红外分析实例

红外分析实例
红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为- CH2- 的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2- 的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2- 的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。

由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。

每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。与基质沥青比较,SBS改性沥青的红外光谱在698cm-1和

966.1cm-1处出现了明显的特征吸收峰,分别由SBS改性剂中的聚苯乙烯苯环和聚丁二烯双键等特征官能团形成。

本文测试了五种不同产地的沥青的红外光谱,其图谱如上图。为了解析图谱和推导结构的方便,习惯上把红外光谱按照波数范围分为四大峰区(也有分为五大峰区的)每个峰区对应某些特征振动吸收。第一峰区(3700-2500cm-1)为X-H 的伸缩振动,第二峰区(2500-1900cm-1)为三键和累积双键的伸缩振动,第三峰区(1900-1500cm-1)为双键的伸缩振动及H-O,H-N的弯曲振动。除氢外的单键(Y-X)伸缩振动及各类弯曲振动位于第四峰区(1500-600cm-1)又称指纹区。

从图2-2 可以看出,对不同种类沥青试样测试得到的红外光谱进行对比,在沥青红外谱图中普遍存在有10个较为明显的吸收谱带,对应的波数分别为2924cm-1、2853cm-1、1600cm-1、1461cm-1、1377cm-1、1031cm-1、868cm-1、812cm-1、747cm-1和722cm-1,其中指纹区小于1000cm-1的谱带未在上图2-2 标出。壳牌

-70和双龙-70 除了以上10 个吸收谱带外,在波数为1686cm-1、1671cm-1处分别还出现了一个新的吸收谱带。

对沥青红外光谱图中的吸收谱带分别进行解析,结果见表2-2。由表可知,沥青在化学组分的构成上主要为脂肪族化合物、芳香族化合物以及杂原子衍生物。壳牌-70 中出现了明显的C=O 吸收谱带,双龙-70 沥青中出现了伯酰胺羰基

C=O 的伸缩振动吸收谱带,表明沥青在制备过程中即发生了氧化反应。但是由于沥青样品的不同、被氧化的官能团不同,导致红外中的峰值有所区别。

通过对不同沥青红外光谱的红外峰值进行分析,发现大部分沥青所含有的官能团结构相似,但是其组成和含量的不导致不同种类的沥青在物理性能上区别很大,其中壳牌-70 和双龙-70 易于被氧化,在短期加热的制备过程中就出现了

C=O 的官能团,但是对于沥青具体的结构的区分通过简单的外图谱的峰值很难进行细分。进一步对沥青各个官能团的含量进行比较,但是在测试时由于红外光谱受浓度影响较大,测试只能达到半定量,谱线峰面积的绝对含量比较意义不大,需要通过计算相对含量来对官能团的峰面积进行定量的分析。

基质沥青的红外光谱图如图7.1所示。

图7.1 AS90基质沥青红外光谱图

由图7.1可知,基质沥青在2800~3000cm-1左右沥青的红外光谱出现很强的吸收峰。饱和烃及其衍生物的C-H和-CH2-的伸缩振动小于3000cm-1,3000cm-1是饱和烃和不饱和烃相区别的分界线,其中以-CH2-的吸收最强。从图中2919cm-1和2851cm-1的吸收峰可判断沥青中含有饱和烃,1597cm-1的吸收峰一部分是由共轭双键N=N(苯环骨架振动)引起的,另一部分是由C=O的吸收引起的,由此可判定芳香族化合物的存在。1456cm-1、1374cm-1的吸收峰是由C-H面内弯曲振动峰引起的,它们为沥青中-CH3-烷烃基团弯曲振动吸收峰。807cm-1(三个相邻氢原子)、723cm-1(芳烃五个相邻氢原子)的吸收峰是由=C-H面外弯曲振动峰引起的,807cm-1的吸收峰说明沥青中含有三取代烯、或者三个相邻氢原子基团,723cm-1的吸收峰说明沥青中含有芳烃基团,根据光谱图分析可知,基质沥青主要是由饱和烃、芳香族化合物以及杂原子衍生物等构成。

橡胶沥青的红外光谱如图7.2所示。

图7.2 AS90橡胶沥青红外光谱图

从图7.2可以看出,橡胶沥青和基质沥青的红外光谱图形上来看,基质沥青比橡胶沥青少了一个946cm-1的吸收峰,但是却比橡胶沥青多了一个1096 cm-1的吸收峰。红外光谱的1300cm-1~650cm-1的低频区称为指纹区。所以这两个峰均是指纹区的吸收峰。

1096 cm-1的吸收峰是一个强度变化的吸收峰,振动类型为伸缩振动型,归属R-O-R,官能团为脂肪醚。

946 cm-1的吸收峰在976-960 cm-1和915-905 cm-1之间,976-960 cm-1的吸收峰属于较强的吸收峰,915-905 cm-1同样也属于较强的吸收峰,所以946 cm-1应当是一个强的吸收峰,振动类型是=C-H面外弯曲振动类型。

载玻片红外光谱全反射方法,对于基质沥青和橡胶沥青的图谱基本相同,这说明橡胶沥青中,废旧橡胶粉和沥青主要发生的是物理共混反应,因为载玻片全反射法主要是通过照射物质表面,通过表面的物质吸收一部分光谱,再把光线反射回去,然后绘出红外光谱图,如果主要发生的是化学共混反应的话,那么必然产生了大量的新官能团,反映到图谱上必然出现大量的新吸收峰。然而在徐江萍、鲍燕妮采用溴化钾涂片法,得到的硅改沥青红外图谱基本上是基质沥青和硅藻土两者红外图谱的叠加图谱,而没有出现新的官能团,所以断定硅改沥青属于物理共混反应。这是因为溴化钾涂片法主要是通过光线透射溴化钾压片来得到其中物质的红外吸收图谱的,所以这种方法得到的图谱肯定是溴化钾压片上所有物质红

外吸收的图谱。而载玻片法主要是通过反射载玻片表面物质而得到的图谱,所以它得到的基质沥青的图谱和橡胶沥青的图谱基本是相同的。所以说明了橡胶沥青中所发生的反应主要以物理共混反应为主,同时存在微弱的化学反应。946cm-1和1096 cm-1这两个吸收峰或许就是基质沥青和橡胶沥青的不同之处,这就是橡胶沥青发生的化学反应,产生和消失的官能团。

BRA红外光谱

对以上四张红外光谱图进行分析,得到分析结果见表3.15-3.18。

表3.15-3.18可知:

1)BRA原材料颗粒分子主要由不饱和碳链及叛基、胺基以及碳酸盐、硅酸盐和氧化硅构成,BRA纯沥青分子主要由不饱和碳链及羧基、胺基等组成,泰普克A-70#基质沥青分子主要由饱和及不饱和碳链构成,20%BRA改性沥青分子主要由饱碳链、不饱和碳链、羧基和胺基构成。由构成成分可知,BRA接入基质沥青中后,主要成分为一个混溶叠加的物理过程,官能团并没有发生变化。

2)在3种沥青中,对比-OH键吸收峰面积,BRA纯沥青是基质沥青的6.4倍,并且在BRA纯沥青光谱图中1430.21cm-1处出现新的C-H基团强吸收峰,峰面积亦为基质沥青中C-H(甲基和亚甲基)吸收峰的30.3倍,改性沥青介于之间。而-OH键和C-H键键能均大于其他键,说明BRA稳定性高于基质沥青,用BRA作改性剂能提高基质沥青的稳定性。

3)在20%BRA改性沥青光谱图中1045.95cm-1处,出现O-Si-O伸缩振动,862.62cm-1处出现碳酸盐羧基C-H伸缩振动,基质沥青中没有,而在BRA纯沥青光谱图中1021.20cm-1、865.71cm-1处也有O-Si-O和碳酸盐餓基C-H伸缩振动,可断定此官能团由BRA纯沥青中存在与沥青分子结合的微量碳酸盐和二氧化硅带入。从分子层面分析,说明O-Si-O、碳酸盐叛基C-H与沥青分子交联在一起,使沥青的分子排列结构发生改变,增强了沥青的内聚力。

4)BRA原材料颗粒与BRA纯沥青官能团没有很大差异,BRA原材料颗粒多了矿物质的吸收峰,而BRA纯沥青中没有。

煤沥青

图 3.1 表示为中温煤沥青(C-1)和其族组分的FT-IR 谱图。根据吸收峰的波长分析其官能团的归属,对中温煤沥青(C-1)和其族组分的FT- IR 谱图进行比较分析。从图3.1 可以看出,在3050cm- 1 处有芳香烃分子的 C H伸缩振动峰;在2920cm-1和2860cm-1有脂肪族的甲基(-CH3)和亚甲基(-CH2-)的CH伸缩振动峰;在1600cm-1和1450cm-1附近有芳香族分子的C=C伸缩振动峰;在1400cm-1附近有甲基(-CH3)和亚甲基(-CH2)的CH面弯曲振动峰;在875cm-1对应为多取代芳烃CH面外弯曲振动,810cm-1 为芳烃分子双取代或取代CH面外弯曲振动;745cm-1 为芳烃单取代CH面外弯曲振动;这说明煤沥青和其族组分的化学结构组成多为芳香族化合物和脂肪族化合物。

在1900cm-1~2000cm-1处为累积共轭双键的振动峰,TS组分和β树脂在此处都有明显的振动峰,这说明TS组分和β树脂中含有累计共轭双烯结构,TI组分和QI组分中没有这个结构。对比煤沥青的TS组分、β树脂和QI组分在相同波数处振动峰的强度发现,在3050cm-1、2920cm-1、2860cm-1、1400cm-1和745cm-1的振动峰的振动强度为I TS>Iβ树脂>I CTP>I T I>I QI,这说明TS组分和β树脂中的芳烃分子上含有脂肪族侧链和侧基以及含有脂肪族化合物,且TS组分芳烃分子的脂肪族侧链和侧基比β树脂的更发达,脂肪化合物含量更多。QI组分在2920cm-1、2860cm-1和1400cm-1处的特征吸收峰几乎消失,这说明QI组分中几乎不含脂肪族化合物,多为高度缩聚的取代苯环化合物,稠环芳烃的缩合程度较高。

BRA改性

图5 是克拉玛依70#沥青、BRA 和BRA 改性沥青的红外光谱图。从图 5 中各峰位可看出,BRA 改性沥青比克拉玛依70#沥青增加了2 512. 54、1 800. 10 cm-1和1 029. 06 cm-1处的吸收峰,但由BRA 的红外光谱图可发现,其在2 512.

84、1 799. 02cm-1和1 026. 89 cm-1也出现了类似的吸收峰,由此可推出BRA 改性沥青中新增加的吸收峰为掺加BRA时带入的。另外,BRA 改性沥青在1 453.

70 cm-1处峰的宽度及强度均有明显增大,这是由于基质沥青在1 454. 35 cm-1处出现C-H面内弯曲振动吸收峰,同时BRA中无机碳酸盐的碳酸根-2

CO中羰基

3

C =O) 的伸缩振动吸收峰也出现在该区,两者相互叠加便导致该处峰的宽度及强度都有增大趋势。综合以上分析可知BRA 改性沥青中没有产生新的吸收峰,且峰位也没有出现大的位移。由此可见,当BRA 掺入到基质沥青进行改性后,并未产生新的官能团,即BRA 与基质沥青没有发生化学反应,布敦岩沥青的加入只是一个简单的物理混溶过程。

SBS改性沥青

( 1) 从图1~图3 可以看到,所有图谱中最明显的是2 924 cm-1、2 853 cm-1、1 602 cm-1、1 455 cm-1以及 1 376 cm-1附近的五个吸收峰,其中2 924 cm-1和2 853 cm-1处是—CH2—反对称伸缩、—CH2—对称伸缩的吸收峰,并且这两个峰都有肩峰,分别位于2 955 cm-1和 2 870 cm-1左右,它们是—CH3反对称伸缩和—CH3对称伸缩的吸收峰,—CH2—和—CH3的吸收峰叠加在一起便形成了这种出现肩的结构,而且由此可以看出—CH2—的含量要比—CH3的含量高.1 602 cm-1是苯环C = C 骨架震动的吸收峰,1 455 cm-1是—CH2—弯曲振动和—CH3不对称弯曲振动叠加的吸收峰,因为—CH2—弯曲振动的频率位于1 465 cm-1左右,和—CH3不对称弯曲振动的频率( 1 460 cm-1附近) 非常接近,这两个频率带通常会叠加在一起.1 376 cm-1是—CH3对称弯曲振动的吸收峰.这些吸收峰说明了沥青是由多种饱和长链烷烃、芳香族、带长链的碳氢化合物组成的混合物,组成和结构比较复杂.

( 2) 图1 说明看出沈大高速公路提取的自然老化7a的SBS改性沥青相对于未老化的SBS改性沥青在760 cm-1、787 cm-1、875 cm-1、964 cm-1、1 030 cm-1、1 700 cm-1、3 385 cm-1左右均有明显的吸收峰.经图谱识别,760 cm-1、787 cm-1、875 cm-1处是苯环取代物的吸收峰,964 cm-1处是烯烃面外弯曲振动的吸收峰,是SBS 中丁二烯的吸收峰,1 030 cm-1处是亚砜的吸收峰,1 700 cm-1处是酮类物质的吸收峰,3 385 cm-1处是羟基的吸收峰.老化后的沥青整体的吸收都要强

很多,2 924 cm-1处的—CH2—反对称伸缩吸收变化不大,但是2 955 cm-1处的肩峰的吸收明显变强了,由此可以推断—CH3反对称伸缩吸收峰的吸收变强了,2 853 cm-1处的—CH2—对称伸缩吸收峰和2 870 cm-1处的—CH3对称伸缩肩峰也有吸收增强的现象,说明在老化的过程中—CH2—和—CH3基团都有不同程度的增加,经分析应该是在老化的过程中有些高分子长链化合物发生了断链分解,双键或者三键断裂生成了饱和—CH3基团,而有一些小分子化合物由于脱氢缩合生成了长链化合物,或者双键三键发生加成反应生成了—CH2—基团,从而引起这两种基团的浓度上升,吸收加强.表明SBS改性沥青在老化过程中,沥青发生了诸多化学反应,其中以氧化反应为主.沥青中的硫和部分碳被氧化成—S = O—和—C = O—基团,生成了亚砜、酮类和羧酸.并且同一图谱中—CH2—和—CH3的相对含量,可以根据 1 455 cm-1与 1 376 cm-1的峰强度进行估算.由图可见老化沥青的—CH2—含量显著增高,说明在老化过程中很多短链碳氢化合物发生了加成、聚合反应后,生成了更多的长链化合物,芳香分和胶质向沥青质转化,同时伴随着沥青的硬化和脆化.这点与petersen的研究结果类似,见证了“氧化反应是造成沥青硬化,黏度增加的主要因素”.同时沥青的针入度降低、延度变差也支持这一结论.

(3)图2 说明,经过RTFOT 老化实验得出的老化SBS改性沥青,同样也在762 cm-1、787 cm-1、964 cm-1、1 030 cm-1、1 700 cm-1、3 385 cm-1左右有吸收峰,而且老化时间越长红外吸收现象越明显.由此可以表明RTFOT 老化沥青在高温和氧气的作用下发生了热氧老化,而且与自然老化沥青图谱的相似性表明沥青在自然条件因素下所发生的主要的老化就是热氧老化。不过相对自然老化的沥青,人工老化沥青的吸收峰不那么突出,1 030 cm-1处亚砜吸收峰不突出,可能是由于亚砜的热稳定性较差,145 ℃时就可能发生热分解有关.在实验采用的老化温度下,亚砜可能发生了分解.而且由于室内老化实验是单一的热氧老化,与自然老化条件下,沥青承受复杂因素耦合作用的老化过程相比,室内老化产物的丰富性和老化强度都有所欠缺,但作为热氧老化模拟试验分析方法的研究,图谱分析方法无疑为解释沥青热氧老化机理,提供了有利的佐证.( 4 ) 图3~5 说明,再生沥青697 cm-1、726 cm-1、760 cm-1、786 cm-1、1 494 cm-1、1 030 cm-1、1 074 cm-1、1 700 cm-1处有明显的吸收峰.前五个吸收峰的存在,说明再生剂中存有大量芳香烃,张永兴、熊出华等人采用分子动力学模拟方法对再生剂与老化沥青微观作用机理的研究表明芳香分有利于改善沥青的相容性.并且从降低溶解度参数差值的角度看,芳香分由于具有与沥青质相近的溶解度参数以及良好的溶解其他烃类的能力,能显著降低老化沥青中溶质和溶剂的溶解度参数差值,使沥青成为均匀稳定的高分子溶液.再生剂中芳香烃的存在有助于调整老化沥青的组分,改善老化沥青的相容性和抗老化性能,进而恢复老化沥青的路用性能,延长道路沥青的使用寿命,取得良好的再生效果.1 030 cm-1是亚砜的吸收峰,1 074 cm-1可能是醚、酯或者酸酐的吸收峰,1 700 cm-1是酮类物质.这些物质均是沥青氧化的产物,再生剂中含有此类物质可能是由于化学平衡原理,起到对氧化反应的抑制作用,同样起到改善抗老化性能的作用.

由图4-15 和表 4.2 可以得到以下结论:(1)对各种沥青试样的红外光谱图进行(—CH2)归一化处理后,其在特征区(4000 cm-1 ~ 1300 cm-1 )的波数为3433 cm-1、2917 cm-1、2850 cm-1、2850 cm-1、1690 cm-1、1630 cm-1、1455 cm-1、1378 cm-1等处产生了大小不同的吸收峰,在指纹区(1300 cm-1 ~600 cm-1)之间的波数为1032 cm-1、867 cm-1、808 cm-1、716 cm-1各位置产生了大小不一的吸收峰。同时,五种沥青试样3433 cm-1的羟基(—OH)、1690 cm-1的羰基(C=O)、1630 cm-1的碳碳双键(C=C)等位置的吸收峰的大小或者位置存在着变化,吸收峰的异同处见图4-16 至图4-18。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC (American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

近红外光谱分析原理

近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(M IR)之间的电磁波,按ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。

近红外光谱分析技术包括定性分析和定量分析,定性分析的目的是确定物质的组成与结构,而定量分析则是为了确定物质中某些组分的含量或是物质的品质属性的值。与常用的化学分析方法不同,近红外光谱分析法是一种间接分析技术,是用统计的方法在样品待测属性值与近红外光谱数据之间建立一个关联模型(或称校正模型,Calibration Mode l)。因此在对未知样品进行分析之前需要搜集一批用于建立关联模型的训练样品(或称校正样品,Calibration Samples),获得用近红外光谱仪器测得的样品光谱数据和用化学分析方法(或称参考方法,Reference method)测得的真实数据。 其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程: (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使

红外分析实例

图1 就是SBS 红外光谱图, 可以瞧出2921cm-1、2846cm-1为- CH2- 得伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核得动吸收峰, 699cm-1、757cm-1为单取代苯环得振动吸收峰, 966cm-1为C=C 得扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以瞧出各特征峰所对应得基团 :2924cm-1、2853cm-1为- CH 2 - 得伸缩振动吸收峰, 2960cm-1为- CH 3伸缩振动吸收峰,1460cm-1为- CH 2 - 得剪式 振动吸收峰, 1377cm-1为- CH 3 剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域就是苯环取代区,出现得几个吸收峰就是由苯环上C-H面外摇摆振动 形成得;而波数1375cm-1与1458cm-1处得吸收峰则由 C-CH 3与-CH 2 -中C-H面内伸 缩振动形成得;波数2800~3000cn-1范围内得吸收峰比较强,就是环烷烃与烷烃 得C-H 伸缩振动得结果,由-CH 2-伸缩振动形成得。

由全波段得红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现得强吸收峰带基本相同,吸收峰得位置没有发生变化。就改性沥青而言,整个功能团没有发现新得吸收峰,但吸收峰得强度随SBD改性剂含量得增大而略有增强。由650~1100cm-1波区得红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青得吸收峰存在明显差异,即在波数690~710cm-1与950~980cm-1处,SBS改性沥青得红外波区吸收相对较强,并在966、1cm-1与698cm-1处出现了吸收峰,虽然波数698cm-1得绝对吸收峰值较波 966、1cm-1处得大,但波数966、1cm-1处得吸峰特征更为明显。 每种物质分子都有一个由其组成与结构所决定得红外特征吸收峰,它只吸收一些特定波长得红外光。由于掺入得SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯与聚丁二烯并没有发生化学变化,所以SBS改性沥青得红外光谱只就是在基质沥青得红外光谱上简单叠加了聚苯乙烯与聚丁二烯得红外光谱,而相应得吸收峰位置与强度基本保持不变,就是基质沥青与SBS改性剂得红外光谱得

近红外光谱技术在药物分析中的应用

近红外光谱技术在药物分析中的应用 1·前言 近红外光谱分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析“巨人”,它的出现可以说带来了又一次分析技术的革命。 近红外(NIR)谱区是人类认识最早的非可见光谱区,波长范围在0.75—2.5 m之间,用波数表示时则在13330—4000cm-1之间。由于近红外的吸收谱带复杂,谱峰重叠,信号弱,在分析上难以应用,长期以来没有受到人们的重视。近十多年来,随着近红外仪器的改良,新的光谱理论和光度分析方法的建立,特别是计算机技术和化学计量学的广泛应用和迅速发展,使近红外光谱技术成为目前发展最快、最引人注目的分析技术,并以其简单快速、实时在线、无损伤无污染分析等特点,在复杂物质的分析上得到广泛应用。在包括制糖和制药的许多与化学分析和品质管理有关的行业中的应用前景极其广阔。 关于近红外光谱技术在制药行业中应用的文献报道越来越多,显示了近红外光谱技术在制药领域中越来越受到人们的重视。近红外光谱分析具有的快速实时、操作简单、无损伤测定、不受样品状态影响的特点很符合药物分析的要求。因此,在制药业中原料药的分析、药物制剂中水分、有效成分的分析、药物生产品质的过程控制等方面近红外光谱技术得到了十分广泛的应用。 2·光谱介绍 近红外光是介于可见光和中红外光之间的电磁波,根据ASTM(美国试验和材料检测协会)定义是指波长在780~2526nm范围内的电

磁波,习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2526nm)两个区域。 近红外光谱属于分子振动光谱的倍频和主频吸收光谱,主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,具有较强的穿透能力。近红外光主要是对含氢基团X-H(X=C、N、O)振动的倍频和合频吸收,其中包含了大多数类型有机化合物的组成和分子结构的信息。由于不同的有机物含有不同的基团,不同的基团有不同的能级,不同的基团和同一基团在不同物理化学环境中对近红外光的吸收波长都有明显差别,且吸收系数小,发热少,因此近红外光谱可作为获取信息的一种有效的载体。近红外光照射时,频率相同的光线和基团将发生共振现象,光的能量通过分子偶极矩的变化传递给分子;而近红外光的频率和样品的振动频率不相同,该频率的红外光就不会被吸收。因此,选用连续改变频率的近红外光照射某样品时,由于试样对不同频率近红外光的选择性吸收,通过试样后的近红外光线在某些波长范围内会变弱,透射出来的红外光线就携带有机物组分和结构的信息。通过检测器分析透射或反射光线的光密度,就可以确定该组分的含量。 3·近红外光谱技术在制药业中的应用 3·1 原料和活性组分的测定 药物加工过程中第一步就是原料的鉴定,其质量的好坏直接决定后续加工过程的成败于否,而同一类型的原料中多变因素主要是湿度和颗粒大小,近红外光谱在湿度测定中的灵敏度及其适于固体表面的表征的特性,使他能够很快地得到样品的湿度和颗粒大小的信息,然

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

红外分析实例

图1 是SBS 红外光谱图, 可以看出2921cm-1、2846cm-1为-CH2-的伸缩振动吸收峰, 1601cm-1、1493cm-1为苯核的动吸收峰, 699cm-1、757cm-1为单取代苯环的振动吸收峰, 966cm-1为C=C 的扭曲振动吸收峰, 911cm-1为=CH2面外摇摆振动吸收峰。

从图2、图 3 可以看出各特征峰所对应的基团:2924cm-1、2853cm-1为- CH2-的伸缩振动吸收峰, 2960cm-1为- CH3伸缩振动吸收峰,1460cm-1为- CH2-的剪式振动吸收峰, 1377cm-1为- CH3剪式振动吸收峰。

由图1可见,基质沥青红外光谱图中出现了3处吸收峰,其中波数650~910cm-1区域是苯环取代区,出现的几个吸收峰是由苯环上C-H面外摇摆振动形成的;而波数1375cm-1和1458cm-1处的吸收峰则由C-CH3和-CH2-中C-H面内伸缩振动形成的;波数2800~3000cn-1范围内的吸收峰比较强,是环烷烃和烷烃的C-H 伸缩振动的结果,由-CH2-伸缩振动形成的。

由全波段的红外光谱(图3)可知,改性沥青与基质沥青在2800~3000cm-1左右出现的强吸收峰带基本相同,吸收峰的位置没有发生变化。就改性沥青而言,整个功能团没有发现新的吸收峰,但吸收峰的强度随SBD改性剂含量的增大而略有增强。由650~1100cm-1波区的红外光谱(图\4、图5)可知,在指纹区改性沥青与基质沥青的吸收峰存在明显差异,即在波数690~710cm-1和950~980cm-1处,SBS改性沥青的红外波区吸收相对较强,并在966.1cm-1和698cm-1处出现了吸收峰,虽然波数698cm-1的绝对吸收峰值较波966.1cm-1处的大,但波数966.1cm-1处的吸峰特征更为明显。 每种物质分子都有一个由其组成和结构所决定的红外特征吸收峰,它只吸收一些特定波长的红外光。由于掺入的SBS改性剂与基质沥青并没有发生化学反应,亦即聚苯乙烯和聚丁二烯并没有发生化学变化,所以SBS改性沥青的红外光谱只是在基质沥青的红外光谱上简单叠加了聚苯乙烯与聚丁二烯的红外光谱,而相应的吸收峰位置和强度基本保持不变,是基质沥青和SBS改性剂的红外光谱的简单合成图。与基质沥青比较,SBS改性沥青的红外光谱在698cm-1和

现代近红外光谱分析仪工作原理

现代近红外光谱分析仪工作原理 现代近红外光谱分析仪工作原理 2011年02月08日 20世纪90年代初,外国厂商开始在我国销售近红外光谱分析仪器产品,但在很长时间内,进展不大,其原因主要是:首先,近红外光谱分析要求光谱仪器、光谱数据处理软件(主要是化学计量学软件)和应用样品模型结合为一体,缺一不可。但被分析样品会由于样品产地的不同而不同,国内外的样品通常有差异,因此,进口仪器的应用模型一般不适合分析国内样品。如果自己建立模型,就需要操作人员了解和熟悉化学计量学知识和软件,而外商在中国的代理机构缺乏这方面的专业人才,不能有效地根据用户的需要组织培训,因此,用户对这项技术缺乏全面了解,影响到了它的推广使用。其次,进口仪器价格昂贵,售后技术服务费用也往往超出大多数用户的承受能力。 现代近红外光谱分析技工作原理 近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的。近红外光谱记录的是分子中单个化学键的基频振动的倍频和合频信息,它常常受含氢基团X-H(X-C、N、O)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。 由于倍频和合频跃迁几率低,而有机物质在NIR光谱区为倍频与合频吸收,所以消光系数弱,谱带重叠严重。因此从近红外光谱中提取有用信息属于弱信息和多元信息,需要充分利用现有的光机技术、电子技术和计算机技术进行处理。计算机技术主要包括光谱数据处理和数据关联技术。光谱数据处理是消除仪器因素(灯及测量方式等)环境因素(如温度等)和样品物态(如颜色、形态等)等对光谱的影响。常采用的方法有平滑、微分、基线漂移扣减、多元散射校正(MSC)和有限脉冲响应滤波(FIR)等也可以用小波变换来进行部分处理。数据关联技术主要是化学计量学方法。化学计量学的发展使多组分分析中多元信息处理理论和技术日益成熟,解决了近红外光谱区重叠的问题。通过关联技术可以实现近红外光谱的快速分析。在近红外光谱的应用中我们所关心的是被测样品的组成或各种物化性质,因此,如何提取这些有用信息是近红外光谱分析的技术核心。现在的许多研究与应用表明,

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

近红外光谱分析技术及发展前景

近红外光谱分析技术及发展前景 陈丽菊 刘 巍 近红外光(near infrared,N IR)是介于可见光(VL S)和中红外光(M IR)之间的电磁波,美国材料检测协会(ASTM)将波长780~2526nm的光谱区定义为近红外光谱区。近红外光谱主要应用两种技术获得:透射光谱技术和反射光谱技术。透射光谱波长一般在780~1l00nm范围内;反射光谱波长在1100~2526nm范围内。近红外光谱区(N IR)是由赫歇尔(Herschel)在1800年发现的。卡尔?诺里斯(Karl Norris)等人首先用近红外光谱区测定谷物中的水分、蛋白质。但是由于分子在该谱区倍频和合频吸收弱,且谱带重叠严重,难以分析和鉴定,以致N IR分析技术的研究曾一度陷入低谷,甚至处于停滞。20世纪80年代,随着计算机技术、仪器硬件的迅速发展,以及化学计量学方法在解决光谱信息提取和消除背景干扰方面取得的良好效果,使得近红外分析技术不仅用于农产品、食品和生物科学,而且还应用到石油化工、烟草、纺织、环保等行业。 近红外光谱分析的原理 近红外光谱是由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的。近红外分析技术是依据被检测样品中某一化学成分对近红外光谱区的吸收特性而进行定量检测的一种方法。它记录的是分子中单个化学键的基频振动的倍频和合频信息,它的光谱是在700~2500nm范围内分子的吸收辐射。这个事实与常规的中红外光谱定义一样,吸收辐射导致原子之间的共价键发生膨胀、伸展和振动。中红外吸收光谱中包括有C-H键、C-C键以及分子官能团的吸收带。然而在N IR测量中显示的是综合波带与谐波带,它是R-H分子团(R是O、C、N和S)产生的吸收频率谐波,并常常受含氢基团X-H(C-H、N-H、O-H)的倍频和合频的重叠主导,所以在近红外光谱范围内,测量的主要是含氢基团X-H振动的倍频和合频吸收。使用N IR技术是因为它与样品相互作用时输出的能量效率比中红外光更为实用。N IR的辐射源(仪器上的灯)要比用在中红外的能量高得多,而且它的检测器也具有更高检测效率。这些因素意味着N IR仪器的信噪比值远高于中红外仪器。较高的信噪比意味着样品的观测时间可比中红外仪器短得多。近红外辐射对于样品的穿透性也较高,因此样品的前处理常较中红外简单。近红外光谱根据其检测对象的不同分成近红外透射光谱(N IT)和近红外反射光谱(N IR)两种。N IT是根据透射光与入射光强的比例关系来获得在近红外区的吸收光谱。N IR根据反射光与入射光强的比例获得在近红外光谱区的吸收光谱。近红外分析技术是综合多学科(光谱学、化学计量学和计算机等)知识的现代分析技术,使用包括N IR 分析仪、化学计量学光谱软件和被测物质的各种性质或浓度分析模型成套近红外分析技术等。经过对这种模型的校正,就可以根据被测样品的近红外光谱,快速计算出各种数据。建立被测样品成分的模型时,主要用到的校正方法有多元线性回归法(ML R)、主成分分析法(PCA)、偏最小二乘法(PL S)、人工神经网络法(ANN)。 近红外光谱分析方法的特点 近红外光谱分析方法有下列特点。 可采用光学方法进行。鉴于近红外具有较大的散射效应和较强的穿透性,近红外光谱的分析方法比较独特,可根据样品物态和透光能力的强弱采用透射、漫反射和散射等多种测谱技术进行物质检测。 近红外光子的能量比可见光低,不会对人体造成伤害,而且整个分析过程不会对环境造成任何污染,属于绿色分析技术。 近红外分析技术可在数分钟内完成多项参数的测定,分析速度可提高上百倍,分析成本可降低数十倍。用于传输近红外辐射光的光纤可长达200m, 新结构的固态电子和光电子器件。半导体低维结构已成为推动整个半导体科学技术迅猛发展的主要动力。低维材料不同于自然界中的物质,具有各种量子效应和独特的光、电、声、力、化学和生物性能,在未来的各种功能器件的应用中将发挥重要作用,并随理论和技术的发展得到更加广泛的应用。 (上海市东华大学理学院应用物理系 200051) ? 1 ?现代物理知识

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

近红外光谱(NIR)分析技术的应用

近红外光谱(NIR)分析技术的应用 近红外光谱分析是近20年来发展最为迅速的高新技术之一,该技术分析样品具有方便、快速、高效、准确和成本较低,不破坏样品,不消耗化学试剂,不污染环境等优点,因此该技术受到越来越多人的青睐。 一、近红外光谱的工作原理 有机物以及部分无机物分子中各种含氢基团在受到近红外线照射时,被激发产生共振,同时吸收一部分光的能量,测量其对光的吸收情况,可以得到极为复杂的红外图谱,这种图谱表示被测物质的特征。不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此,NIR能反映物质的组成和结构信息,从而可以作为获取信息的一种有效载体。 二、近红外光谱仪的应用 NIR分析技术的测量过程分为校正和预测两部分(如图一所示),(1)校正:①选择校正样品集,②对校正样品集分别测得其光谱数据和理化基础数据,③将光谱数据和基础数据,用适当的化学计量方法建立校正模型;(2)预测:采集未知样品的光谱数据,与校正模型相对应,计算出样品的组分。由此可知,建立一个准确的校正模型是近红外光谱分析技术应用中的重中之重。 图一 2.1定标建模

2.1.1 为什么要建立近红外校正模型 2.1.1.1 建立近红外校正模型的最终目标是获得一个长期稳定的和可预测的模型。 2.1.1.2 近红外光谱分析是间接的(第二手)分析方法,所以①需要定标样品集;②利用定标样品集的参比分析数据与近红外光谱建立校正模型;③近红外分析准确度与参比方法数据准确度高度相关;④近红外分析精度一般优于参比方法分析精度。 2.1.2 模型的建立与验证步骤 2.1.2.1 扫描样品近红外光谱 准确扫描校正样品集中各个样品规范的近红外光谱:为了克服近红外光谱测定的不稳定性的困难,必须严格控制包括制样、装样、测试条件、仪器参数等测量参数在内的测量条件。利用该校正校品集建立的数学模型,也只能适用于按这个的测量条件所测量光谱的样品。 2.1.2.2 测定样品成分(定量) 按照标准方法(如饲料中的粗蛋白GB/T6432、水分GB/T6435、粗脂肪GB/T6433)准确测定样品集中每个样品的各种待测成分或性质(称为参考数据)。这些值测定的精确度是近红外光谱运用数学模型进行定量分析精确度的理论极限。 2.1.2.3 建立数据对应关系 通过2.1.2.1所得光谱与2.1.2.2所得不同性质参数的参考数据相关联,使光谱图和其参考数据之间形成一一对应映射的关系,从而建立一个带参考数据的光谱文件。 2.1.2.4 剔除异常值 2.1.2.3建立的光谱文件中,样品参考值与光谱有可能由于各种随机的原因而有较严重的失真,这些样品的测定值称为异常值。为保证所建数学模型的可靠性,在建立模型时应当剔除这些异常值。 2.1.2.5 建立模型 选择算法、确定模型的参数、建立、检验与评价数字模型:常用的算法有逐步回归分析、偏最小二乘法、主成分回归分析等。这些算法的基本思想

分析实验报告-红外光谱测定苯甲酸---最终版

华南师范大学实验报告 学生姓名:杨秀琼学号:20082401129 专业:化学年级班级:08化二 实验类型:综合实验时间:2010/3/25 实验指导老师郭长娟老师实验评分: 红外光谱法测定苯甲酸 一、[ 实验目的] 1.了解苯甲酸的红外光谱特征,通过实践掌握有机化合物的红外光谱鉴定方法。 2.练习用KBr压片法制备样品的方法。 3.了解红外光谱仪的结构,熟悉红外光谱仪的使用方法。 二、[实验原理] 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行测定。不同的化学键或官能团,其振动能级从基态跃迁到激发态所需的能量不同,因此要吸收不同的红外光,将在不同波长出现吸收峰,从而形成红外光谱。 三、[仪器与试剂] 仪器:傅里叶红外光谱仪 软件:IRSolution; 压片机、膜具和干燥器;玛瑙研钵、药匙、镜纸及红外灯。 试剂:苯甲酸粉末、光谱纯KBr粉末。 四、[实验步骤]

1.将所有的膜具用酒精擦拭干净,用电吹风先烘干,再在红外灯下烘烤; 2.用电子天平称量一定量的KBr粉末(每份约200mg),在红外灯下研钵中加入KBr进行研磨,直至KBr粉末颗粒足够小(注意KBr粉末的干燥); 3.将KBr装入膜具,在压片机上压片,压力上升至14Mpa左右,稳定30S; 4.打开傅里叶红外光谱仪,将压好的薄片装机,设置背景的各项参数之后,进行测试,得到背景的扫描谱图。 5. 取一定量的样品(样品:大约1.2-1.3g)放入研钵中研细,然后重复上述步骤得到试样的薄片; 6.将样品的薄片固定好,装入红外光谱仪,设置样品测试的各项参数后进行测试,得到苯甲酸的红外谱图; 7.然后删掉背景谱图,对样品谱图进行简单的编辑和修饰,并标注出吸收峰值,保存试样的红外谱图; 8.谱图分析:在测定的谱图中根据出现吸收带的位置、强度和形状,利用各种基团特征吸收的知识,确定吸收带的归属。若出现了某基团的吸收,应该查看该基团的相关峰是否也存在。应用谱图分析,结合其他分析数据,可以确定化合物的结构单元,在按照化学知识和解谱经验,提出可能的结构式。然后查找该化合物标准谱图来验证推定的化合物的结构式。 五、[结果与分析]

近红外光谱分析技术发展和应用现状

摘?要?近红外光谱是目前国际公认的最有应用价值的分析技术之一,它在国民经 济中日益发挥着越来越重要的作用。本文主要介绍近5年国内外近红外光谱分析技术的发展及应用现状,并对我国在这一技术方向的研发提出建议。关键词?近红外光谱 化学计量学 在线分析 快速分析 现场分析 Abstract Near infrared spectroscopy (NIR) has been recognized as one of the most valu-able application technologies, which is playing more and more important roles in national economy. In this paper, the research and application status of near infrared spectroscopy analytical technology in the past five years both home and abroad are introduced, and the NIR research and development suggestions for our country are proposed in detail. Key words Near infrared spectroscopy Chemometrics On-line analysis Rapid analysis On-site analysis 近红外光谱分析技术发展和应用现状 The research and application status of near infrared spectroscopy analytical technology 引?言? 从1800年英国科学家赫歇耳(W Herschel )发现近红外光,到1881年英国天文学家阿布尼(W Abney )和E R Festing 用Hilger 光谱仪拍摄下48个有机液体的近红外吸收光谱(700~1100nm ),发现近红外光谱区(NIR )的吸收谱带均与含氢基团有关,到1968年美国农业部的工程师K Norris 博士将近红外光谱用于农产品的快速分析,到1974年瑞典化学家S Wold 和美国华盛顿大学的B R Kowalski 教授创建化学计量学学科(Chemometris ),唤醒现代近红外光谱技术这个沉睡的分析“巨人”,到上世纪80年代末光纤在光谱中的应用,推动在线近红外光谱技术的应用和发展,到本世纪之初微机电系统(MEMS )技术使NIR 仪器越来越小型化,到近些年近红外光谱化学成像(NIR Chemical Imaging )技术的兴起和应用,现代近红外光谱分析技术走过200余年的发展历程,近红外光谱从光谱中的垃圾箱(因其宽且重叠严重的谱带而无法通过传统方法进行分析应用),发展成为当前很多领域不可或缺的一种分析手段[1~7]。 在这200余年尤其是近20年的发展过程中,近红外 光谱仪器得到不断改进和完善,针对不同样品类型的测量附件也逐渐完备、化学计量学算法日趋普及,近红外光谱技术在工业(尤其是大型流程工业)应用中的优势逐渐被人们所认识,迅速被应用到实验室快速分析、现场分析以及在线分析中,为企业带来丰厚的效益。更为重要的是,在一些行业近红外光谱技术成为促进技术进步(例如生产工艺的改革)以及提高科学管理(例如保证产品质量)的重要手段之一,已成为现代优化操作和控制系统中的一个重要组成部分。 国内外已有较多文献对近红外光谱技术(包括仪器、光谱成像、化学计量学算法与软件、应用等)做详尽的综述[8~13],本文主要介绍近5年国内外近红外光谱分析技术的发展及应用现状,并对我国在这一技术方向的研发提出建议。 1?国际NIR 技术和应用现状 1.1?技术现状 近红外光谱分析技术是由光谱仪、化学计量学软件和校正模型3部分构成的,在线分析系统往往还包括取样与预处理、数据通讯等部分。 褚小立1?袁洪福2Chu?Xiaoli 1?Yu?Hongfu 2 (1.石油化工科学研究院?北京?100083;2.北京化工大学?北京?100029) (1.Research Institute of Petroleum Processing, Beijing, 100083; 2.Beijing University of Chemical Technology, Beijing 100083)

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除 无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】红外光是一种波长介于可见光区和微波区之间的电磁 波谱。波长在0.78?300卩m通常又把这个波段分成三个区域, 即近红外区:波长在0.78?2.5卩m (波数在12820?

4000cm-1),又称泛频区;中红外区:波长在2.5?25卩m(波数在4000?400cm-1),又称基频区;远红外区:波长在25?300卩m(波数在400?33cm-1)又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长入表征外,更常用波数 (wavenumber)c表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收 谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

相关文档
最新文档