数值分析第二章复习与思考题
李庆扬 数值分析第五版 习题答案

第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。
阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。
拉格朗日插值多项式是系数知道,但基函数不知道。
牛顿插值多项式是函数知道,但系数不知道。
与一般多项式基本相同。
y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。
)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。
数值分析思考题2

数值分析思考题21、已知函数()f x 的下列观测值:利用Lagrange 和Newton 插值方法计算02(.)f 的近似值。
若另外测得一个新点:02080(.).f ,试估计用上述方法计算02(.)f 的近似值的误差。
答:lagragange 插值方法:(1) n=1时,取x 0=0.15,x 1=0.25,L 1(x)=l 0(x)f(x 0)+l 1f(x 1)= x−0.250.15−0.25×0.860708+x−0.150.25−0.15×0.778801;将x=0.2代入得f (0.2)=0.8197545 (2) n=2时,取x 0=0.15,x 1=0.25,x 2=0.30,L2(x )=l0(x)f(x0)+l1f(x1)+l2f(x2)=(x −x1)(x −x2)(x 0−x 1)(x 0−x 2)f(x0)+(x −x0)(x −x2)(x 1−x 0)(x 1−x 2)f(x1)+(x −x0)(x −x1)(x 2−x 0)(x 2−x 1)f(x2);代入x=0.2.得f (0.2)=0.8187643334Newton 插值方法:clear,clcX=[0.10,0.15,0.25,0.30];Y=[0.904837,0.860708,0.778801,0.740818]; n=length(X); A(1:n,1)=Y(1:n); format rat已知for j=2:nfori=j:nA(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end end A=A syms x f f=0; fori=1:n u=1.0; for k=1:i-1u=u*(x-X(k)); endf=f+u*A(i,i); end y=expand(f) ezplot(y,[0.10,0.30]) hold on plot(X,Y,'ro') 得f(0.2)=0.8188.2、函数251()f x x =+及定义区间]5,5[-,将定义区间分成 10等分。
数值分析思考题

数值分析重点考察内容第一章:基本概念第二章:Gauss消去法,Lu分解法第三章:题型:具体题+证明,误差分析三个主要迭代法,条件误差估计,范数的小证明第四章:掌握三种插值方法:拉格朗日,牛顿,厄尔米特,误差简单证明,构造复合函数第五章:最小二乘法计算第六章:梯形公式,辛普森(抛物线)公式,高斯公式三个重要公式,误差分析。
高斯求积公式的构造第七章:几种常用的迭代格式构造,收敛性证明。
第九章:基本概念(收敛阶,收敛条件,收敛区域等), 简单欧拉法。
第一章 误差1. 科学计算中的误差来源有4个,分别是________,________,________,________。
2. 用Taylor 展开近似计算函数000()()'()()f x f x f x x x ≈+-,这里产生是什么误差?3. 0.7499作34的近似值,是______位有效数字,65.380是舍入得到的近似值,有____几位有效数字,相对误差限为_______. 0.0032581是四舍五入得到的近似值,有_______位有效数字.4. 改变下列表达式,使计算结果比较精确:(1)11,||1121x x x x --++ (2)||1x (3) 1cos ,0,|| 1.x x x x -≠ (4) sin sin ,αβαβ-≈5.采用下列各式计算61)时,哪个计算效果最好?并说明理由。
(1)(2)99-(3)6(3- (46. 已知近似数*x 有4位有效数字,求其相对误差限。
上机实验题:1、利用Taylor 展开公式计算 0!kx k x e k ∞==∑,编一段小程序,上机用单精度计算x e 的函数值. 分别取 x =1,5,10,20,-1,-5,-10,-15,-20,观察所得结果是否合理,如不合理请分析原因并给出解决方法.2、已知定积分10,0,1,2,,206n n x I dx n x ==+⎰,有如下的递推关系 1111100(6)61666n n n n n x x x x I dx dx I x x n ---+-===++-⎰⎰ 可建立两种等价的计算公式 (1) 1016,0.154n n I I I n -=-=取; (2) 12011),0.6n n I nI I n-=-=(取 来计算123419,,,,,I I I I I ,编程比较哪种计算的数值结果好,并给出理论分析。
数值分析思考题2

数值分析思考题二1、 怎样确定一个隔根区间?如何求解一个方程的全部实根?如:已知方程:1020()x f x e x =+-=在(),-∞+∞有实数根,用二分法求它的全部实根,要求误差满足210*k x x --<?若要求6*10k x x --<,需二分区间多少次?答: (1)已知1020()x f x e x =+-=,作210x e x =-的图像,可得在区间[0,1]之间有交点,即有且仅有一个根。
由于()102x f x e x =+-,所以()f x 在区间[0,1]上连续,且()00100210f e =+⨯-=-,()11101280f e e =+⨯-=+,即()()010f f •,又()'100x f x e =+,根据零点定理得知,在()f x 在区间[0,1]有唯一实根。
由二分法的估计式()*211102k k x x b a ε-+-≤-=,得到()ln 102ln10 4.60511 5.645ln 20.693k-+-≈-≈,因此取6k =。
1211102 4.6022f e ⎛⎫=+⨯-≈ ⎪⎝⎭,又()1002f f ⎛⎫• ⎪⎝⎭,()f x 在区间[0,12]有唯一实根。
1411102 1.8044f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,14]有唯一实根。
18111020.38088f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[0,18]有唯一实根。
116111020.3101616f e ⎛⎫=+⨯-≈- ⎪⎝⎭,又110816f f ⎛⎫⎛⎫• ⎪ ⎪⎝⎭⎝⎭,()f x 在区间[18,116]有唯一实根。
332331020.03603232f e ⎛⎫=+⨯-≈ ⎪⎝⎭,同理,()f x 在区间[116,332]有唯一实根。
56455102.0146464f e ⎛⎫=+⨯-=- ⎪⎝⎭,故 50.07864=即为所求。
高等数值分析第二章答案

第二章习题参考答案1.解: 由于20Ax b−≥,极小化2b Ax −与极小化22Ax b −是等价的。
令22()(,)(,)2(,)x Ax b Ax Ax b b Ax b ϕ=−=+−,对于任意的n R y x ∈,和实数α,)()(),()()(,*222*2****x Ay a x Ay Ay a x ay x b Ax x ϕϕϕϕ≥+=+=+=则有满足若这表示处达到极小值。
在*)(x x ϕ反之,若必有处达到极小,则对任意在nR y x ay x ∈+*)(ϕ0),(2),(2),(20)(**0*=−=+−=+=Ay b Ax Ay Ay a Ay b Ax daay x d a 即ϕ故有 b Ax =*成立。
以上证明了求解,22b Ax b Ax −=等价于极小化即。
等价于极小化2b Ax b Ax −= 推导最速下降法过程如下:),/(),(0),(),(,0),,2)(222)()(11k T k T k T k k T k T k T k k T k k k T k k kT k T k T T x x k r AA r AA r AA r a r AA r AA a r AA r r aA x da dx a r aA x x r A Ax b A Ax A b A x grad x x k==+−=++==−=−=−++=最终得到得出(由取得极小值。
使求出取的负梯度方向,且下降最快的方向是该点在ϕϕϕ给出的算法如下:1))(000Ax b A r A R x T T n −=∈,计算给定; 2)L ,2,1,0=k 对于)转到否则数。
为一事先给定的停机常则停止;其中若2),/(),(10,11kT k k k k T k k k k k k k k k r A p Ax b r r A a x x Ap Ap p p a k k r =−=+==+=>≤−−εε2.证明 1) 正定性由对称正定矩阵的性质,(),0x Ax ≥(当且仅当x =0时取等号),所以 ()12,0Axx Ax =≥(当且仅当x =0时取等号)2) 齐次性()()()121122,(),,AA xx A x x Ax x Ax x αααααα⎡⎤====⎣⎦3)o1方法(一)A 是对称正定矩阵,得到(,())0x y A x y λλ++≥,把它展开如下2(,)(,)(,)(,)0y Ay x Ay y Ax x Ax λλλ+++≥考虑到(,)(,)(,)x Ay Ax y y Ax ==,把上式看成关于λ的一元二次方程,则式子等价于24(,)4(,)(,)0x Ay x Ax y Ay ∆=−≤因此1/21/2(,)(,)(,)x Ay x Ax y Ay ≤所以1/21/221/21/2((,)(,))(,)(,)2(,)(,)(,)(,)2(,)(,)(,)(,)(,)((),())x Ax y Ay x Ax y Ay x Ax y Ay x Ax y Ay x Ay x Ax y Ay x Ay y Ax x y A x y +=++≥++=+++=++两边开平方即可得到AA A x yx y +≤+因此,1/2(,)A x Ax x =是一种向量范数。
数值分析参考答案第二章

第二章插值法1.当兀= 1—2时,/(%) = 0-3,4^/(%)的二次插值多项式。
解:X。
= I/】=—l,x2 = 2, /Uo) =0,/(^)=-3,/(X2) = 4;一丄(兀+i)(一2),0(人)=Oo — xJOo — xJ 2加)=(_兀)(—心=丄(一1)(一2)(兀一兀)(州一呂)6(A-.VoX.V-Vj l(Y_1)(x+1)(x2-x Q)(x2-x t) 3则二次拉格朗口插值多项式为2厶⑴=£)恥)k=0=-3/0(X)+4/2(X)1 4= --U- 1)(A—2) + -(x-l)(x + 1)5r 3 7=-X" +—x--6 2 3/(x) = liix2.用线性插值及二次插值计算1110.54的近似值。
解:由表格知,x0 = 0・4,兀=0.59X2 = 0.6, x3 = 0.7,x4 = 0.8; f(x Q) = -0.916291,/(xj = -0.693147 /(A) = —0.510826,/a)= -0.356675 /(x4) =-0.223144若采用线性插值法计算hiO.54即/(0.54),则0.5 <0.54 <0.6/1(x) = ^—^ = -10(.v-0.6) 人一无X —X /.(%) = -__ =-10(x-0.5)厶⑴=/U1XW + /(x 2)/2(x)=6.93147(x — 0.6) - 5・ 10826(.— 0.5)・・・厶(0.54) = -0.6202186 « -0.620219若采用二次插值法计算lnO.54时, (V f _亠)=50(x-0.5)(x- 0.6)(x Q -xj(x 0-x 2)(工7。
)(工_亠)=-100(x- 0.4)(x — 0.6)(兀一 Xo )(X 】一XJ厶(x) = /UoVoW+/U1XW+/(x 2)/2(x )=-50 x 0.916291(%-0.5)(A -0.6)+ 69.3147(x-0.4)(x-0.6)-0.510826 x50(x-0.4)(x-0.5).14(0.54) = -0.61531984 « -0.615320 3.给全cosx,0 <x<90°的函数表,步长/? = r = (l/60)\若函数表具有5位有效数字,研 究用线性插值求cos 兀近似值时的总误差界。
第二章习题解答 _数值分析

第二章习题解答3、已知矩阵321230103A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,试计算A 的谱半径()A ρ。
解:2321()det()230(3)(64)0103A f I A λλλλλλλλ---=-=--=--+=--max 35()3 5.A λρ=+=+4、试证明22112212211221,,,R E E E E E E ⨯+-是中的一组基,其中11121001,0000E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭22210000,1001E E ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭。
1222112112211221134112212211221234134411221221122123410010000,,,00001001010110100000E E E E E E E E k k k k k k k E E E E E E k k k k k k E E E E E ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫+=-= ⎪ ⎪-⎝⎭⎝⎭+⎛⎫⎛⎫++++-== ⎪ ⎪-⎝⎭⎝⎭++++-解:,()()令因此()(0000O E ⎛⎫== ⎪⎝⎭)12331112212212211221111221122122112222112212211221 0 ,22,,,k k k k a a A V a a a a a aA a a E E E E E E R E E E E E E ⨯⇔====⎛⎫=∈ ⎪⎝⎭+-=+++-+∴+-对于任意二阶实矩阵有()()是中的一组基。
11、已知210121012A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,试计算1||||A ,||||A ∞,||||F A ,2||||A 。
311311||||max ||4ij j i A a ≤≤===∑解:()3131||||max ||4ij i j A a ∞≤≤===∑1332211||||(||)4F iji j A a====∑∑2||||()22T A A A λ==+12、在[0,1]C 上,由{}21,,x x 构造带权1lnx的首1正交多项式0()x ϕ,1()x ϕ和2()x ϕ。
数值分析参考答案(第二章)doc资料

证明:
(1)
得证。
+
得证。
14. 求 及 。
解:
若
则
15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知
且
可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,
若采用线性插值法计算 即 ,
则
若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章复习与思考题1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质?答:若n 次多项式()),,1,0(n j x l j Λ=在1+n 个节点n x x x <<<Λ10上满足条件(),,,1,0,,,0,,1n k j j k j k x l k j Λ=⎩⎨⎧≠==则称这1+n 个n 次多项式()()()x l x l x l n ,,,10Λ为节点n x x x ,,,10Λ上的n 次拉格朗日插值基函数.以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设()()()()()n k k k x x x x x x x x A x l ----=+-ΛΛ110,其中A 为常数,利用()1=k k x l 得()()()()n k k k k k k x x x x x x x x A ----=+-ΛΛ1101,故()()()()n k k k k k k x x x x x x x x A ----=+-ΛΛ1101,即()()()()()()()()∏≠=+-+---=--------=n kj j jk j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)(ΛΛΛΛ.对于()),,1,0(n i x l i Λ=,有()n k xx l x ni ki k i ,,1,00Λ==∑=,特别当0=k 时,有()∑==ni i x l 01.2.什么是牛顿基函数?它与单项式基{}nxx ,,,1Λ有何不同?答:称()()()(){}10100,,,,1------n x x x x x x x x x x ΛΛ为节点n x x x ,,,10Λ上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10Λ上的n 次牛顿插值多项式()x P n 可以表示为()()()()10010---++-+=n n n x x x x a x x a a x P ΛΛ其中[]n k x x x f a k k ,,1,0,,,,10ΛΛ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如()()()()k k k k x x x x a x P x P --+=++Λ011,其中1+k a 是节点110,,,+k x x x Λ上的1+k 阶差商,这一点要比使用单项式基{}nx x ,,,1Λ方便得多.3.什么是函数的n 阶均差?它有何重要性质?答:称[]()()000,x x x f x f x x f k k k --=为函数()x f 关于点k x x ,0的一阶均差,[][][]110010,,,,x x x x f x x f x x x f k k k --=为()x f 的二阶均差. 一般地,称[][][]11102010,,,,,,,,-----=n n n n n n x x x x x f x x x f x x x f ΛΛΛ为()x f 的n 阶均差.均差具有如下基本性质:(1) n 阶均差可以表示为函数值()()()n x f x f x f ,,,10Λ的线性组合,即[]()()()()()∑=+-----=nj n j j j j j jj n x x x x x x x xx f x x x f 011010,,ΛΛΛ,该性质说明均差与节点的排列次序无关,即均差具有对称性.(2) [][][]01102110,,,,,,,,x x x x x f x x x f x x x f n n n n --=-ΛΛΛ.(3) 若()x f 在[]b a ,上存在n 阶导数,且节点[]b a x x x n ,,,,10∈Λ,则n 阶均差与n 阶导数的关系为[]()()!,,10n f x x x f n n ξ=Λ,[]b a ,∈ξ. 4.写出1+n 个点的拉格朗日插值多项式与牛顿均差插值多项式,它们有何异同? 答:给定区间[]b a ,上1+n 个点b x x x a n ≤<<<≤Λ10上的函数值()),,1,0(n i x f y i i Λ==,则这1+n 个节点上的拉格朗日插值多项式为()()∑==nk k k n x l y x L 0,其中()n k x x x x x l n kj j jk jk ,,1,0,0Λ=⎪⎪⎭⎫⎝⎛--=∏≠=. 这1+n 个节点上的牛顿插值多项式为()()()()10010---++-+=n n n x x x x a x x a a x P ΛΛ,其中[]n k x x x f a k k ,,1,0,,,,10ΛΛ==为()x f 在点k x x x ,,,10Λ上的k 阶均差.由插值多项式的唯一性,()x L n 与()x P n 是相同的多项式,其差别只是使用的基底不同,牛顿插值多项式具有承袭性,当增加节点时只需增加一项,前面的工作依然有效,因而牛顿插值比较方便,而拉格朗日插值没有这个优点.5.插值多项式的确定相当于求解线性方程组y Ax =,其中系数矩阵A 与使用的基函数有关.y 包含的是要满足的函数值()Tn y y y ,,,10Λ. 用下列基底作多项式插值时,试描述矩阵A 中非零元素的分布.(1) 单项式基底;(2) 拉格朗日基底;(3) 牛顿基底.答:(1) 若使用单项式基底,则设()nn n x a x a a x P +++=Λ10,其中n a a a ,,,10Λ为待定系数,利用插值条件,有⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n nn nn y x a x a a y x a x a a y x a x a a ΛΛΛΛΛΛΛ101111000010, 因此,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n n x x x x x x A ΛΛΛΛΛΛΛ1111100 为范德蒙德矩阵.(2) 若使用拉格朗日基底,则设()()()()x l a x l a x l a x L n n n +++=Λ1100,其中()x l k 为拉格朗日插值基函数,利用插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n n n n n n y x l a x l a x l a y x l a x l a x l a y x l a x l a x l a ΛΛΛΛΛΛΛ11001111110000011000, 由拉格朗日插值基函数性质,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=10010001ΛΛΛΛΛΛΛA 为单位矩阵.(3) 若使用牛顿基底,则设()()()()10010---++-+=n n n x x x x a x x a a x P ΛΛ,由插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=--++-+=--++-+---nn n n n n n n n n y x x x x a x x a a y x x x x a x x a a y x x x x a x x a a 10010111010110010000010ΛΛΛΛΛΛΛΛΛΛ即()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=-+=-nn n n n n y x x x x a x x a a y x x a a y a 100101011000ΛΛΛΛ 故求解y Ax =的系数矩阵A 为()()()()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------=-110100120202011111n n n n n n n x x x x x x x x x x x x x x x x x x x x A ΛΛO ΛΛ 为下三角矩阵.6.用上题给出的三种不同基底构造插值多项式的方法确定基函数系数,试按工作量由低到高给出排序.答:若用上述三种构造插值多项式的方法确定基函数系数,则工作量由低到高分别为拉格朗日基底,牛顿基底,单项式基底.7.给出插值多项式的余项表达式,如何用它估计截断误差?答:设()()x fn 在[]b a ,上连续,()()x fn 1+在()b a ,内存在,节点b x x x a n ≤<<<≤Λ10,()x L n 是满足条件()n j y x L j j n ,,1,0,Λ==的插值多项式,则对任何[]b a x ,∈,插值余项()()()()())(!111x n f x L x f x R n n n n +++=-=ωξ, 这里()b a ,∈ξ且与x 有关,()()()()n n x x x x x x x ---=+Λ101ω.若有()()11max ++≤≤=n n bx a M x f,则()x L n 逼近()x f 的截断误差()()()x n M x R n n n 11!1+++≤ω.8.埃尔米特插值与一般函数插值区别是什么?什么是泰勒多项式?它是什么条件下的插值多项式?答:一般函数插值要求插值多项式与被插函数在插值节点上函数值相等,而埃尔米特插值除此之外还要求在节点上的一阶导数值甚至高阶导数值也相等.称()()()()()()()n n n x x n x f x x x f x f x P 00000!-++-'+=Λ 为()x f 在点0x 的泰勒插值多项式,泰勒插值是一个埃尔米特插值,插值条件为()()()()n k x f x P k k n ,,1,0,00Λ==,泰勒插值实际上是牛顿插值的极限形式,是只在一点0x 处给出1+n 个插值条件得到的n 次埃尔米特插值多项式.9.为什么高次多项式插值不能令人满意?分段低次插值与单个高次多项式插值相比有何优点?答:对于任意的插值结点,当∞→n 时,()x L n 不一定收敛于()x f ,如对龙格函数做高次插值时就会出现振荡现象,因而插值多项式的次数升高后,插值效果并不一定能令人满意.分段低次插值是将插值区间分成若干个小区间,在每个小区间上进行低次插值,这样在整个插值区间,插值多项式为分段低次多项式,可以避免单个高次插值的振荡现象.10.三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?请说明理由.答:三次样条插值要求插值函数()[]b a C x S ,2∈,且在每个小区间[]1,+j j x x 上是三次多项式,插值条件为()n j y x S j j ,,1,0,Λ==.三次分段埃尔米特插值多项式()x I h 是插值区间[]b a ,上的分段三次多项式,且满足()[]b a C x I h ,1∈,插值条件为()()k k h x f x I =,()()),,1,0(,n k x f x I k k hΛ='='. 分段三次埃尔米特插值多项式不仅要使用被插函数在节点处的函数值,而且还需要节点处的导数值,且插值多项式在插值区间是一次连续可微的.三次样条函数只需给出节点处的函数值,但插值多项式的光滑性较高,在插值区间上二次连续可微,所以相比之下,三次样条插值更优越一些.11.确定1+n 个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?答:由于三次样条函数()x S 在每个小区间上是三次多项式,所以在每个小区间[]1,+j j x x 上要确定4个待定参数,1+n 个节点共有n 个小区间,故应确定n 4个参数,而根据插值条件,只有24-n 个条件,因此还需要加上2个条件,通常可在区间[]b a ,的端点0x a =,n x b =上各加一个边界条件,常用的边界条件有3种: (1) 已知两端的一阶导数值,即()00f x S '=',()n n f x S '='.(2) 已知两端的二阶导数值,即()00f x S ''='',()n n f x S ''='',特殊情况为自然边界条件()00=''x S ,()0=''n x S .(3) 当()x f 是以0x x n -为周期的周期函数时,要求()x S 也是周期函数,这时边界条件就满足()()00-=+n x S x S ,()()000-'=+'n x S x S , ()()000-''=+''n x S x S这时()x S 称为周期样条函数.12.判断下列命题是否正确?(1) 对给定的数据作插值,插值函数个数可以任意多.(2) 如果给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的.(3) ()),,1,0(n i x l i Λ=是关于节点),,1,0(n i x i Λ=的拉格朗日插值基函数,则对任何次数不大于n 的多项式()x P 都有()()()x P x P x l ini i=∑=0(4) 当()x f 为连续函数,节点),,1,0(n i x i Λ=为等距节点,构造拉格朗日插值多项式()x L n ,则n 越大()x L n 越接近()x f .(5) 同上题,若构造三次样条插值函数()x S n ,则n 越大得到的三次样条函数()x S n 越接近()x f .(6) 高次拉格朗日插值是很常用的.(7) 函数()x f 的牛顿插值多项式()x P n , 如果()x f 的各阶导数均存在,则当),,1,0(0n i x x i Λ=→时,()x P n 就是()x f 在0x 点的泰勒多项式.答:(1) 对.(2) 错.1+n 个节点上的拉格朗日插值和牛顿插值就是表示形式不同的两种插值多项式. (3) 对.(4) 错.当∞→n 时,()x L n 并一定收敛到()x f .(5) 对.(6) 错.高次拉格朗日插值不一定具有收敛性,因而并不常用. (7) 对.。