数值分析参考答案(第二章)doc资料

合集下载

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析第二章答案

数值分析第二章答案

1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。

数值分析第二章答案

数值分析第二章答案


n
i=1
ln x i = 0
θ

= −
n
∑ ∑
n
n
i=1
ln x i n
θ
= =
解之得:
i=1
ln x i
(2)母体 X 的期望
E (x) =

+∞ −∞
xf ( x ) d x =

1 0
θ xθ dx =
θ θ +1
而样本均值为:
1 n X = ∑ xi n i =1 令E ( x) = X 得 θ =
x e 2σ 1 n
d x = 2 x ) =

+ ∞ 0
x 2σ
e

x σ
d x = − x e ) = 1 ⋅ nσ n

x σ
+ ∞
+
0

+ ∞ 0
e

x σ
d x =
E (σ ) = E (

n
i=1
i
1 n

n
E ( x
i=1
i
= σ
所以
σ=

1 n ∑ xi σ n i=1 为 的无偏估计量。

X 1− X
5.。解:其似然函数为:
L (σ ) = ∏
i =1
n
1 ⋅e 2σ

xi σ
=
1 ⋅e (2σ ) n 1 σ
n i =1

1 σ
∑ xi
i =1
n
ln L (σ ) = − n ln(2σ ) − 得: σ =

数值分析部分答案

数值分析部分答案

计算, 解
Q f(x) ln(x Jx21),f(30)In(30 s/899)设u ^y899, y f (30)则u*
yu
u
1*
g u
0.0167
3
若改用等价公式
ln(x•.厂1)In (x1)
贝卩f(30)In(30x899)
此时
* *
yr u
u
1*
u
59.9833
7
第二章插值法
2
X
0.4
0.5
(y2*)10 (y「)
2
(y2*)10 (y°*)
S*)1010(yo*)
101011022
(x1)7
6* *
7y x
(x 1)
* *
y x
*2*
(32x)g x
6* *
*y g x
3 2x
* *
y x
(3 2.2)3计算y值,则
1
(3 2x )4
1*
7y x
(3 2x )7'
* *
y x
(3 2 <2)
(3)(x2/x4)
0.031 385.6
1.1021 385.6
x;
*ቤተ መጻሕፍቲ ባይዱ
(X4)
X4(X2)
* 2
X4
131
1056.43010
2 2
56.430 56.430
5
解:球体体积为V 4R
3
则何种函数的条件数为
2
Rgl R
1 V丨
43
-R3
3
3
r(V*) Cpgr(R*)3r(R*)
Cp
又Qr(V*)1

数值分析第二章复习与思考题

数值分析第二章复习与思考题

第二章复习与思考题1.什么是拉格朗日插值基函数?它们是如何构造的?有何重要性质?答:若n 次多项式()),,1,0(n j x l j =在1+n 个节点n x x x <<< 10上满足条件(),,,1,0,,,0,,1n k j j k j k x l k j =⎩⎨⎧≠==则称这1+n 个n 次多项式()()()x l x l x l n ,,,10 为节点n x x x ,,,10 上的n 次拉格朗日插值基函数.以()x l k 为例,由()x l k 所满足的条件以及()x l k 为n 次多项式,可设()()()()()n k k k x x x x x x x x A x l ----=+- 110,其中A 为常数,利用()1=k k x l 得()()()()n k k k k k k x x x x x x x x A ----=+- 1101,故()()()()n k k k k k k x x x x x x x x A ----=+- 1101,即()()()()()()()()∏≠=+-+---=--------=n kj j jk j n k k k k k k n k k k x x x x x x x x x x x x x x x x x x x x x l 0110110)( .对于()),,1,0(n i x l i =,有()n k x x l x ni ki k i ,,1,00==∑=,特别当0=k 时,有 ()∑==ni i x l 01.2.什么是牛顿基函数?它与单项式基{}nxx ,,,1 有何不同?答:称()()()(){}10100,,,,1------n x x x x x x x x x x 为节点n x x x ,,,10 上的牛顿基函数,利用牛顿基函数,节点n x x x ,,,10 上的n 次牛顿插值多项式()x P n 可以表示为()()()()10010---++-+=n n n x x x x a x x a a x P其中[]n k x x x f a k k ,,1,0,,,,10 ==.与拉格朗日插值多项式不同,牛顿插值基函数在增加节点时可以通过递推逐步得到高次的插值多项式,例如()()()()k k k k x x x x a x P x P --+=++ 011,其中1+k a 是节点110,,,+k x x x 上的1+k 阶差商,这一点要比使用单项式基{}nx x ,,,1 方便得多.3.什么是函数的n 阶均差?它有何重要性质?答:称[]()()000,x x x f x f x x f k k k --=为函数()x f 关于点k x x ,0的一阶均差,[][][]110010,,,,x x x x f x x f x x x f k k k --=为()x f 的二阶均差. 一般地,称[][][]11102010,,,,,,,,-----=n n n n n n x x x x x f x x x f x x x f 为()x f 的n 阶均差.均差具有如下基本性质:(1) n 阶均差可以表示为函数值()()()n x f x f x f ,,,10 的线性组合,即[]()()()()()∑=+-----=nj n j j j j j jj n x x x x x x x xx f x x x f 011010,, ,该性质说明均差与节点的排列次序无关,即均差具有对称性.(2) [][][]01102110,,,,,,,,x x x x x f x x x f x x x f n n n n --=- .(3) 若()x f 在[]b a ,上存在n 阶导数,且节点[]b a x x x n ,,,,10∈ ,则n 阶均差与n 阶导数的关系为[]()()!,,10n f x x x f n n ξ= ,[]b a ,∈ξ. 4.写出1+n 个点的拉格朗日插值多项式与牛顿均差插值多项式,它们有何异同? 答:给定区间[]b a ,上1+n 个点b x x x a n ≤<<<≤ 10上的函数值()),,1,0(n i x f y i i ==,则这1+n 个节点上的拉格朗日插值多项式为()()∑==nk k k n x l y x L 0,其中()n k x x x x x l n kj j jk jk ,,1,0,0 =⎪⎪⎭⎫⎝⎛--=∏≠=. 这1+n 个节点上的牛顿插值多项式为()()()()10010---++-+=n n n x x x x a x x a a x P ,其中[]n k x x x f a k k ,,1,0,,,,10 ==为()x f 在点k x x x ,,,10 上的k 阶均差.由插值多项式的唯一性,()x L n 与()x P n 是相同的多项式,其差别只是使用的基底不同,牛顿插值多项式具有承袭性,当增加节点时只需增加一项,前面的工作依然有效,因而牛顿插值比较方便,而拉格朗日插值没有这个优点.5.插值多项式的确定相当于求解线性方程组y Ax =,其中系数矩阵A 与使用的基函数有关.y 包含的是要满足的函数值()Tn y y y ,,,10 . 用下列基底作多项式插值时,试描述矩阵A 中非零元素的分布.(1) 单项式基底;(2) 拉格朗日基底;(3) 牛顿基底.答:(1) 若使用单项式基底,则设()nn n x a x a a x P +++= 10,其中n a a a ,,,10 为待定系数,利用插值条件,有⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n nn nn y x a x a a y x a x a a y x a x a a 101111000010, 因此,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n n n n nx x x x x x A 1111100为范德蒙德矩阵.(2) 若使用拉格朗日基底,则设()()()()x l a x l a x l a x L n n n +++= 1100,其中()x l k 为拉格朗日插值基函数,利用插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn n n n n n n n n y x l a x l a x l a y x l a x l a x l a y x l a x l a x l a 11001111110000011000, 由拉格朗日插值基函数性质,求解y Ax =的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=100010001 A 为单位矩阵.(3) 若使用牛顿基底,则设()()()()10010---++-+=n n n x x x x a x x a a x P ,由插值条件,有()()()()()()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=--++-+=--++-+---nn n n n n n n n n y x x x x a x x a a y x x x x a x x a a y x x x x a x x a a 10010111010110010000010 即()()()()⎪⎪⎩⎪⎪⎨⎧=--++-+=-+=-nn n n n n y x x x x a x x a a y x x a a y a 100101011000 故求解y Ax =的系数矩阵A 为()()()()()()()⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------=-110100120202011111n n n n n n n x x x x x x x x x x x x x x x x x x xx A为下三角矩阵.6.用上题给出的三种不同基底构造插值多项式的方法确定基函数系数,试按工作量由低到高给出排序.答:若用上述三种构造插值多项式的方法确定基函数系数,则工作量由低到高分别为拉格朗日基底,牛顿基底,单项式基底.7.给出插值多项式的余项表达式,如何用它估计截断误差?答:设()()x fn 在[]b a ,上连续,()()x fn 1+在()b a ,内存在,节点b x x x a n ≤<<<≤ 10,()x L n 是满足条件()n j y x L j j n ,,1,0, ==的插值多项式,则对任何[]b a x ,∈,插值余项()()()()())(!111x n f x L x f x R n n n n +++=-=ωξ, 这里()b a ,∈ξ且与x 有关,()()()()n n x x x x x x x ---=+ 101ω.若有()()11max ++≤≤=n n bx a M x f,则()x L n 逼近()x f 的截断误差()()()x n M x R n n n 11!1+++≤ω.8.埃尔米特插值与一般函数插值区别是什么?什么是泰勒多项式?它是什么条件下的插值多项式?答:一般函数插值要求插值多项式与被插函数在插值节点上函数值相等,而埃尔米特插值除此之外还要求在节点上的一阶导数值甚至高阶导数值也相等.称()()()()()()()n n n x x n x f x x x f x f x P 00000!-++-'+= 为()x f 在点0x 的泰勒插值多项式,泰勒插值是一个埃尔米特插值,插值条件为()()()()n k x f x P k k n ,,1,0,00 ==,泰勒插值实际上是牛顿插值的极限形式,是只在一点0x 处给出1+n 个插值条件得到的n 次埃尔米特插值多项式.9.为什么高次多项式插值不能令人满意?分段低次插值与单个高次多项式插值相比有何优点?答:对于任意的插值结点,当∞→n 时,()x L n 不一定收敛于()x f ,如对龙格函数做高次插值时就会出现振荡现象,因而插值多项式的次数升高后,插值效果并不一定能令人满意.分段低次插值是将插值区间分成若干个小区间,在每个小区间上进行低次插值,这样在整个插值区间,插值多项式为分段低次多项式,可以避免单个高次插值的振荡现象.10.三次样条插值与三次分段埃尔米特插值有何区别?哪一个更优越?请说明理由.答:三次样条插值要求插值函数()[]b a C x S ,2∈,且在每个小区间[]1,+j j x x 上是三次多项式,插值条件为()n j y x S j j ,,1,0, ==.三次分段埃尔米特插值多项式()x I h 是插值区间[]b a ,上的分段三次多项式,且满足()[]b a C x I h ,1∈,插值条件为()()k k h x f x I =,()()),,1,0(,n k x f x I k k h='='. 分段三次埃尔米特插值多项式不仅要使用被插函数在节点处的函数值,而且还需要节点处的导数值,且插值多项式在插值区间是一次连续可微的.三次样条函数只需给出节点处的函数值,但插值多项式的光滑性较高,在插值区间上二次连续可微,所以相比之下,三次样条插值更优越一些.11.确定1+n 个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?答:由于三次样条函数()x S 在每个小区间上是三次多项式,所以在每个小区间[]1,+j j x x 上要确定4个待定参数,1+n 个节点共有n 个小区间,故应确定n 4个参数,而根据插值条件,只有24-n 个条件,因此还需要加上2个条件,通常可在区间[]b a ,的端点0x a =,n x b =上各加一个边界条件,常用的边界条件有3种: (1) 已知两端的一阶导数值,即()00f x S '=',()n n f x S '='.(2) 已知两端的二阶导数值,即()00f x S ''='',()n n f x S ''='',特殊情况为自然边界条件()00=''x S ,()0=''n x S .(3) 当()x f 是以0x x n -为周期的周期函数时,要求()x S 也是周期函数,这时边界条件就满足()()00-=+n x S x S ,()()000-'=+'n x S x S , ()()000-''=+''n x S x S这时()x S 称为周期样条函数.12.判断下列命题是否正确?(1) 对给定的数据作插值,插值函数个数可以任意多.(2) 如果给定点集的多项式插值是唯一的,则其多项式表达式也是唯一的.(3) ()),,1,0(n i x l i =是关于节点),,1,0(n i x i =的拉格朗日插值基函数,则对任何次数不大于n 的多项式()x P 都有()()()x P x P x l ini i=∑=0(4) 当()x f 为连续函数,节点),,1,0(n i x i =为等距节点,构造拉格朗日插值多项式()x L n ,则n 越大()x L n 越接近()x f .(5) 同上题,若构造三次样条插值函数()x S n ,则n 越大得到的三次样条函数()x S n 越接近()x f .(6) 高次拉格朗日插值是很常用的.(7) 函数()x f 的牛顿插值多项式()x P n , 如果()x f 的各阶导数均存在,则当),,1,0(0n i x x i =→时,()x P n 就是()x f 在0x 点的泰勒多项式.答:(1) 对.(2) 错.1+n 个节点上的拉格朗日插值和牛顿插值就是表示形式不同的两种插值多项式. (3) 对.(4) 错.当∞→n 时,()x L n 并一定收敛到()x f .(5) 对.(6) 错.高次拉格朗日插值不一定具有收敛性,因而并不常用. (7) 对.。

数值分析课后习题答案

数值分析课后习题答案

第一章习题解答1. 在下列各对数中,X 是精确值a的近似值(1) a=π,x=3.1 (2) a=1/7,x=0.143 (3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3 试估计x 的绝对误差和相对误差。

解:(1) e=∣3.1-π∣≈0.0416, δr = e/∣x ∣≈0.0143 (2) e=∣0.143-1/7∣≈0.0143 δr = e/∣x ∣≈0.1 (3) e=∣0.0031-π/1000∣≈0.0279 δr = e/∣x ∣≈0.9 (4) e=∣14.3-100/7∣≈0.0143 δr = e/∣x ∣≈0.0012. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。

试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。

解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[-x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.497073. 设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。

数值分析计算方法第二章作业

数值分析计算方法第二章作业
第二章作业题答案
1.当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次差值多项式 (1)用单项式基底 (2)用拉格朗日插值基底
(1)解:设 f(x)abxcx2 则a+b+c=0 a-b+c=-3 a+2b+4c=4
解得
a7,b3,c5 326
所以 f(x)73x5x2
解:由p(0)=0,p(1)=1,p(2)=1,我们可以得出
P 2 ( x ) ( x ( 1 1 ) ) ( ( x 2 ) 2 ) 0 ( 1 ( x ) 0 ( ) x ( 1 2 2 ) ) 1 ( ( 2 x ) ) ( ( 2 x 1 1 ) ) 1 1 2 x 2 3 2 x
将 p'(0)0,p'(1)1 代入到上式中,得出
a 3 ,b 1
4
4
从而有 P4(x)1 4x43 2x39 4x2
p ( x 0 ) f ( x 0 ) , P '( x 0 ) f '( x 0 ) , P ''( x 0 ) f ''( x 0 ) ,p ( x 1 ) f ( x 1 )
解:设 P ( x ) f( x 0 ) f'( x 0 ) ( x x 0 ) f''2 ( x ! 0 )( x x 0 ) 2 a ( x x 0 ) 3
解:设P(x)= ax3bx2cxd
则 P'(x)3ax22bxc
d 0 代入已知条件,得到: c 1
abcd 1 3a 2b c 2
解得a=1,b=-1,c=1,d=0
所以P(x)= x3 x2 x

数值分析答案第二章参数估计习题

数值分析答案第二章参数估计习题
数值分析答案第二章参数估计习题数值分析习题解答数值分析课后习题答案参数估计练习题数值分析习题参数估计习题参数估计习题及答案数值分析习题解答pdf数值分析习题集及答案数值分析习题答案
f(x)= () { > − ex λ ) λ 0λ ( x解: λe , x ≥ 0
第二章 参数估计 1.设母体X具有负指数分布,它的分布密度 −λ x 为 λe , x ≥ 0 f(x)= 0, x < 0 其中 λ > 0 。试用矩法求的估计量。 解:x e(λ ) f(x)=
0
1
θ −1
dx =
θ θ +1
X 估计EX
X ∴θ = 1− X
1 e 5.设母体X的密度为 f ( x) = 2σ

x
σ
, −∞ < x < ∞
试求 σ 的最大似然估计;并问所得估计量是 否的无偏估计. ∑x x n 解: n 1 −σ 1 n − σ
i
L = ∏ f ( xi ) = ∏
i =1 i =1
ln L = n ln θ + (θ − 1)∑ ln xi
i
0, 其他 n
i =1
( θ >0 )
n i =1
d ln L n ^= − n = + ∑ ln xi = 0,∴θ θ i dθ ∑ ln xi
i
2矩法估计
EX =

X 用估计EX
+∞
−∞
∫ x ⋅ f ( x)dx = ∫ x ⋅θ ⋅ x
2
给定置信概率1−α 即
P ( x − uα
2
σ/ n
,有 uα ,使
2
P{ u ≤ uα } = 1 − α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:函数 的 展式为
其中
又 是次数为 的多项式
为 阶多项式
为 阶多项式
依此过程递推,得 是 次多项式
是常数
当 为正整数时,
9.证明
证明
得证
10.证明
证明:由上题结论可知
得证。
11.证明
证明
得证。
12.若 有 个不同实根 ,
证明:
证明: 有个不同实根







得证。
13.证明 阶均差有下列性质:
(1)若 ,则
若采用线性插值法计算 即 ,

若采用二次插值法计算 时,
3.给全 的函数表,步长 若函数表具有5位有效数字,研究用线性插值求 近似值时的总误差界。
解:求解 近似值时,误差可以分为两个部分,一方面,x是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。因此,总误差界的计算应综合以上两方面的因素。
解:

则步长
在小区间 上,分段线性插值函数为
各节点间中点处的 与 的值为
当 时,
当 时,
当 时,
当 时,
当 时,
误差


得 的驻点为 和
18.求 在 上分段线性插值函数 ,并估计误差。
解:
在区间 上,
函数 在小区间 上分段线性插值函数为
误差为
19.求 在 上分段埃尔米特插值,并估计误差。
解:在 区间上,将 Nhomakorabea入得由此得矩阵开工的方程组为
求解此方程组,得
又 三次样条表达式为
将 代入得
21.若 是三次样条函数,证明:
若 ,式中 为插值节点,且 ,则
证明:
从而有
故 在 内至少有三个互异零点,
依此类推, 在 内至少有一个零点。
记为 使

其中 依赖于
分段三次埃尔米特插值时,若节点为 ,设步长为 ,即
在小区间 上
16.求一个次数不高于4次的多项式P(x),使它满足
解:利用埃米尔特插值可得到次数不高于4的多项式

其中,A为待定常数
从而
17.设 ,在 上取 ,按等距节点求分段线性插值函数 ,计算各节点间中点处的 与 值,并估计误差。
数值分析参考答案(第二章)
第二章插值法
1.当 时, ,求 的二次插值多项式。
解:
则二次拉格朗日插值多项式为
2.给出 的数值表
X
0.4
0.5
0.6
0.7
0.8
lnx
-0.916291
-0.693147
-0.510826
-0.356675
-0.223144
用线性插值及二次插值计算 的近似值。
解:由表格知,

函数 在区间 上的分段埃尔米特插值函数为
误差为

20.给定数据表如下:
Xj
0.25
0.30
0.39
0.45
0.53
Yj
0.5000
0.5477
0.6245
0.6708
0.7280
试求三次样条插值,并满足条件:
解:
由此得矩阵形式的方程组为
21M0
2 M1
2 M2
2 M3
12M4
求解此方程组得
三次样条表达式为
(2)若 ,则
证明:
(1)
得证。
+
得证。
14. 求 及 。
解:


15.证明两点三次埃尔米特插值余项是
解:
若 ,且插值多项式满足条件
插值余项为
由插值条件可知

可写成
其中 是关于 的待定函数,
现把 看成 上的一个固定点,作函数
根据余项性质,有
由罗尔定理可知,存在 和 ,使
即 在 上有四个互异零点。
根据罗尔定理, 在 的两个零点间至少有一个零点,
=
插值余项为
6.在 上给出 的等距节点函数表,若用二次插值求 的近似值,要使截断误差不超过 ,问使用函数表的步长h应取多少?
解:若插值节点为 和 ,则分段二次插值多项式的插值余项为
设步长为h,即
若截断误差不超过 ,则
7.若 ,
解:根据向前差分算子和中心差分算子的定义进行求解。
8.如果 是m次多项式,记 ,证明 的k阶差分 是 次多项式,并且 ( 为正整数)。
当 时,




当 时,线性插值多项式为
插值余项为
又 在建立函数表时,表中数据具有5位有效数字,且 ,故计算中有误差传播过程。
总误差界为
4.设为互异节点,求证:
(1)
(2)
证明
(1)令
若插值节点为 ,则函数 的 次插值多项式为 。
插值余项为

由上题结论可知
得证。
5设 且 求证:
解:令 ,以此为插值节点,则线性插值多项式为
相关文档
最新文档