抽气调节式汽轮机改造

抽气调节式汽轮机改造
抽气调节式汽轮机改造

C50-8.83/O.1 1 8型50 MW采暖调节抽汽式汽轮机改造作者:杨新生

作者单位:北京第二热电厂北京 100055

刊名:

中国电力

英文刊名:ELECTRIC POWER

年,卷(期):2001,34(9)

本文链接:https://www.360docs.net/doc/3517137395.html,/Periodical_zgdl200109021.aspx

压缩机用汽轮机抽气器应用中的能耗分析

龙源期刊网 https://www.360docs.net/doc/3517137395.html, 压缩机用汽轮机抽气器应用中的能耗分析 作者:段雅丽 来源:《硅谷》2013年第08期 摘要抽气器作为压缩机凝气系统的重要组成部分,用来抽除系统内的不能凝结的气体,以维持凝汽器真空,改善传热效果,从而提高机组的热经济性。在氨合成项目中,对不同型式的抽气器在同种工况时的运行时,射水抽气器要比射汽抽气器耗能少,运行成本低,节能效果显著。 关键词抽气器;射汽抽气器;射水抽气器;能耗 中图分类号:TK263 文献标识码:A 文章编号:1671—7597(2013)042-113-01 在以煤为原料的合成氨装置中,为提高能效水平,空分及合成气压缩等大功率转动设备大多采用凝汽式汽轮机代替电机拖动。而凝汽系统中抽气器的工作状况直接影响到机组运行的经济性和安全性。因此,由抽气器、动力泵和冷却器等组成的抽气设备是凝气设备的重要组成部分,其中抽气器是除气系统的核心设备。现用于合成氨工程的抽气设备主要有以下两种形式:射水抽气器和射汽抽气器。 本文通过对两种抽气设备在运行过程中的能耗进行比较,结合工程实际情况,对抽气设备在运行过程中的能耗进行了分析。 1 抽气器工作原理 抽气器是由喷嘴、混合室、扩压管等组成。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 1.1 射汽抽气器的工作原理 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大。 射汽抽气器的结构简单,被广泛的应用在高、中压参数汽轮机中。早期设计的射汽抽气器的工作蒸汽多来自新蒸汽,经节流减压到所需工作压力,先在应用较广的多级射汽抽气器则利用低品位蒸汽进行驱动,不仅减少了蒸汽的节流损失,而且提高了循环热效率。 1.2 射水抽气器的工作原理

背压式、抽背式及凝汽式汽轮机的区别

背压式、抽背式及凝汽式汽轮机的区别 1、背压式汽轮机 背压式汽轮机是将汽轮机的排汽供热用户运用的汽轮机。其排汽压力(背压)高于大气压力。背压式汽轮机排汽压力高,通流局部的级数少,构造简略,同时不用要巨大的凝汽器和冷却水编制,机组轻小,造价低。当它的排汽用于供热时,热能可得到充足使用,但这时汽轮机的功率与供热所需蒸汽量直接联系,因此不或许同时餍足热负荷和电(或动力)负荷变更的必要,这是背压式汽轮机用于供热时的部分性。 这种机组的主要特点是打算工况下的经济性好,节能结果昭着。其它,它的构造简略,投资省,运行可靠。主要缺点是发电量取决于供热量,不克独立调理来同时餍足热用户和电用户的必要。因此,背压式汽轮机多用于热负荷整年安稳的企业自备电厂或有安稳的根本热负荷的地区性热电厂。 2、抽汽背压式汽轮机 抽汽背压式汽轮机是从汽轮机的中间级抽取局部蒸汽,供必要较高压力品级的热用户,同时保留必定背压的排汽,供必要较低压力品级的热用户运用的汽轮机。这种机组的经济性与背压式机组相似,打算工况下的经济性较好,但对负荷改变的合适性差。 3、抽汽凝汽式汽轮机 抽汽凝汽式汽轮机是从汽轮机中间抽出局部蒸汽,供热用户运用的凝汽式汽轮机。抽汽凝汽式汽轮机从汽轮机中间级抽出具有必定压力的蒸汽提供热用户,平常又分为单抽汽和双抽汽两种。此中双抽汽汽轮机可提供热用户两种分别压力的蒸汽。 这种机组的主要特点是当热用户所需的蒸汽负荷猛然下降时,多余蒸汽可以通过汽轮机抽汽点以后的级持续扩张发电。这种机组的长处是灵敏性较大,也许在较大范畴内同时餍足热负荷和电负荷的必要。因此选用于负荷改变幅度较大,改变屡次的地区性热电厂中。它的缺点是热经济性比背压式机组的差,并且辅机较多,价钱较贵,编制也较庞杂。 背压式机组没有凝固器,凝气式汽轮机平常在复速机后设有抽气管道,用于产业用户运用。另一局部蒸汽持续做工,最后劳动完的乏汽排入凝固器、被冷却凝固成水然后使用凝固水泵把凝固水打到除氧器,除氧后提供汽锅用水。两者区别很大啊!凝气式的由于尚有真空,因此监盘时还要注意真空的境况。背压式的排气高于大气压。趁便简略说一下凝固器设置的作用:成立并维持汽轮机排气口的高度真空,使蒸汽在汽轮机内扩张到很低的压力,增大蒸汽的可用热焓降,从而使汽轮机有更多的热能转换为机械功,抬高热效果,收回汽轮机排气凝固水

射水射汽抽气器工作原理介绍

射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降△h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa~-98.0kPa。从汽轮机末级叶片出口截面来分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。 三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。

大罐抽气装置

H-SONG型大罐抽气装置 青岛汇森能源设备有限公司 原油在集输处理、储存过程中,原油中的较轻组份大量挥发,在造成天然气资源的浪费的同时,还对大气环境造成污染。如果对这些组份加以回收,不仅增加了油田的天然气产量,又节约了资源防止了油罐顶挥发出天然气对大气的污染,保护了环境,同时又减少了油罐火险因素,增加了油气集输的安全。 早期大罐回收装置采用皮囊控制系统,通过气包的位置变化信号来控制压缩机的运行,这种控制系统自动化程度低,受气象环境干扰,刮风、下雨等会直接影响到行程开关的正常运行,导致压缩机不正常启停。 后来在实际运营过程中不断积累经验,对控制系统进行自动化改进,撤掉气包,控制系统采用差压变送器,接触器和电接点压力表等组成。这种控制方式,压缩机启动频繁,压力波动大。由于频繁启动,压缩机与油泵的磨损都很大,大大减少了设备的使用寿命;压力波动大,经常造成差压变送器的损害,而且管网出口压力波动也很大。 为了改善这些缺点我们针对以上问题,采用PID自整定调节仪、八路报警仪及变频器组成的集成控制系统,有效的改善了系统运行工况。 一. 系统原理 系统采用模拟人工智能调节技术,变频器控制压缩机的排量,使之随油罐挥发气的脉动变化而变化,使密闭油罐始终保持在微正压下安全运行。 通过油罐烃蒸汽回收工艺密闭处理原油,在大罐顶部呼吸阀上引出收气管路,用螺杆压缩机对大罐进行抽气,收集的天然气、轻组分经冷却、分离、压缩后外输。 为了安全生产,油罐气由引压管进入一次仪表微差压变送器,输出4-20mA信号,随着油罐气的变化软启停压缩机,根据气量变化调节压缩机转速。当第一台压缩机变频运行,气量增加时,压缩机运转频率达到50Hz,不能达到控制要求时,自动切换到电网工频运行,第二台压缩机软启动变频运行。当油罐压力到500Pa时,自动报警,压力为1000Pa 时,罐顶微压安全阀放空;压力达到2000Pa时,罐顶上原有的液压安全阀放空。当油罐气量减少,第一台工频运行的压缩机停运,保留第二台压缩机变频运行;当油罐气量继续减少,油罐压力下降到150Pa时,自动报警,自力式补气调节阀自动打开,进行补气;当气量继续下降到100Pa时,自动报警,停机;当压力回升到450Pa时,自动起机收气,始终稳定油罐压力在300~350Pa确保油罐安全。 该系统具有造价成本低,无需编程。根据罐顶挥发天然气量的多少,随意调节压力,控制压缩机的运行,具有运行平稳,控制精确,自动化程度高,维护方便等特点。 整套自动控制系统以PID自整定调节仪和变频器为核心,附以其它的保护电路和报警电路,见图1 控制系统组成框图。 (一) 保护装置 保护系统主要由三部分组成,当其中的任何一部分达不到要求时,系统都不会工作。 1. 来气压力的低压保护系统:此保护采用双重保护装置,由差压开关保护和差压变送器与PID自整定调节仪构成的保护系统,以差压变送器与PID自整定调节仪构成的保护系统为主,其工作原理如下:PID自整定调节仪为下下限报警,将两个下下限报警分别设置为停止压力和启动压力,启动压力大于停止压力,此两个压力由PID自整定调节仪设定好,差压变送器接收到的压力信号转变为电信号,传输到PID自整定调节仪,当压力大于启动压力时,设备启动;当压力低于停止压力时,设备停止工作。差压开关的压力动作点略低于停

两级射汽抽气器

作者:admin 来源:本站发表时间:2011-9-28 10:06:15 点击:27 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家具有效率高,耗能低的优点,该产品系国内的射水抽气器最新型式,用于火力发电厂汽轮机组抽吸凝汽器真空和其它需要抽真空的设备之用,用于新机组设计的中的辅机配套及现有机组的节能改造均为适宜。同时可根据需要设计出任何抽气量的抽气设备,亦可对汽抽实施改造,适用范围3MW-600MW机组。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家优点为: 1、抽吸能力强,安全裕量大,电机耗功低。 2、寿命长,抽吸内效率不受运行时间影响,检修间隔期长。 3、启动性好,无需另配辅抽。对工作水所含杂质的质量浓度及体积浓度要求低。 4、该射水抽汽器喉管出口设置余速抽气器,可同时供汽机抽吸轴封加热器之不凝结气体。 5、因无气相偏流,所以射水抽气器运行中震动磨损极小。 凝汽器多级射汽抽气器,汽轮机两级射汽抽气器,射汽抽气器生产厂家结构原理:新一代射水抽气器结构原理打破了传统的水、气垂直交错流动的设计模式,大家知道气相运动所需能量全来自水束,那么要让水质点裹胁更多的气体来提高凝汽器真空,保证安全运行就必须: 1、在吸入室中选取水的最佳流速及单股水束的最佳截面,以期水束能实现最佳分散度,同时分散后的水质点又具最佳动量,以最小的水量裹胁最多的气体,这是达到低耗高效的起码条件。 2、吸入室内水质点与空气的接触达到最均匀。且使水束所裹胁的气体能全部压入喉管。 3、制止初始段的气相返流偏流,以免造成冲击四壁而发生震动磨损。这一点单靠加长喉管是难以实现的。这是吸入室几何结构,喉口形状,喉径喷咀面积比,喉长喉咀径比,进水参数(水量水压)等实现的。 4、喉管的结构分气体压入段,旋涡强化段及增压段三部份。能实现两相流的均匀混合,降低气阻,消除气相偏流,增加两相质点能量交换,又能利用余速使排出的能量损失达到最少。

凝汽器工作原理

凝汽器工作原理 凝汽器:使驱动汽轮机做功后排出的蒸汽变成凝结水的热交换设备。蒸汽在汽轮机内完成一个膨胀过程后,在凝结过程中,排汽体积急剧缩小,原来被 蒸汽充满的空间形成了高度真空。凝结水则通过凝结水泵经给水加热 器、给水泵等输送进锅炉,从而保证整个热力循环的连续进行。为防止 凝结水中含氧量增加而引起管道腐蚀,现代大容量汽轮机的凝汽器内还 设有真空除氧器。 凝汽器的主要作用: 1)在汽轮机排汽口造成较高真空,使蒸汽在汽轮机中膨胀到最低压力,增大蒸汽在汽轮机中的可用焓降,提高循环热效率; 2)将汽轮机的低压缸排出的蒸汽凝结成水,重新送回锅炉进行循环; 3)汇集各种疏水,减少汽水损失。 4)凝汽器也用于增加除盐水(正常补水) 表面式凝汽器的工作原理:凝汽器中装有大量的铜管,并通以循环冷却水。当汽轮机的排汽与凝汽器铜管外表面接触时,因受到铜管内水流的冷却,放出汽化潜热变成凝结水,所放潜热通过铜管管壁不断的传给循环冷却水并被带走。 这样排汽就通过凝汽器不断的被凝结下来。排汽被冷却时,其比容急剧缩小,因此,在汽轮机排汽口下凝汽器内部造成较高的真空。 凝汽器是火力发电厂的大型换热设备。图1为表面式凝汽器的结构示意图。

凝汽器运行时,冷却水从前水室的下半部分进来,通过冷却水管(换热管)进入后水室,向上折转,再经上半部分冷却水管流向前水室,最后排出。低温蒸汽则由进汽口进来,经过冷却水管之间的缝隙往下流动,向管壁放热后凝结为水。真空度定义: 从真空表所读得的数值称真空度。真空度数值是表示出系统压强实际数值低于大气压强的数值,即: 真空度=大气压强—绝对压强 凝汽器中真空的形成主要原因 在启动过程中凝汽器真空是由主、辅抽汽器将汽轮机和凝汽器内大量空气抽出而形成的。 在正常运行中,凝汽器真空的形成是由于汽轮机排汽在凝汽器内骤然凝结成水时其比容急剧缩小而形成的。如蒸汽在绝对压力4kpa时蒸汽的体积比水的体积大3万倍,当排汽凝结成水后,体积就大为缩小,使凝汽器内形成高度真空。凝结器的真空形成和维持必须具备三个条件: 1)凝汽器铜管必须通过一定的冷却水量; 2)凝结水泵必须不断地把凝结水抽走,避免水位升高,影响蒸汽的凝结; 3)抽汽器必须把漏入的空气和排汽中的其它气体抽走。 真空降低的原因: (1)循环水量减少或中断: ①循环水泵跳闸、循进阀门误关、循环水泵出口蝶阀阀芯落、循进滤网堵:水量中断,进水压力下降,出水真空至零,循泵电流至零或升高,须不破坏真空停机;若未关死,立即减负荷恢复;

抽汽逆止门工作原理

抽汽逆止门的电磁阀工作 原理 shunqing345 助理工程 师 认清自己 TA的每日 心情 擦汗 2011-12 -21 19:04:4 签到天 数: 4 天 []偶尔看 看I 星币 3 元 贡献 583 点 具体工作过程基本如下: 阀碟的开启及关闭:当压缩空气从操纵座下方管道进入气缸时,活塞在空气压力作用下向上运动,压缩 弹簧,杠杆转过一定角度,使杠杆上凸台同摇臂凸台 脱开,使阀碟处于可开启状态。此时,当阀门进口压

精华 帖子 456 串个门 加好友 打招呼 发消息禁 止帖 子力超过出口压力时,阀碟开启,当阀门进口压力低于出口压力时或发生反向流动时,阀碟关闭。在正常运行情况下,阀碟将在汽流力作用下打开,并最终维持在全开位置上。当操纵座气缸内空气被泄去时,在弹簧作用下,杠杆回转,通过端面凸台带动摇臂转动,使阀碟强制闭。抽汽阀控制气管路上.所装的电磁阀与汽轮机的危急遮断、发电机的跳闸信号联动。当主汽阀关闭或甩负荷时,空气引导阀闭,抽汽阀控制气管路被切断。同时电磁阀线圈断电,电磁阀动作,切断气源,将抽汽阀操纵座内的空气排空,抽汽逆止阀的阀碟在操纵座弹簧作用下关闭。 汽轮机抽汽管路上的逆止门具有十分重要意义。因为当汽轮机甩负荷时,它们保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。 二、结构介绍 抽汽逆止门有两种形式。一种为回热抽汽管路上的逆止门;另一种是通过

大流量的高压汽缸排汽管路上的摇板式逆止门。它们都靠压力水来作为控制动力。为了实现远距离和自动关闭的闭锁作用设有一套控制水系统,简称逆止门压力传送装置。 回热抽汽管路上的逆止门及其操纵座的结构如图所示。在正常工作情况,逆止门操纵杆座的强制门杆8在弹簧力的作用下,处于上部位置,此时逆止门门碟1在蒸汽顺流时,能自由开启,当汽轮机甩负荷时,逆止门上部操纵座5的水压及门碟上部蒸汽的作用下,一起将逆止门门碟压向门座7。蒸汽的作用力系由抽汽管路中残存的蒸汽压力与汽轮机抽汽室中的压力 差产生的。 这种形式的逆止门只能装在管路的水平部分上。在逆止门蒸汽进入一侧,即汽轮机抽汽室侧外壳的底部有疏水孔。各段去抽汽逆止门疏水是加装 直径5毫米的节流孔板逐级至下一级抽汽。气轮机抽气管路采用这种疏水方式,对于机组的经济性来说,是要损失一点,但抽气管路中不易积水,

3000 KW凝汽式汽轮机发电机组技术方案

3000 KW凝汽式汽轮发电机组技术方案 一技术要求 1.1 汽轮机本体技术参数 汽轮机型号:N3-2.35 进汽压力:2.35±0.1Mpa (绝压) ℃ 进汽温度:390+10 -20 额定功率:3000 KW 最大功率:3000 KW 额定转速:5600-3000 r/min(暂定,如频率60HZ,输出3600r/min)临界转速:3690 r/min 额定进汽量:17 t/h 排汽压力:0.0103 Mpa (绝) 1.2汽轮机结构参数 布置形式:单层布置 转子结构:1个复速级+8个压力级叶轮 主汽门进/出口通径:125×2 mm 抽汽口通径:80 mm 排汽口通径:850 mm 汽轮机转子重(t):1.1 最大起吊件重(检修):3.5 t 运行层标高:0 m 汽机中心距运行层高度:1050mm

汽轮机盘车装置:手动盘车 汽轮机与减速箱联接形式:平面齿式联轴器减速箱与发电机联接形式:刚性联轴器 1.3调节保安系统技术数据 调节方式:全液压 调节汽阀数量:5个 转速不等率:5% 迟缓率:≤0.5% 同步器在空负荷时转速变化范围%:-4~+6 危急遮断器动作转速r/min:6104~6216 转子轴向位移许可值:0.7 mm 主油泵进口油压:0.1 Mpa 主油泵出口油压:0.7 Mpa 脉冲油压:0.4 Mpa 1.4辅机技术数据 1.4.1冷凝器 数量:1台 式样:双流程表面式 冷却水温度:正常27℃最高33℃ 冷却面积:280㎡ 无水重量:6.1t 1.4.2油系统

底盘油箱:1个 容量:2000 L 无油重量:3.348 t 冷油器数量:1台 冷却水侧面积:20㎡ 冷却水量:57.4t/h 无油无水重量:402 kg 主油泵:钻孔离心式 电动油泵:1个 手摇油泵:1个 二产品执行标准 JB/T7025-1993 25MW以下转子体和主轴锻件技术条件 JB/T7028-1993 25MW以下汽轮机轮盘及叶轮锻件技术条件JB/T9628-1993 汽轮机叶片磁粉探伤方法 JB/T9629-1999 汽轮机承压件、水压实验技术条件 JB/T9631-1999 汽轮机铸铁件技术条件 JB/T9637-1999 汽轮机总装技术条件 JB/T9638-1999 汽轮机用联轴器等重要锻件技术条件 JB/T2901-1992 汽轮机防锈技术条件 JB/T4058-1999 汽轮机清洁度 三供应项目清单

200MW机组双抽凝汽式汽轮机性能分析

收稿日期: 20040519 作者简介: 付昶(1971),男,工学硕士,现为国电热工研究院电站运行技术中心高级工程师,主要从事大型汽轮机组热力性能的试验研究。 200MW 机组 双抽凝汽式汽轮机性能分析 付 昶1 ,武学素2 ,李 晗 3 (1.国电热工研究院,陕西西安 710032; 2.西安交通大学,陕西西安 710049; 3.西北电力设计院,陕西西安 710032) [摘 要] 对某热电公司引进的200MW 双抽凝汽式汽轮机组的性能进行了分析,包括:设计性能及特点,汽轮机性能验收试验的项目及内容,目前汽轮机的运行特性。分析结论可为同类型汽轮机的选型、运行、经济调度提供参考和指导。 [关键词] 200MW 机组;工业抽汽;供暖抽汽;双轴凝汽式;汽轮机 [中图分类号]TK261 [文献标识码]A [文章编号]10023364(2004)07000403 某热电公司扩建工程2台200MW 双抽凝汽式汽轮机由德国ABB 公司首次引进,之后,该型汽轮机在河北某热电厂作为老厂改造项目又引进2台。在采暖期内,机组设计供暖能力为1256GJ/h,并常年提供压力1MPa 左右的工业用汽(双抽工况)。非采暖期运行时,机组仅提供工业抽汽(单抽工况)。凝汽式运行时,最大负荷达到200MW 。该型机组的运行方式灵活,适于广大采暖和有工业用汽的热用户 ,同时热电联产具有较大的发电能力,因此,可作为老厂改造及新建热电厂选型的机组。2000年对首批2台机组进行了性能验收试验,之后又于2003年4月针对运行中发现的问题对机组进行热、电负荷分析试验,并结合供热机组特点,对机组的各项性能进行分析研究。 1 热力系统及运行方式 1.1 热力系统 图1为200MW 双轴凝汽式机组原则性热力系统。该系统为两炉一机运行方式,配2台410t/h 固态排渣煤粉炉。汽轮机由高、中、低压缸组成,其中高、中压缸合缸,低压缸为分流对称布置。回热系统共有6 图1 原则性热力系统 段抽汽:2台高压加热器,3台低压加热器和1台高压除氧器(高脱)。工业抽汽从高压缸排汽第3段抽汽(3抽)抽出,与高脱共用汽源,工业抽汽补充水将化学补充水通过低压除氧器(低脱)加热后来补充,低脱的加热汽源为老机组来汽。热网加热器抽汽从中压缸排汽(4抽)抽出,与3号低压加热器共用汽源,抽汽量通过调整中、低压缸之间的蝶阀来调节,疏水回水通过泵回收至高脱,而供热水及回水属于厂外系统,自成体系。 技术经济综述

抽气逆止阀工作原理

抽气逆止阀的作用W 汽轮机抽汽管路上的逆止门具有十分重要的意义。因为当汽轮机甩负荷时,它们保护汽轮机不致因蒸汽的回流而超速,并防止加热器及管路带水进入汽轮机。\" _0 J/ g 抽气逆止阀结构介绍 1 w' N1 x|* `k, x: @5 A 抽汽逆止门有两种形式。一种为回热抽汽管路上的逆止门;另一种是通过大流量的高压汽缸排汽管路上的摇板式逆止门。它们都靠压力水来作为控制动力。为了实现远距离和自动关闭的闭锁作用设有一套控制水系统,简称逆止门压力传送装置。" T- p( i5 {& I4 n4 R 回热抽汽管路上的逆止门及其操纵座的结构如图所示。在正常工作情况下,逆止门操纵杆座的强制门杆8在弹簧力的作用下,处于上部位置,此时逆止门门碟1在蒸汽顺流时,能自由开启,当汽轮机甩负荷时,逆止门上部操纵座5的水压及门碟上部蒸汽的作用下,一起将逆止门门碟1压向门座7。蒸汽的作用力系由抽汽管路中残存的蒸汽压力与汽轮机抽汽室中的压力差产生的。 @% {4 D$ c5 j: n/ ~这种形式的逆止门只能装在管路的水平部分上。在逆

止门蒸汽进入的一侧,即汽轮机抽汽室侧外壳的底部有疏水孔。各段去抽汽逆止门疏水是加装直径5毫米的节流孔板逐级至下一级抽汽。气轮机抽气管路采用这种疏水方式,对于机组的经济性来说,是要损失一点,但抽气管路中不易积水,对机组运行的安全性是比较可靠的。O7 J 逆止门门碟固定在蒸汽缓冲活塞2上,在逆止门门盖4上设有缓冲汽室13,在逆止门前后壳体上接有平衡汽管14,通入缓冲汽室。为了防止蒸汽短路及保持缓冲汽室中有一定的压力,在平衡汽管上设有球形逆止门6。f5 R8 H7 _当逆止门开启时,气轮机抽汽室的蒸汽首先通入缓冲汽室13,起缓冲作用。逆止门在汽流的作用下逐步开足时,缓冲汽室内整齐通过强制门杆的气封流出;在逆止门动作关闭时,抽气管路中的残存蒸汽通过平衡汽管14倒入缓冲汽室13,以减少缓冲活塞2上、下部的压力差,达到迅速关闭的目的。缓冲汽室同时也用来作为门碟上下移动的导向作用。x3 { 5 q" J e9 l) m5 `* t

射水、射汽抽气器工作原理介绍

射水、射汽抽气器工作原理介绍 余热发电新线建设培训教材 射水、射汽抽气器结构组成、工作原理介绍 一、凝汽设备的作用 凝汽设备的作用是增大蒸汽在汽轮机中的理想焓降?h,提高机组的循环热效率。另一个作用是将排汽凝结成水,以回收工质,重新送回锅炉作为给水使用。 增大汽轮机的理想焓降,可通过提高蒸汽的初参数和降低排汽参数来获得。 二、凝汽器内真空的形成 凝汽器内真空的形成可分为两种情况来讨论。在启动或停机过程中,凝汽器内的真空是由抽气器将其内部空气抽出而形成的。而在正常情况下,凝汽器内的真空是由汽轮机排汽在凝汽器内骤然凝结成水时,其比容急剧缩小而形成的,抽气器将不凝结的气体和空气连续不断地抽出,起到维持真空的作用,此时真空的形成主要靠蒸汽的凝结。 发电机组在夏季高温季节,由于受环境温度升高影响,冷却水温度上升,凝汽器内冷凝蒸汽效果下降,换热效率下降,导致凝汽器内排汽压力上升,真空下降,从而使汽轮机排汽焓升高,汽轮机做功能力下降,效率降低,发电机输出功率下降。这就是真空低影响发电负荷的原因。 但真空度也不是越高越好,有一个控制范围,如一线余热电站真空度控制范围为-92.0kPa,-98.0kPa。从汽轮机末级叶片出口截面来 分析,在每台汽轮机末级叶片出口截面处,都有一个确定的极限背压,若汽轮机背压降至低于其极限背压时,则蒸汽在汽轮机中的可用焓降增值再也不会提高,因此,凝汽器内的真空是根据汽轮机设备和当地的气候条件来选定的,称为最有利真空,如一线电站最有利真空为-95.6kPa。

三、凝汽器射水、射汽抽气器的工作原理 抽气器的任务是将漏入凝汽器的空气和不凝结的气体连续不断地抽出,保持凝汽器始终在较高真空下运行。抽气器可分为射水、射汽抽气器两种,区别主要是工作介质的不同。 抽气器的工作原理:抽气器是由喷嘴、混合室、扩压管等组成,见附图。工作介质通过喷嘴,由压力能转变为速度能,在混合室中形成了高于凝汽器内的真空,达到把气、汽混合物从凝汽器内抽出的目的。在扩压管内,工质的速度能再转变为压力能,以略高于大气压力将混合物排入大气。 射汽抽气器的工作原理: 射汽抽气器所使用的工质是过热蒸汽,故称之为射汽抽气器。新线热力设计将射汽抽气器用于汽封蒸汽凝汽器,减少了汽轮机轴封漏汽损失,并利用漏汽的热量加热凝结水,回收热量和工质,提高了机组热经济性,防止了由于轴封漏汽过大时漏汽进入轴承润滑油,导致油中进水和轴承高温事故。工作原理:工作蒸汽进入喷嘴,膨胀加速进入混合室,在混合室内形成了高度真空,从而把凝汽器内的气、汽混合物抽了出来,混合后进入扩压管,升压至比大气压略高,经冷却器冷凝后,大部分蒸汽冷凝成疏水回到凝汽器,少量汽、气混合物排入大气。 尽管射汽式抽气器抽气效率较低,但其结构简单,能回收工作蒸汽的热量和凝结水,仍被广泛应用。 射水抽气器的工作原理: 射水抽气器工作原理基本与射汽抽气器相同,不同的是它以水代替蒸汽作为工作介质。 工作水压保持在0.2,0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝

浅谈330MW双抽供热凝汽式汽轮机设计

浅谈330MW双抽供热凝汽式汽轮机设计 摘要:双抽供热凝汽式汽轮机在供电过程中,以更加经济方便的方式向城市提供两种压力的抽汽,其最大的优势是污染小,工作效率高。本文将结合330MW 双抽供热凝汽式汽轮机的运行程序,对汽轮机的设计特点和应用技术进行系统的分析。 关键词:330MW汽轮机双抽供热设计特点应用技术 双抽供热凝汽式汽轮机作为新型的汽轮机,可同时进行供热和发电任务。在实际运行过程中根据不同的工况,可将汽轮机分为背压式和调整抽汽式两种。同时双抽供热凝汽式汽轮机可根据用户的不同需求,分为采暖抽汽和工业抽汽两种。 一、330MW双抽供热凝汽式汽轮机概述 330MW双抽供热凝汽式汽轮机采用的是新型“以热供电”的运行模式和“热电分调”的管理技术,在设计原理和设计方案上均采用当前最为先进的设计模式,将成熟的通流技术运用其中,在设计中本着优化结构的设计理念,提高了设计的经济性和可靠性。 1.330MW双抽供热凝汽式汽轮机的优点 在科学技术进步的带动下,供热凝汽式汽轮机的设计结构逐渐优化。在使用中不会造成能源流失,同时有助于提高汽轮机的工作效率[2]。一般正常功率的供热汽轮机的效率在35%左右,在正常工作过程中,燃料利用率逐渐提升。 2.330MW双抽供热凝汽式汽轮机的意义 当前在供热系统使用频繁的城市,为了提升效率,已逐渐使用参数较大,效率高的汽轮机。热电厂为了减少成本投入,对汽轮机的选择尤为慎重。在采暖供热组中,由于供暖系统利用率高,汽轮机工况的经济性对发电厂的影响影响较大。参数高、功率高的机组已经成为当前发电厂的首要选择【2】。目前供热机组品种高达100多种,功率在300MW—500MW。双抽供热凝汽式汽轮机以满足当前市场要求,对提升发电厂的经济效益有重要的作用。 二、双抽供热凝汽式汽轮机的设计原则 在双抽供热凝汽式汽轮机在使用过程中要严格遵守相关规定原则,以汽轮机的基本参数为准,对工业最大抽汽量、供暖最大供暖抽汽量、以及汽轮机的最大流通量等进行合理分析研究,在根据实际运行情况确定高、中、低通留部分的流量,保证提升汽轮机的工作效率。 1.适当调整功率

汽轮机表面式凝汽器抽气设备

附 录 C (资料性附录) 抽气设备 C.1 抽气设备能力的确定 C.1.1 凝汽器中需要抽出的不凝结气体的来源包括但不仅限于以下几项: ——低于大气压下运行的系统部件中漏进的空气; ——进入凝汽器的疏水和排汽释放的气体; ——进入凝汽器的补给水释放的气体; ——循环冷却中所使用的凝结水平衡箱内所产生的气体; ——在某些形式的核燃料的循环中,从给水中解析出来的氧气、氢气及其他不凝结气体。 C.1.2 除不凝结气体外,还应抽出一定量的附带蒸汽,以确保凝汽器的正常性能,并产生合理的气流速度,使凝汽器汽侧的腐蚀减少到最小程度。 C.2 设计吸入压力 抽气设备的吸入压力应符合下列要求: ——电站汽轮机凝汽器的设计吸入压力为3.386 kPa (a )或凝汽器设计压力,取二者中的较小值。最终选择还应考虑到在整个预期的运行压力内的凝汽器与其抽气设备的协调运行。此外,当选择设计吸入压力时,还应考虑抽气设备的实际位置。 ——工业和船用汽轮机或泵等其他机械动力设备用凝汽器的设计吸入压力为凝汽器设计压力减去 3.386 kPa 或为运行所要求的最低压力,取二者中的较小值,但不得低于3.386 kPa (a )。 C.3 设计吸入温度 设计吸入温度(即抽吸的汽-气混合物温度),应为抽气设备设计压力相对应的饱和蒸汽温度t vs (℃)减去0.25(t s -t w1)或4.16 ℃中的较大值(t s 为蒸汽凝结温度,t w1为冷却水进口温度)。 运行中抽气口的蒸汽实际温度受到运行特性、不凝结气体负荷和抽气设备容量特性的影响,不一定等于设计吸入温度。 C.4 水蒸汽量的计算 混合气体中饱和水蒸汽量与不凝结气体的比值按公式(C.1)计算: w VS w g g w 18 P P P M W W -? = .................................. (C.1) 式中: W w ——混合气体中的饱和水蒸汽质量,单位为千克(kg ); W g ——混合气体中的不凝结气体质量,单位为千克(kg ); P w ——与凝汽器抽气口处温度相对应的水蒸汽的饱和压力,单位为千帕[kPa (a )]; M g ——不凝结气体的平均分子量。不凝结气体为干空气时其分子量为29;

真空发生器的工作原理

真空发生器的工作原理 【气动元件】2009-12-15 19:01:50 阅读763 评论0 字号:大中小订阅 真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便.真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域.真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体.在这类应用中,一个共同特点是所需的抽气量小,真空度要求不高且为间歇工作.笔者认为对真空发生器的抽吸机理和影响其工作性能因素的分析研究,对正负压气路的设计和选用有着不可忽视的实际意义. 上图所示为真空发生器的工作原理图,它由喷嘴、接收室、混合室和扩散室组成。压缩空气通过收缩的喷射后,从喷嘴内喷射出来的一束流体的流动称为射流。射流能卷吸周围的静止流体和它一起向前流动,这称为射流的卷吸作用。而自由射流在接收室内的流动,将限制了射流与外界的接触,但从喷嘴流出的主射流还是要卷吸一部分周围的流体向前运动,于是在射流的周围形成一个低压区,接收室内的流体便被吸进来,与主射流混合后,经接收室另一端流出。这种利用一束高速流体将另一束流体(静止或低速流)吸进来,想互混合后一超流出的现象称为引射现象。若在喷嘴两端的压差达到一定值时,气流达声速或亚声速流动,于是在喷嘴出口处,即接收室内可获得一定的负压。

由流体力学可知,对于不可压缩空气气体(气体在低速进,可近似认为是不可压缩空气)的连续性方程 A1v1= A2v2 式中A1,A2----管道的截面面积,m2 v1,v2----气流流速,m/s 由上式可知,截面增大,流速减小;截面减小,流速增大. 对于水平管路,按不可压缩空气的伯努里理想能量方程为 P1+1/2ρv12=P2+1/2ρv22 式中P1,P2----截面A1,A2处相应的压力,Pa v1,v2----截面A1,A2处相应的流速,m/s ρ----空气的密度,kg/m2 由上式可知,流速增大,压力降低,当v2>>v1时,P1>>P2.当v2增加到一定值,P2将小于一个大气压务,即产生负压.故可用增大流速来获得负压,产生吸力.

探究凝汽式或抽凝式汽轮机改造成背压式汽轮机的方法

探究中小型凝汽式或抽凝式汽轮机 改造成背压式汽轮机的方法 摘要:由于中小型凝汽式或抽凝式汽轮在使用过程中具有发电煤耗高的缺陷,须将其改造成为热电比大与热经济性好的背压式汽轮机。然而在改造过程中,由于该类型汽轮机的排气温度会逐渐增高,造成汽缸后部热膨胀增大形成,最终会影响改造后汽轮机运行安全。针对这一问题,本文设计了一种新的改造方案,控制后汽缸温度,保障汽轮机正常、安全运行。 关键词:中小型;凝气式汽轮机;抽凝式汽轮机;背压式汽轮机 现阶段,受我国能源政策以及汽轮机自身因素等的影响,大多企业自备电站中,许多凝汽式或抽凝式汽轮机长期处于闲置的状态。例如,凝汽式汽轮机发电的热电比与热电效率非常低,不能满足国家的政策要求而被迫停运;抽凝式汽轮机的抽汽参数满足不了供热需要而被长期闲置。因此,为满足企业的供热需求与长期的规划需要,有必要将这些汽轮机组改造成为性能良好的背压式汽轮机组,在保证较少投资的前提下,提高汽轮机组的能源利用率。 一、改造具体实例与改造难题分析 (一)改造具体实例 1.原汽轮机改造的基本情况。某化工生产厂拥有一台C15-4.9/ 0.981型的抽凝式汽轮机组,0.00805MPa为该机组的平排汽压力,0.495MPa为其抽汽压力,3.435 MPa,435.5℃为其进汽参数。这一抽凝式汽轮发电机组共有7级汽轮机,分别分布在抽汽口前后的高低压段中。其中,有1个压力级和1个双列调节级的汽轮机分布在抽汽口前的高压段中,而抽汽口低压段中分布有4个压力级和1个双列的低压调节级。当该发电机组的抽汽流量与额定进汽量分别为5.5t/h,1 2.5 t/h的情况下,其发电功率达1550KW。 2.汽轮机组改造要求。由于该化工厂的实际化工生产量持续增加,从而导致了蒸汽量紧张的问题出现;同时,该抽凝式发电机组长期的运行环境为纯凝

射汽式抽气器的工作原理及故障分析

发电机抽汽器工作原理及真空低故障分析 摘要:本文以低压发电射汽式抽气器为例阐述了发电机真空低故障的分析及处理办法。 关键词:凝结器、膨胀节、空气管道、抽气器等。 1、真空低的危害:蒸汽在气轮机中膨胀较大,减小了焓降和循环热的效率,汽轮机做功少等。 2、影响真空的部位:冷却器冷却效果差、膨胀结及相关的阀门管道泄漏、抽气器工作效率差等。 3、射汽式抽气器的工作过程具体描述与分析: 射汽式抽气器主要由工作喷嘴、混合室及扩压管三部分组成,其基本结构如图所示。在结构上,工作喷嘴采用了缩放喷嘴的结构形式,这种结构可以在其出口处获得超音速汽流,在混合室与扩压管之间还设有一段等截面的喉管,其作用是使工作蒸汽和被抽吸气体充分混合,以减少突然压缩损失和余速动能的损失。为突出射汽抽气器工作过程中的主要特点,将抽气器流动的工质当作理想气体处理,并假设工质在抽气器内的流动是一维稳态绝热流动。射汽抽气器内工质的压力、速度变化曲线如图所示。 ***********************************************************************

在上述假设的前提下,射汽抽气器的整个工作过程可以为三个阶段,具体描述如下: (1)、P点截面→2点截面为工作蒸汽在工作喷嘴内的膨胀增速阶段。 较高压力的工作蒸汽在工作喷嘴入口处(P点)以低于声速的汽流速度进入射汽抽气的工作喷嘴。在工作喷嘴的渐缩段流动时,其压力不断减少,速度不断增加。在工作喷嘴的喉部(最小截面处1点),汽流速度达到音速,即马赫数等于1。工作蒸汽在进入喷嘴的渐扩段后,压力进一步下降,汽流速度进一步增加,达到超音状态,在工作喷嘴出口截面处,工作蒸汽的汽流速度可达到900-1200m/s. (2)、2点截面→3点截面为工作蒸汽与被吸入气体的混合阶段。 工作蒸汽在工作喷嘴出口截面处所形成的高速汽流会在工作喷嘴出口附近形成真空区域,这样压力相对较高的被抽吸气体就会在压力差的作用下,被吸入到混合室内,被吸气体在e点被吸入抽气器,从e点流动到3点的过程中,速度不断增加,压力在e点→2点不断下降到工作蒸汽在工作喷嘴出口截面处(2点)的压力,此后在混合室段和喉管前段(2→ ***********************************************************************

抽气器

抽气器 1、抽气器的作用抽气器的作用是将漏入凝汽器内空气不断地抽出,以维持凝汽器内的高度真空。故抽气器工作的好坏对凝汽器工作的影响很大。任何一种抽汽器,不论其结构和工作原理如何,都是一种压气器,它将汽气混合物从凝汽器抽气口的压力压缩到高于大气压的出口压力。 2、抽气器的型式抽气器的型式有机械式和喷射式两种。喷射式抽气器结构简单、工作可靠、制造成本低、维护方便、建立真空快。常用的喷射式抽气器有射汽抽气器和射水抽气器两种,工作原理相同工质不同。前者用蒸汽做工质,后者用水做工质。 (一)射汽抽气器 1.启动抽气器的结构和工作原理: 启动抽气器的作用是在汽轮机启动前给凝汽器建立真空,以缩短机组启动时间。图5--8为启动抽气器示意图,它主要由工作喷嘴A、混合室B和扩压管C 所组成。工质是新蒸汽,新蒸汽进入工作喷嘴A,在喷嘴A膨胀加速造成一个远高于音速的高速汽流射入混合室。高速汽流有很强的空吸作用,从而将从抽气口 来的汽气混合汽流带走,并进入扩压管C。混合汽流在扩压管C中不断扩压,直到压力稍大于大气压力后排入大气。 启动抽气器功率大建立真空快,但工质和工质的热量不能回收,有经济损失。故它只作为启动时用。一旦汽轮机正常工作以后,主抽气器便投入工作,启动抽气器停止工作。 2. 主抽气器

主抽气器的作用:是在汽轮机正常工作时使用,以维持凝汽器的高度真空。主抽气器一般都采用带中间冷却器的多级型式。其目的在于可以得到更高的真空度,同时也可以回收工质和热量,提高经济性。图5-- 9为两级射汽抽气器工作原理图。凝汽器内的汽 气混合物由第一级抽气 器抽出,并压缩到某一 中间压力(低于大气压 力),然后进入中间冷却 器2。在中间冷却器2 中,混合物中的部分蒸 汽被凝结成水,而未凝 结的汽气混合物又被第 二级抽走。在第二级抽 气器中,汽气混合物被 压缩到略高于大气压力, 再经第二级冷却器4进 一步凝结并回收工质和热量。最后的空气和少量未凝结的蒸汽一起排入大气。(二)射水抽气器 射水抽气器的工作原理:射水抽气器的工作原理同射汽抽气器相同,如图5--12所示。它主要由工作水进口1,喷嘴2,混合室5,扩压管7和逆止阀6等部件所组成。压力水由射水泵供给,经喷嘴形成高速射流射出,从而将凝汽器中的汽气混合物抽出。 不同的是它以水代替蒸汽作为上作介质。工作水压保持在0.2~0.4MPa,由专用的射水泵供给,压力水由水室进入喷嘴,喷嘴将压力水的压力能转变为速度能以高速射出,在混合室内形成高度真空,使凝汽器内的气、汽混合物被吸入混合室进入扩压管,流速逐渐下降,最后在扩压管出口其压力升至略高于大气压力而排出进入冷却池。 为了防止喷嘴内的工作水倒吸入凝汽器内,在抽气器的气汽混合物的入口处装有逆止阀(近年来,为减小管道阻力可拆除逆止阀,在抽空气的管道上装置一

真空泵及其工作原理介绍

真空泵及其工作原理介绍 真空泵是指利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真空的器件或设备。通俗来讲,真空泵是用各种方法在某一封闭空间中改善、产生和维持真空的装置。 由于真空应用部门所涉及的工作压力的范围很宽,因此任何一种类型的真空泵都不可能完全适用于所有的工作压力范围,只能根据不同的工作压力范围和不同的工作要求,使用不同类型的真空泵。为了使用方便和各种真空工艺过程的需要,有时将各种真空泵按其性能要求组合起来,以机组型式应用。 1、真空泵的种类 随着真空应用的发展,真空泵的种类已发展了很多种,其抽速从每秒零点几升到每秒几十万、数百万升。随着真空技术在生产和科学研究领域中对其应用压强范围的要求越来越宽,大多需要由几种真空泵组成真空抽气系统共同抽气后才能满足生产和科学研究过程的要求。 常用真空泵包括:干式螺杆真空泵、水环泵、往复泵、滑阀泵、旋片泵、罗茨泵和扩散泵等,这些泵是我国国民经济各行业应用真空工艺过程中必不可少的

主力泵种。近年来,伴随着我国经济持续高速发展,真空泵相关下游应用行业保持快速增长势头,同时在真空泵应用领域不断拓展等因素的共同拉动下,我国真空泵行业实现了持续稳定地快速的发展。 2、真空泵的总体结构式与传动方式 真空泵的泵体的布置结构决定了泵的总体结构:1)、立式结构:进、排气口水平设置,装配和连接管路都比较方便。但泵的重心较高,在高速运转时稳定性差,故这种型式多用于小泵;2)、卧式结构:泵的进气口在上,排气口在下。有时为了真空系统管道安装连接方便,可将排气口从水平方向接出,即进、排气方向是相互垂直的。此时,排气口可以从左或右两个方向开口,除接排气管道一端外,另一端堵死或接旁通阀。这种泵结构重心低,高速运转时稳定性好。一般大、中型泵多采用此种结构。泵的两个转子轴与水平面垂直安装。这种结构装配间隙容易控制,转子装配方便,泵占地面积小。但泵重心较高且齿轮拆装不便,润滑机构也相对复杂。 真空泵的传动方式:真空泵的两个转子是通过一对高精度齿轮来实现其相对同步运转的。主动轴通过联轴器与电机联接。在传动结构布置上主要有以下两种:其一是电动机与齿轮放在转子的同一侧如图。从动转子由电动机端齿轮直接传过去带动,这样主动转子轴的扭转变形小,则两个转子之间的间隙不会因主动轴的扭转变形大而改变,故使转子之间的间隙在运转过程中均匀。这种传动方式的最大缺点是:a.主动轴上有三个轴承,增加了泵的加工和装配难度,齿轮的拆装及调整也不便;b.整体结构不匀称,泵的重心偏向电动机和齿轮箱一侧。 所具有的特点:1)、在较宽的压力范围内有较大的抽速;2)、转子具有良好的几何对称性,故振动小,运转平稳。转子间及转子和壳体间均有间隙,不用润滑,摩擦损失小,可大大降低驱动功率,从而可实现较高转速;3)、泵腔内无需

相关文档
最新文档