin2cos1cos2cos2αααα⋅=+.A tanα;.B tan2α;.C1;.D1221.222cos12tan()sin()44αππαα--+22.(04全国)已知α为锐角,且21tan=α,求ααααα2cos2sinsincos2sin-的值23.(06安徽)已知34παπ<<,10tan cot3αα+=-(Ⅰ)求tanα的值;(Ⅱ)求225sin8sin cos11cos822222αααπα++-⎛⎫-⎪⎝⎭的值24.(05福建文)已知51cossin,02=+<<-xxxπ.(Ⅰ)求xx cossin-的值;(Ⅱ)求xxxtan1sin22sin2-+的值25.(05全国Ⅱ文)已知α为第二象限的角,3sin5α=,β为第一象限的角,5cos13β=.求tan(2)αβ-的值.26.(05杭州二模)已知关于x的一元二次方程2(23)(2)0mx m x m+-+-=的两个实数根分别为tanα和tan.β(Ⅰ)求实数m 的取值范围;(Ⅱ)求tan()αβ+ 27.(选作)已知:22tan 2tan 1θϕ=+,求证:cos 212cos 2ϕθ=+。

两角和与差的正、余弦公式、正切公式、二倍角公式

两角和与差的正、余弦公式、正切公式、二倍角公式

1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。

两角及与差及二倍角公式讲义,例题含含答案

两角及与差及二倍角公式讲义,例题含含答案

两角和与差及二倍角公式(答案)两角和与差及二倍角公式一.【复习要求】1. 掌握两角和与差的正弦、余弦、正切公式,认识它们的内在联.2. 掌握二倍角的正弦、余弦、正切公式.2. 可以利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.二、【知识回首】1.两角和与差的三角函数sin( ) ; sin( ) ;cos( ) ; cos( ) ;tan( ) ; tan( ) ;2.二倍角公式:在sin( ),cos( ), tan( ) 中令,可得相应的二倍角公式。

sin2 ;cos2 = =tan 2 。

3.降幂公式sin 2 ;cos2 .注意:二倍角公式拥有“升幂缩角“作用,降幂公式拥有“降幂扩角”作用4.协助角公式y a sin x bcos x a2 b2 sin(x ) ,(此中a, b不可以同时为0)证明: y sin x cos x 2 2 ( a bcos x)a b sin xa2 b 2a2 b2a2 b2 (cos sin x sin cos x)a2 b2 sin( x )此中, cosa, sinb, tanb终边过点 ( a, b)2 2且角a2 2ab a b在使用时,不用死记结论,而重在这种缩短(合二为一)思想如: sin cos ; sin cos 。

5.公式的使用技巧( 1)连续应用:sin( ) sin[( ) ] sin( )coscos()sin( 2)“ 1”的代换:sin2 cos2 1, sin2 1,tan 14( 3)缩短代换: y sin x cos x a 2 b 2 sin( x) ,(此中 a, b 不可以同时为0)( 4)公式的变形:tan()tan tan tan( ) tantantan() tan tan1 tan tantan() tan tan tan( ) tantantan() tan tan1 tan tan如: tan95otan 35o3 tan 95o tan 35o。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 两角和与差及二倍角公式(答案)
3.3 两角和与差及二倍角公式
一.【复习要求】
1.掌握两角和与差的正弦、余弦、正切公式,了解它们的内在联.
2.掌握二倍角的正弦、余弦、正切公式.
2.能够利用两角和与差的公式、二倍角公式进行三角函数式的求值、化简和证明.
二、【知识回顾】
1.两角和与差的三角函数
sin()αβ+= ;sin()αβ-= ; cos()αβ+= ;cos()αβ-= ; tan()αβ+= ;tan()αβ-= ;
2.二倍角公式:在sin(),cos(),tan()αβαβαβ+++中令αβ=,可得相应的二倍角公式。

sin2α= ;
cos2α= = = tan 2α= 。

3.降幂公式
2sin α= ; 2cos α= .
注意:二倍角公式具有“升幂缩角“作用,降幂公式具有“降幂扩角”作用
4.辅助角公式
证明:
)sin cos x x y x x +
=+=
sin sin cos )x x ϕϕ+
)x ϕ+
其中,
cos ϕ=
sin ϕ=
,tan b
a
ϕ=
且角ϕ终边过点(,)a b 在使用时,不必死记结论,而重在这种收缩(合二为一)思想
如:sin cos αα+= ;sin cos αα-= 。

5.公式的使用技巧
(1)连续应用:sin()sin[()]sin()cos cos()sin αβγαβγαβγαβγ++=++=+++ (2)“1”的代换:22sin cos 1αα+=,sin 1,tan
12
4
π
π
==
(3)收缩代换:sin cos y x x =+
=)x ϕ+,
(其中,a b 不能同时为0) (4)公式的变形:
tan tan tan()1tan tan αβ
αβαβ
++=-→tan()tan tan tan()tan tan αβαβαβαβ+=+++
tan tan tan()1tan tan αβ
αβαβ
--=
+→tan()tan tan tan()tan tan αβαβαβαβ-=---
如:tan 95tan 3595tan 35-=o
o
o
o。

tan 70tan 5070tan 50+=o o o o 。

(5)角的变换(拆角与配角技巧)
22
α
α=⋅
, ()ααββ=+-, ()αββα=--, 1[()()]2
ααβαβ=
++-,
()4
4
ααπ
π
=+
-

()4
24π
π
π
αα+=
--,1
[()()]2
βαβαβ=+--, (6)二倍角公式的逆用及常见变形
二倍角的正用、逆用、变形应用是公式的三种主要使用方法,特别是二倍角的余弦公式,它在求值、化简、证明中有广泛的应用,解题时应根据不同的需要,灵活选取。

①sin 2sin
cos
22α
α
α=;②2
2
2
2
cos cos sin 12sin 2cos 12222α
α
α
α
α=-=-=-
③2
2tan
2tan 1tan 2
ααα=
-;④21sin 2(sin cos )ααα±=±;⑤22(sin cos )(sin cos )2αααα++-= 5.三角函数式的化简
(1)化简方法:①直接应用公式进行降次、消项;②化切为弦,异名化同名,异角化同角;③ 三
角公式的逆用等。

④降幂或升幂
(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;
④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数。

6.三角函数的求值类型有三类
(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换
消去非特殊角,转化为求特殊角的三角函数值问题;
(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变
角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;
(3)给值求角:实质上转化为“给值求值”问题,关键也在于“变角”,把所求角用含已知角的
式子表示,由所得的函数值结合所求角的范围或函数的单调性求得角。

7.三角等式的证明
(1)三角恒等式的证明
根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一、转换命题等方法,使等式两端化“异”为“同”; (2)三角条件等式的证明
通过观察,发现已知条件和待证等式间的关系。

若从结论开始,通过变形,将已知表达式代入得出结论,采用代入法;若从条件开始,化简条件,将其代入要证表达式中,通过约分抵消等消去某些项,从而得出结论,采用消参法;若这两种方法都证不出来,可采用分析法进行证明。

三.【例题精讲】 考点一、给角求值
例1. 求值:
cos 20cos103sin10tan 702cos 40sin 20
+-o o
o o o o
例2.求值:2
[2sin50sin10(13tan10)]2sin 80++⋅o
o
o
o
【反思归纳】对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ①化为特殊角的三角函数值 ②化为正负相消的项,消去求值 ③化分子、分母使之出现公约数进行约分而求值。

考点二、给值求值
例3.已知tan2
22,22
απθπ=-<
<
,求
2
2cos sin1
2
2sin()
4
θ
θ
π
θ
--
+
的值.
例4.已知
3335
0,cos(),sin()
4445413
ππππ
βααβ
<<<<-=+=,求sin()
αβ
+的值
考点三、给值求角
例5.已知tan()
1
1
,tan 27
αββ-=
=-,且,(0,)αβπ∈,求2αβ-的值.
考点四、三角函数式的化简与证明
例6.已知()1cos sin 1cos sin 1sin cos 1sin cos f x x x
x x x x
x x
=
+---+
---+,且2,2
x k k Z ππ
≠+

(1) 化简()f x
(2) 是否存在x ,使tan
()2
x f x ⋅与
2
1tan 2sin x
x
+相等?若存在,求出x ;若不存在,说明理由。

例7.已知5sin 3sin(2)ααβ=-,求证:tan()4tan 0αββ-+=
【练习】
1. 已知tan 2α=,则
2sin 2cos 21cos αα
α
-=+
2. 求值:tan 20tan 60tan 60tan10tan10tan 20++=o o o o o o
3. 在ABC ∆中,已知3
cos(
)4
5
A π
+=
,则cos2A 的值为
4. (08年高考山东卷改编)已知43cos()sin 6

αα-
+=
,则7sin()6
π
α+=
5. (07年高考江苏卷)若13
cos(),cos()55
αβαβ+=
-=,则tan tan αβ⋅=
6. (08年江苏卷)如图,在平面直角坐标第xOy 中,以Ox 轴为始边
作两个锐角αβ、,它们的终边分别与单位圆相交于A 、B 两点,已
知A 、B 的横坐标分别为225

, (1)求tan()αβ+的值; (2)求2αβ+的值
7. 已知αβ、为锐角,向量(cos ,sin )a αα=r ,(cos ,sin )b ββ=r ,11(,)22
c =-r
.
(1) 若231,2a b a c -⋅=⋅=
r
r r r ,求角2βα-的值; (2) 若a b c =+r r r
,求tan α的值.
8. 若147cos ,cos()1751ααβ=
+=-,且αβ、都是锐角,求1cos 3
β= 9. (2010淮安调研,16)已知(cos ,sin )a αα=r
,(cos ,sin )b ββ=r .
(1) 若6
π
αβ-=,求a b ⋅r r 的值.
(2) 若4
,58
a b πα⋅==r r ,求tan()αβ+的值.。

相关文档
最新文档