分数(百分数)应用题典型解法

合集下载

分数百分数应用题解题思想(一通百通)

分数百分数应用题解题思想(一通百通)

分数应用题解题思想介绍金仁虎一、分配思想分配思想就是根据题中的数量关系,从已知条件入手,通过列式,先求出单位“1”,再由单位“1”的量进行分配。

其具体思路我们还是从第十一册教材第63页的思考题谈起。

1.基本题:同学们参加野营活动。

一个同学到负责后勤工作的老师那里去领碗,老师问他领多少,他说领55个。

又问:“多少人吃饭?” 他说:“一人一个饭碗,两人一个菜碗,三人一个汤碗。

”算一算这个同学给多少人领碗。

〔分析与解〕这是一道六年级的思考题,解答此题可以用多种方法。

(1)方程法。

设:共有X人X+X+X=55解得X=3O。

(2)算术法。

55÷(l++)=55÷1=3O(人)(3)此题还可以直接求最小公倍数来解。

根据“一人一个饭碗,二人一个菜碗,三人一个汤碗”的条件可得:[1、2、3]=6(6是1、2、3的最小公倍数)。

即:每6人为一桌,每桌所需的碗数为:饭碗:6÷l=6(个);菜碗:6÷2=3(个);汤碗:6÷3=2(个)。

共计:6+3+2=11(个)→每桌的总碗数。

这样野营的同学正好可以安排:55÷11=5(桌),而每桌都是6人,即共有6×5=3O人参加野营。

此题运用最小公倍数来解,不但可以拓宽六年级同学的解题思路,更重要的是为四、五年级同学开辟了一条解题途径。

2.变形题。

节日期间给某班同学发水果,每人3个桔子,每2人3个苹果,每4人3根香蕉,最后又给每人发1个梨,结果共发水果2OO个,求该班有多少个同学?每种水果各多少个?[分析与解] 每人所发水果情况:桔子3(个);苹果1(个);香蕉(个);梨1(个)。

(l)方程法。

设:共有X人X+3X+1X+X=200解得X=32(人)(2)算术法。

200÷(1+3+l+)=2OO÷6=32(人)(3)最小公倍数法(同学们自己思考列式)。

在求出单位“1”为32人以后,根据分配思想分别算出每种水果的个数,即:桔子3×32=96(个)苹果32×l=48(个)香蕉32×=24(个)梨子1×32=32(个)3.综合题:星期日某车间去郊外植树,休息时每人发2瓶汽水,每3人发2瓶果汁,每6人发2瓶雪碧,结果共发饮料180瓶,在这些人中,每人植一棵松树,每2人植5棵杨树,每3人植4棵柳树,每5人植3棵杏树,求该车间共植树多少棵?〔分析与解〕此题综合性很强,实际上是把前两个分配思想的小题合在一起。

六年级分数应用题解题方法

六年级分数应用题解题方法

六年级分数应用题解题方法分数(百分数)应用题的典型解法有数形结合思想和对应思想。

数形结合是将抽象的数量关系用线段图直观表示,从而降低解题难度的基本方法。

对应思想则是通过具体数量与抽象分率之间的对应关系来分析和解决问题的思想。

例如,在求一桶油原来有多少千克的问题中,我们可以画出线段图,清楚地看出油的千克数乘以(1-1/5)等于20+22,从而得出油的千克数为70.同样地,在求一堆煤原来有多少千克的问题中,我们可以根据煤的使用情况和剩余量的关系,得出煤的千克数乘以(1-20%-50%)等于290+10,从而得出煤的千克数为1000.对应思想同样适用于解决问题。

例如,在求缝纫机厂女职工人数的问题中,我们可以通过线段图找到与具体数量144人相对应的分率,从而得出女职工占厂职工人数的7/20,男职工占的比例为13/20.再根据女职工比男职工少144人的关系,得出全厂人数为480人。

在转化思想方面,例如在求一批大白菜的千克数的问题中,我们可以通过将题目中的信息转化为对应分率的形式,再用线段图进行分析。

根据第一天卖出后余下的240千克大白菜,可以得出对应分率为1-1/3,从而得出第一天卖出后余下的大白菜千克数为400.再根据剩余240千克的对应分率为1-3/5,可以得出这批大白菜的千克数为600.化简得:甲:乙=15:28,即甲是乙的18/43.五(2)班男生人数:女生人数=4:5.男生人数×(1-75%)=女生人数×(1-80%)。

代入得男生人数:女生人数=4:5,女生人数=30人,男生人数=24人。

有软糖和硬糖两种糖,软糖占总数的4/9.加入16块硬糖后,软糖占总数的20/29.设软糖块数为单位“1”,原来硬糖块数是软糖块数的5/9,加入16块硬糖后,硬糖块数是软糖块数的2倍。

解得软糖块数为9块。

小明看一本课外读物,已读的页数和剩下页数之比为1:6.后来又读了20页,已读的页数和剩下页数之比为3:4.设总页数为单位“1”,原来已读页数占总页数的1/7,后来已读页数占总页数的4/7.解得总页数为630页。

六年级下册数学常见分数应用题的解题方法

六年级下册数学常见分数应用题的解题方法

常见的分数应用题的结构和解题方法一、求一个数 是 另一个数的几分之几(或百分之几)是多少 ( 用除法计算 ) ↓ ↓(已知) (单位“1” )→已知↓ ↓具体数量 具体数量【方法: 甲÷乙(乙≠0)=乙甲】 如:甲数是5,乙数是4,甲是乙的几分之几(或百分之几)?(单位“1”)5÷4=411 或【5÷4×100%=1.25×100%=125%】 甲数是5,乙数是4,乙是甲的几分之几(或百分之几)?(单位“1”)4÷5=54 或【4÷5×100%=0.8×100%=80%】 甲数是5,乙数是4,甲比乙多几分之几(或百分之几)?(单位“1”)(5-4)÷4=41 或【(5-4)÷4×100%=0.25×100%=25% 】 甲数是5,乙数是4,乙比甲少几分之几(或百分之几)?(单位“1”)(5-4)÷5=51 或【(5-4)÷5×100%=0.2×100%=20%】二、求 一个数 的 几分之几(或百分之几)是多少 (用乘法计算) (单位“1”) (已知)↓ ↓具体数量(已知) 分率【方法: 单位“1”对应数量×几几(或百几)=几几(或百几)对应数量】 如:甲数是5,乙数是甲数的54(或80%),乙数是多少? (单位“1”)5×54=4 或 【5×80%=4】 甲数是5,乙数比甲数多51(或20%),乙数是多少? (单位“1”)5+5×51=6 或5+5×20%=6 5×(1+51)=6 5×(1+20%)=6甲数是5,乙数比甲数少51(或20%),乙数是多少? 5-5×51=4 或5-5×20%=4 5×(1-51)=4 5×(1-20%)=4 如:一本书共120页,第一天看了全书的51(或20%),第二天看了全书的41(或25%),还剩多少页未看?120-120×51-120×41 或 120×(1-51-41) 120-120×20%-120×25% 或 120×(1-20%-25%)三、已知一个数 的 几分之几 (或百分之几)是多少 (用除法计算) ↓ ↓(单位“1”) (分率)↓ ↓具体数量(未知) (已知) 【方法:几几(或百几)对应数量÷几几(或百几)=单位“1”对应数量】 甲数是5,是乙数的54(或80%),乙数是多少?解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷54(80%)=6.25 ⅹ×54(80%)=5 甲数是5,比乙数多41(或25%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1+41【25%】)=4 ⅹ+41ⅹ【25%ⅹ】=5ⅹ×(1+41【25%】)=5 甲数是5,比乙数少51(或20%),乙数是多少? 解法一:方程解 解法二:算术方法解 设乙数为ⅹ, 5÷(1-51【20%】)=6.25 ⅹ-ⅹ×51(20% )=5 ⅹ×(1-51【20%】)=5如:一本故事书,小王看了20页,是小勇的41(25%),小勇是小刚的51(20%),小刚看了多少页?方程解:设小刚看了ⅹ页,算术方法解: ⅹ×51×41=20 20÷41÷51 ⅹ×25%×20%=20 20÷25%÷20% 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),正好看了200页,这本书共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ+51ⅹ=200 200÷(41+51) 25%ⅹ+20%ⅹ=200 200÷(25%+20%) 如:小王看一本书,第一天看了全书41(或25%),第二天看了全书51(或20%),第二天比第一天少看10页,这本书一共有多少页?方程解:设这本书有ⅹ页, 算术方法解:41ⅹ-51ⅹ=10 10÷(41-51) 25%ⅹ-20%ⅹ=10 10÷(25%-20%)四、工程问题(行程问题)工作总量=工作时间×工效 工作效率=工作总量÷工作时间工作时间=工作总量÷工效如:一件工程,甲独做8天完成,乙独做10天完成,丙独做12天完成。

分数(百分数)应用题的六种常见类型

分数(百分数)应用题的六种常见类型

225
答:一件上衣 2 元。
小结: 这类题已知什么?求什么?
(已知一个数的几分之几是多少,求这个数?) 这类题有什么特点?(单位“1”是未知的。)
解答方法:
方程解: (1)确定单位“1”,设未知数X。 (2)根据含有分率的句子找出等量关系。 (3)根据一个数乘分数的意义用乘法列方程解答。
单位“1”的量×对应分率=对应量
下面各题中应该把哪个量看作单位“1”?
(1)棉田的面积占全村耕地面积的
2 5

(2)小军的体重是爸爸体重的
3 8

(3)故事书的本数占图书总数的
1 3

(4)汽车的速度相当于飞机速度的
1 5

复习
下列各题中,把谁看作单位“1”,并说出求 单位“1”的数量关系式。
1、鸡的只数是鸭的
7 8
2、已看全书的
汽车速度
“杨树棵数是松树的 5 ”
9
把( 松树棵数 )看作单位“1”
松树棵数
杨树棵数
这桶油的
一桶油
一桶油
用去的
梨重量 梨重量
桃重量
80米是(
)的 4
5
200千克的
4 5
是(
)
(
)是 1 吨的 4
2
5
“白兔的只数比黑兔多
1 5

黑兔的
把( 黑兔只数 )看作单位“1”
( 黑兔 )

( 黑兔
)
×
分数(百分数)应用题的六种常见类型
序言
本编为大家提供各种类型的PPT课件,如数学课件、语文课件、英语 课件、地理课件、历史课件、政治课件、化学课件、物理课件等等,想了 解不同课件格式和写法,敬请下载!

22分数百分数应用题综合解法经典题型 (12)

22分数百分数应用题综合解法经典题型 (12)

分数百分数应用题综合解法经典题型1. 学校图书馆有三种书,已知连环画有100本,文艺书比连环画少2/5,连环画比科技书多1/4。

三种书共有多少本?2. 妈妈的体重是50千克,正好是爸爸体重的75,爸爸的体重是多少千克?小明的体重比爸爸体重的21多3千克,小明的体重是多少千克?3. 小军的邮票张数比小海多31,小海的邮票张数是小明的76。

已知小军比小海多30张邮票,小明有( )张邮票。

4. 六年级三个班的学生共同植树,一班植树80棵,二班植树的棵数是一班的89,三班植树的棵数比二班的97还多7棵,三班植树多少棵?5. 武家河学校六年级有女生84人,男生比女生多1/4,六年级人数占全校人数的1/5,求全校有多少人?6. 李师傅组装一台电视机,工效比原来提高了10%,那么时间比原来减少( )。

7. 图书馆有文艺书400本,有科技书多少本?(1)文艺书的本数是科技书的54(2)科技书的本数比文艺书多51(3)科技书和文艺书的本数的比是5:8(4)文艺书比科技书的2011少84本(5)文艺书的43等于科技书的60%(6)正好是科技书、文艺书的总数的40%8. 商店有120辆电瓶车,第一天卖出总数的81,第二天卖出的比第一天的32多10辆。

第二天卖出多少辆?9. 某校六年级有360人,比五年级人数多81;而四年级的人数比五年级少101,四年级有多少人?10. 鸡的只数的43是240只,鸭的只数是240只的43,两种动物相比( )。

A 、鸡的只数多 B 、鸭的只数多 C 、同样多 D 、无法比较11. 一列火车3小时行驶240千米,如果提速后每小时比原来多行驶14,那么现在这列火车3小时行驶多少千米? 12. 长方形的周长是10米,宽是长的2 3,这个长方形的面积是( )平方米。13. 乙车的速度比甲车慢51,已知甲车2小时行90千米,乙车每小时行多少千米?14. 甲、乙两数的差是80,乙数是20,乙数是甲数的( )%。

用口诀巧解分数、百分数应用题

用口诀巧解分数、百分数应用题

用口诀巧解分数、百分数应用题分数、百分数应用题是六年级数学学习的要点和难点,也是小升初数学的必考部分。

学生在解答较复杂的分数、百分数应用题时常常不知从哪处下手剖析题中的数目关系。

经过多年的实践,我总结了一些巧解分数应用题的口诀,现与大家共享。

一、找准“单位一”,确定基本解题思路学生在学习简单分数应用题的基础上,已经掌握了基本的解题思路:给出部重量及部重量的对应分率,求单位“1”的量,就用除法;给出单位“ 1”的量和部重量的对应分率,求部重量,就用乘法。

为帮学生进一步理清解题思路,我编了一个口诀:第一步,找关系(即分率);第二步,单位“1”(谁的分率谁是单位1);第三步,求的谁,单位“1”用除,部分就用乘;第四步,找对应。

二、抓住要点字,解出特别题分数、百分数应用题确定单位“ 1”是解题要点,要找寻单位“ 1”,需抓住题中的要点字,我的口诀是:想找单位“ 1”,需找要点字,占、是、还有比 (字 ),后跟单位“1”。

没有不重要,快去找关系(百分数)。

谁的百分比,谁是单位“ 1”。

一些特别的典型百分数应用题,如: 5 比4 多百分之几4 比5 少百分之几 5 是4 的百分之几 4 是5 的百分之几等类问题,学生易产生混杂,于是我编了一个口诀:多多少,少多少,差价除以单位“ 1”。

求对应分数,单位“ 1”做除数。

三、画出线段图,剖析找对应分数、百分数应用题,详细量和分率之间一定是对应关系,这一点特别重要。

因为小学生的抽象思想和空间想象力较差,关于一些较复杂应用题的数目关系,难以在脑筋中理清眉目,我在讲此类应用题时,常常存心识地指引学生画线段图帮助解题。

比方:“修一条公路,先修了全程的 30%,离中点还有千米,求公路的全程是多少千米”学生一时不知如何下手,我就让学生先画线段表示图,再找数目关系。

这样各条件之间的关系就十分显然了。

如何画出正确的线段图我的口诀是 :先画单位“ 1”,详细量上边放,分率放下边,问号需点上,两圆要对圆,看看求什么,求的是单位“ 1”,数目(详细量)除分率,求的是部分,单位“ 1”去乘分率。

六年级分数应用题解题方法-22页文档资料

六年级分数应用题解题方法-22页文档资料

分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。

) 【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。

全厂的人数为:144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。

分数与百分数应用题

分数与百分数应用题

分数与百分数应用题1、某厂五月份计划用电2500度,实际用电2125度,节约百分之几?【分析1】先求出实际用电比计划节约了多少度,再除以五月份计划用电度数,即得实际用电比计划节约百分之几.【解法1】(2500-2125)÷2500=375÷2500=15%.【解法2】1-2125÷2500=1-0.85=15%.答:实际用电比计划节约了15%.2、某厂五月份生产机床160台,六月份生产200台,六月份比五月份增产百分之几?【分析1】先求出六月份比五月份增产多少台,再除以五月份生产台数,即得六月份比五月份增产百分之几.【解法1】(200-160)÷160=40÷160=25%.【解法2】200÷160-1=1.25-1=25%.答:六月份比五月份增产25%.3、红星机床厂,上个月计划生产机床200台,实际比计划多生产40台,实际产量是计划的百分之几?【分析1】先求出实际生产多少台,再除以计划生产的台数,所得百分数就是实际产量是计划的百分之几.【解法1(200+40)÷200=240÷200=120%.【解法2】1+40÷200=1+0.2=1.2=120%.4、五一班有50人,在一次数学测验中,有1人不及格,求及格率.【解法1】50-150 ×100%=0.98×100%=98%.【解法 2】1-10÷50=1-0.02=0.98=98%.答:这次数学测验的及格率是98%.5、六年三班有女生24人,占全班人数的40%,这个班有学生多少人?【解法1】24÷40%=24×=60(人).【解法 2】设全班人数为x. x ×40%=24 x=606、一个钢厂去年产钢88万吨,今年计划比去年增产25%,今年计划产钢多少万吨?【解法1】88×25%+88=22+88=110(万吨).【解法 2】 88×(1+25%)=88×=110(万吨).7、某校办工厂今年第一季度生产教具6900套,比去年同期增产15%,去年第一季度生产教具多少套?【解法1】今年第一季度产量是去年的百分之几。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数(百分数)应用题典型解法
一、数形结合思想
数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。

原来这桶油有多少千克?
[分析与解]
从图中可以清楚地看出:这桶油的千克数×(1-51-5
1)=20+22,则这桶油的千克数为:(20+22)÷(1-51-5
1)=70(千克) 【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?
[分析与解]
显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克)
二、对应思想
量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

(量率对应常常和画线段图结合使用,效果极佳。


【例3
】缝纫机厂女职工占全厂职工人数的
20
7
,比男职工少144人,缝纫机厂共有职工
多少人?
[分析与解]
解题的关键是找到与具体数量144人的相对应的分率。

从线段图上可以清楚地看出女职工占
20
7
,男职工占1-
20
7
=
20
13
,女职工比男职工少占全
厂职工人数的
20
13

20
7
=
10
3
,也就是144人与全厂人数的
10
3
相对应。

全厂的人数为:
144÷(1-
20
7

20
7
)=480(人)
【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的
3
1
,第二天卖出余下的
5
2
,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?
[分析与解]
从线段图上可以清楚地看出240千克的对应分率是第一天卖出
3
1
后余下的(1-
5
2
)。

则第一天卖出后余下的大白菜千克数为:
240÷(1-
5
2
)=400(千克)
同理400千克的对应分率为这批大白菜的(1-
3
1
),则这批大白菜的千克数为:
400÷(1-3
1)=600(千克) 三、转化思想
转化是解决数学问题的重要手段,可以这样说,任何一个解题过程都离不开转化。

它是把某一个数学问题,通过适当的变化转化成另一个数学问题来进行思考、求解,从而实现从繁到简、由难到易的转化。

复杂的分数应用题,常常含有几个不同的单位“1”,根据题目的具体情况,将不同的单位“1”转化成统一的单位“1”,使隐蔽的数量关系明朗化。

1、从分数的意义出发,把分数变成份数进行“率”的转化
【例5】男生人数是女生人数的
5
4,男生人数是学生总人数的几分之几? [分析与解]
男生人数是女生的54,是将女生人数看作单位“1”,平均分成5份,男生是这样的4份,学生总人数为这样的(4+5)份,求男生人数是学生总人数的几分之几?就是求4份是(4+5)份的几分之几?
4÷(4+5)= 9
4 【例6】兄弟两人各有人民币若干元,其中弟的钱数是兄的
54,若弟给兄4元,则弟的钱数是兄的3
2,求兄弟两人原来各有多少元? [分析与解]
兄弟两人的总钱数是不变量,把它看作单位“1”,原来弟的钱数占两人总钱数的544+,后来弟的钱数占两人总钱数的3
22+,则两人的总钱数为: 4÷(544+-3
22+)=90(元) 弟原来的钱数为:90×
544+=40(元) 兄原来的钱数为:90-40=50(元)
2、直接运用分率计算进行“率”的转化
【例7】甲是乙的32,乙是丙的54,甲是丙的的几分之几?。

相关文档
最新文档