电磁感应中的双杆运动问题

电磁感应中的双杆运动问题
电磁感应中的双杆运动问题

电磁感应中的双杆运动问题

有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。

例1.2006年高考重庆卷第21题

两根相距为L 的足够长的金属直角导轨如题21图所示放置,

它们各有一边在同一水平内,另一边垂直于水平面。质量均

为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆

与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电

阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上

的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下

以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀

速运动。重力加速度为g 。以下说法正确的是

A.ab 杆所受拉力F 的大小为μmg +R

V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ=1

222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断

1、因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg+R

V L B 2122,A 正确; 2、因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =,或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为R V L B f 2122μ=,总之,B 错误;

3、因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为R

BLV I 21=,C 错误; 4、根据B 中mg f =和R V L B f 2122μ=,得μ=1

222V L B Rmg ,所以D 正确。 本题答案为AD 。

【点评】ab 杆和cd 杆两杆在同一个金属直角导轨上都做匀速运动,因为ab 杆切割磁感线而cd 杆不切割磁感线,所以感应电动势是其中一个杆产生的电动势,即1BLV E =,而不是)(21V V BL E +=, 电流是R BLV I 21=,而不是R V V BL I 2)(21+=。

例2. 2006年高考广东卷第20题

如图11所示,在磁感应强度大小为B 、方向垂直向上的匀强磁场中,有一上、下两层均与水平面平行的“U ”型光滑金属导轨,在导轨面上各放一根完全相同的质量为m 的匀质金属杆1A 和2A ,开始时两根金属杆位于同一

竖起面内且杆与轨道垂直。设两导轨面相

距为H ,导轨宽为L ,导轨足够长且电阻

不计,金属杆单位长度的电阻为r 。现有 一质量为

2

m 的不带电小球以水平向右的 速度0v 撞击杆1A 的中点,撞击后小球反 弹落到下层面上的C 点。C 点与杆2A 初

始位置相距为S 。求:

(1)回路内感应电流的最大值;

(2)整个运动过程中感应电流最多产生了多少热量;

(3)当杆2A 与杆1A 的速度比为3:1时,2A 受到的安培力大小。

【解析】设撞击后小球反弹的速度为1v ,金属杆1A 的速度为01v ,

根据动量守恒定律,

0110)(2

2mv v m v m +-=, ① 根据平抛运动的分解,有 =S t v 1 22

1gt H = 由以上2式解得=1v H

g S 2 ② ②代入①得)2(21001H g S v v += ③ 回路内感应电动势的最大值为01BLv E m =,电阻为Lr R 2=,所以回路内感应电流的最大

值为=m I r H g s

v B 4)2(0+。 ④

(2)因为在安培力的作用下,金属杆1A 做减速运动,金属杆2A 做加速运动,当两杆速度

大小相等时,回路内感应电流为0,根据能量守恒定律,220122

121mv Q mv ?+= ⑤ 其中v 是两杆速度大小相等时的速度,根据动量守恒定律,mv mv 201=,所以012

1v v =,代入⑤式得Q=m 16120)2(H

g s v + ⑥ (3)设金属杆1A 、2A 速度大小分别为1v 、2v ,根据动量守恒定律,2101mv mv mv +=,又1

321=v v ,所以01143v v =,01241v v =。 金属杆1A 、2A 速度方向都向右,根据右手定则判断1A 、2A 产生的感应电动势在回路中方

向相反,所以感应电动势为)(21v v BL E -=,电流为Lr

E I 2=,安培力为BIL

F =,所以2A 受到的安培力大小为F=r L B 82)2(0H

g s v +。当然1A 受到的安培力大小也如此,只不过方向相反。

答案:16.(1)r H g s v B 4)2(0+ (2)Q=m 16120)2(H

g s v + (3)F=r L B 82)2(0H g s v +

【点评】金属杆1A 、2A 两杆在同一个金属U 形导轨上都做变速运动,运动方向相同(都向右),同一时刻两杆都切割磁感线产生感应电动势,两个感应电动势在空间中的方向相同(都向外),但两个感应电动势在回路中的方向相反,所以总电动势是这两个电动势之差,即)(21v v BL E -=, 电流是R

v v BL I )(21-=,方向为金属杆1A 中感应电流的方向,因为1A 比2A 产生的感应电动势大,安培力是R

v v L B F )(2122-=,方向都和速度方向相反(都向左)。

例3. 2004年高考全国I 卷第24题

24.(18分)图中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直平面内的

金属导轨,处在磁感强度B 的匀强磁场中,磁场方向垂直

导轨所在平面(纸面)向里。导轨的a 1b 1段与a 2b 2段是竖直

的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2。x 1y 1

与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量

分别为m 1、m 2,它们都垂直于导轨并与导轨保持光滑接触。

两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆

x 1y 1上竖直向上的恒力。已知两杆运动到图示位置时,已

匀速向上运动,求此时作用于两杆的重力的功率的大小和

回路电阻上的热功率。

【解析】(1)设x 1y 1与x 2y 2匀速向上运动的速度为v ,根据

右手定则,x 1y 1与x 2y 2切割磁感线产生的感应电动势都向左,在回路中的方向相反,大小分别为v Bl E 11=和v Bl E 22=,因为12l l >,所以总电动势为v l l B E )(12-=,方向与x 2y 2产生的感应电动势相同,感应电流为R

v l l B R E I )(12-==, 方向为顺时针,如下图。设x 1y 1与x 2y 2受到的安培力分别为1F 、2F ,根据左手定则判断安培力的方向为1F 向上、2F 向下,

大小为1F ==1BIl R

vl l l B 1122)(-、2F ==2BIl R vl l l B 2122)(-,受力图如下图。 根据力的平衡,有:T g m F F +=+11 T =22F g m +

联立以上各式,解得:=v F -(m 1+m 2)g B 2(l 2-l 1)2

R , 所以作用于两杆的重力的功率的大小为 P =

F -(m 1+m 2)g B 2(l 2-l 1)2 R (m 1+m 2)g 。 (2)回路电阻上的热功率R

v l l B R E p 2

1222)(-==, 将以上v 式代入得=p [F -(m 1+m 2)g B (l 2-l 1)

]2R

答案:P = F -(m 1+m 2)g B 2(l 2-l 1)2 R (m 1+m 2)g p =[F -(m 1+m 2)g B (l 2-l 1)

]2R 【点评】两杆切割磁感线产生的感应电动势在回路中的方向相反,所以总电动势为

v l l B E )(12-=,方向与感应电动势大的相同,感应电流为R

v l l B R E I )(12-==, 方向为总电动势的方向。两杆受到的安培力分别为1F 、2F ,根据左手定则判断安培力的方向,大小为

1F ==1BIl R vl l l B 1122)(-、2F ==2BIl R

vl l l B 2122)(-。 例4. 2004年高考广东卷第15题

15.如图,在水平面上有两

条平行导电导轨MN 、PQ,导

轨间距离为l ,匀强磁场垂直

于导轨所在的平面(纸面)向

里,磁感应强度的大小为B ,

两根金属杆1、2摆在导轨上,

与导轨垂直,它们的质量和

电阻分别为12m m 、和1R 2、R , 两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

【解析】 根据右手定则,杆1产生的感应电流方向向上,则杆2中电流方向向下,杆2受的安培力向右,速度向右,设为v ,由于两杆运动时产生的感应电动势在回路中的方向相反,所以,总感应电动势为 )(0v v Bl E -= ① 感应电流 21R R I +=ε

杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③

联立以上3式解得:=v )(212220R R l B g

m v +-μ ④

导体杆2克服摩擦力做功的功率 gv m P 2μ= ⑤

解得 )]([2122202R R l B g

m v g m P +-=μμ ⑥

【点评】本例中杆2中由于杆1产生的感应电流流过而受安培力,才产生运动从而产生感应电动势,因为杆2产生的感应电动势与杆1产生的感应电动势在回路中的方向相反,所以总

感应电动势为)(0v v Bl E -=,感应电流为21R R I +=ε,安培力为F =212

02)(R R l v v B BIl +-=, M 2 1 N 0v P Q

两杆受的安培力大小相等、方向相反,对杆1,是阻力,对杆2,是动力。如维持匀速运动,杆2的速度v 必小于杆1的速度0v 。

例5.(2010年南京市三模第15题)

如图所示,两根足够长的平行导轨由倾斜和水平两部分连接组成,导轨间距m L 1=,倾斜

角045=θ,水平部分处于磁感应强度T B 1=的匀强磁场中,磁场方向竖直向上,磁场左

边界MN 与导轨垂直,金属棒ab 质量kg m 2.01=,电阻Ω=11R ,金属棒cd 质量kg m 2.02=,电阻Ω=32R ,导轨电阻不计。两棒与导轨间动摩擦因数2.0=μ。开始时,棒ab 放在斜导轨上,与水平导轨高度差m h 1=,棒cd 放在水平导轨上,距MN 距离为0s ,两棒均与导轨垂直,现将ab 棒由静止释放。取2/10s m g =,求:

(1) 棒ab 运动到MN 处的速度大小;

(2) 棒cd 运动的最大加速度;

(3) 若导轨水平部分光滑,要使两棒不相碰,棒cd 距MN 的最小距离。

解:(1)根据动能定理,对ab 棒有:20100112145

sin 45cos v m h g m gh m =?

-μ, 解得:s m v /40=

(2)棒ab 运动到MN 处,棒cd 运动的加速度最大, 0BLv E m =,21R R E I +=,BIL F =,所以2

1022R R v L B F +=N N 13141122=+??= a m g m F 22=-μ 代入数据,解得2/3s m a m =。

(3)若要不相碰,两杆最终速度相等,设为v ,因两棒都是在大小相等的安培力作用下,所以两棒的加速度大小任何时刻都相等,所以ab 棒速度的减小量等于cd 棒速度的增加量,即v v v =-0,所以021v v =,速度的变化为02

1v 。 设某时刻,ab 棒速度为1v ,cd 棒速度为2v ,则该时刻回路的感应电动势为)(21v v BL E -=,

v v B v L a c d b a a / b b / d d / c c / e f g h 电流为)(2121v v R R BL I -?+=,安培力为)(212

12

2v v R R L B F -?+=,加速度为)(4

5)()31(2.011)()(2121212122v v v v v v R R m L B a -=-+?=-?+=,对短时间t ?,速度的变化为t v v t a v ?-=

?=?)(4

521,当速度变化为∑=?t 021v 时,∑=?-021)(s t v v ,因为这就是在这段时间内ab 棒壁cd 棒多运动的位移,所以m m v s 6.14104215400=?=?=。 归纳总结:

1. 电磁感应中“轨道”中的“双杆运动”问题,或者由于两杆的长度不同(如例3),或者

由于两杆的速度不同(如例2、例4),两杆产生的感应电动势往往不等。

2. 两杆产生的感应电动势的方向是否相同,不是看空间方向(如力的方向),而是看回路

中的方向,如相同,则相加,如相反,则相减,往往相反,则总电动势的方向为大者,感应电流的方向与总电动势方向相同。

3. 两杆所受安培力的方向用左手定则分别判断。

4. 运动中克服安培力做的功(功率)等于机械能转变为动能的功(功率),亦即等于焦耳

热(焦耳热功率)。

5. 当速度为变量时,如例5,可用微元法解。在用微元法时要注意:总电动势为)(21v v BL E -=,电流为)(2121v v R R BL I -?+=,安培力为)(212

12

2v v R R L B F -?+= 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。 下面对“双杆”类问题进行分类例析

1、“双杆”向相反方向做匀速运动:当两杆分别向相反方向运动时,相当于两个电池正向串联。

2.“双杆”同向运动,但一杆加速另一杆减速

当两杆分别沿相同方向运动时,相当于两个

电池反向串联。

3. “双杆”中两杆都做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆

以同样加速度做匀加速直线运动。

4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

【单元强化训练】

1、直导线ab放在如图所示的水平导体框架上,构成一个闭合回路.长直导线cd和框架处在同一个平面内,且cd和ab平行,当cd中通有电流时,发现ab向左滑动.关于cd中的电流下列说法正确的是()

A.电流肯定在增大,不论电流是什么方向

B.电流肯定在减小,不论电流是什么方向

C.电流大小恒定,方向由c到d

D.电流大小恒定,方向由d到c

解析:ab向左滑动,说明通过回路的磁通量在减小,通过回路的磁感应强度在减弱,通过cd的电流在减小,与电流方向无关.

答案:B

2、如图所示,四根等长的铝管和铁块(其中C中铝管不闭合,其他两根铝管和铁管均闭合)竖直放置在同一竖直平面内,分别将磁铁和铁块沿管的中心轴线从管的上端由静止释放,忽略空气阻力,则下列关于磁铁和铁块穿过管的运动时间的说法正确的是()

A.t A>t B=t C=t D B.t C=t A=t B=t D C.t C>t A=t B=t D D.t C=t A>t B=t D

解析:A中闭合铝管不会被磁铁磁化,但当磁铁穿过铝管的过程中,铝管可看成很多圈水平放置的铝圈,据楞次定律知,铝圈将发生电磁感应现象,阻碍磁铁的相对运动;因C中铝管不闭合,所以磁铁穿过铝管的过程不发生电磁感应现象,磁铁做自由落体运动;铁块在B 中铝管和D中铁管中均做自由落体运动,所以磁铁和铁块在管中运动时间满足t A>t C=t B=t D,A正确.

答案:A

3、(2010·陕西省西安市统考)如图所示,Q是单匝金属线圈,

MN是一个螺线管,它的绕线方法没有画出,Q的输出端a、b

和MN的输入端c、d之间用导线相连,P是在MN的正下方水

平放置的用细导线绕制的软弹簧线圈.若在Q所处的空间加上

与环面垂直的变化磁场,发现在t1至t2时间段内弹簧线圈处于收缩状态,则所加磁场的磁感应强度的变化情况可能是()

解析:在t1至t2时间段内弹簧线圈处于收缩状态,说明此段时间内穿过线圈的磁通量变大,即穿过线圈的磁场的磁感应强度变大,则螺线管中电流变大,单匝金属线圈Q产生的感应电动势变大,所加磁场的磁感应强度的变化率变大,即B—t图线的斜率变大,选项D正确.答案:D

4、如图9-2-16中半径为r的金属圆盘在垂直于盘面的匀强磁场B中,绕O轴以角速度ω沿逆时针方向匀速转动,则通过电阻R的电流的大小和方向是(金属圆盘的电阻不)()

A.由c到d,I=Br2ω/R

B.由d到c,I=Br2ω/R

C.由c到d,I=Br2ω/(2R)

D.由d到c,I=Br2ω/(2R)

解析:金属圆盘在匀强磁场中匀

速转动,可以等效为无数根长为

r的导体棒绕O点做匀速圆周

运动,其产生的感应电动势大小为E=Br2ω/2,由右手定则可知其方向由外指向圆心,故通过电阻R的电流I=Br2ω/(2R),方向由d到c,故选D项.

答案:D

5、(2010·山东省烟台市一模)如图甲所示,P、Q为水平面内平行放置的金属长直导轨,间距为d,处在大小为B、方向竖直向下的匀强磁场中.一根质量为m、电阻为r的导体棒ef垂直于P、Q放在导轨上,导体棒ef与P、Q导轨之间的动摩擦因数为μ.质量为M的正方形金属框abcd,边长为L,每边电阻均为r,用细线悬挂在竖直平面内,ab边水平,线框的a、b两点通过细导线与导轨相连,金属框上半部分处在大小为B、方向垂直框面向里的匀强磁场中,下半部分处在大小也为B,方向垂直框面向外的匀强磁场中,不计其余电阻和细导线对a、b点的作用力.现用一电动机以恒定功率沿导轨方向水平牵引导体棒ef向左运动,从导体棒开始运动计时,悬挂线框的细线拉力T随时间的变化如图乙所示,求:

(1)t0时间以后通过ab边的电流

(2)t0时间以后导体棒ef运动的速度

(3)电动机的牵引力功率P

解:(1)以金属框为研究对象,从t0

时刻开始拉力恒定,故电路中电流恒定,设ab 边中电流为I 1,cd 边中电流为I 2由受力平衡:L BI Mg T L BI 21+=+

由图象知 2Mg

T = r r I I :)3(:21= , I 1=3I 2

由以上各式解得: BL Mg

I 431=

(2)设总电流为I ,由闭合路欧姆定律得:r R E I +=

r 43R = B d v E = I =I 1+I 2=34I 1=BL Mg 解得:

dL B 4Mgr 7v 2= (3)由电动机的牵引功率恒定 P=F ·v

对导体棒:BId mg F +=μ 解得:)Mgd mgL (d L B 4Mgr 7P 22+μ=

6、 (2010·山东省东营市一模) 如图甲所示,两平行金属板的板长不超过0.2m ,板间的电压u 随时间t 变化的图线如图乙所示,在金属板右侧有一左边界的MN 、右边无界的匀强磁场。磁感应强度B=0.01T ;方向垂直纸面向里。现有带正电的粒子连续不断地以速度s m v /1020=,沿两板间的中线'OO 平行金属板射入电场中,磁场边界MN 与中线'OO 垂直。已知带电粒子的比荷kg C m q /108=,粒子所受的重力和粒子间的相互作用力均忽略不计。(1)在每个粒子通过电场区域的时间内,可以把板间的电场强度看作是恒定的。试说明这种处理能够成立的理由。(2)设t=0.1S 时刻射入电场的带电粒子恰能从平行金属板边缘射出,求该带电粒子射出电场时的速度大小。(3)对于所有经过电场射入磁场的带电粒子,设其射入磁场的入射点和从磁场射出的出射点间的距离为d ,试判断d 的大小是否随时间而变化?若不变,证明你的结论;若变,求出d 的变化范围。

(1)带电粒子在金属板间的运动时间s T v t 2.0,10==

得T t <<,(或t 时间内金属板间电压变化V U 3102-?≤?,变化很小)②

故t 时间内金属板间的电场可以认为是恒定的

(2)t=0.1s 时刻偏转电压V U 100=带电粒子沿两板间的中线射入电场恰从平行金属板边缘飞出电场,电场力做功qU W 21=

③ 由动能定理:20212121mv mv W -=

④ 代入数据可得V=1.414×103m/s ⑤

(3)设某一任意时刻射出电场的粒子速度为v ,速度方向与水平方向的夹角为α,则

αcos 0v v =⑥ 粒子在磁场中有R v m qvB 2=⑦ 可得粒子进入磁场后,在磁场中做圆周运动的半径

qB m v R =

由几何关系αcos 2R d = ⑧

可得:d=20m ,故d 不随时间而变化。

7、(2010·天津市六校高三第三次联考)如图所示,两

根间距为L 的金属导轨MN 和PQ ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d 、方向竖直向上的匀强磁场I ,右端有另一磁场II ,其宽度也为d ,但方向竖直向下,磁场的磁感强度大小均为B 。有两根质量均为m 的金属棒a 和b 与导轨垂直放置,a 和b 在两导轨间的电阻均为R ,b 棒置于磁场II 中点C 、D 处,导轨除C 、D 两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K 倍,a 棒从弯曲导轨某处由静止释放。当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即v ?∝x ?。试求:(1)若b 棒保持静止不动,则a 棒释放的最大高度h 0。 (2)若将a 棒从高度小于h 0的某处释放,使其以速度v 0进入磁场I ,结果a 棒以0

2v 的 速度从磁场I 中穿出,求在a 棒穿过磁场I 过程中通过b 棒的电量q 和两棒即将相碰时b 棒上的电功率P b 。

(3)若将a 棒从高度大于h 0的某处释放,使其以速度v 1进入磁场I ,经过时间t 1后a

棒从磁场I 穿出时的速度大小为1

23v ,求此时b 棒的速度大小,在如图坐标中大致画出t 1时间内两棒的速度大小随时间的变化图像。

解:(1)a 棒从h 0高处释放后在弯曲导轨上滑动时机械守恒,有

200122mgh mv v gh ==得 a 棒刚进入磁场I 时 E B L v =

此时感应电流大小2E I R =

此时b 棒受到的安培力大小 F BIL = 依题意,有F=Kmg 求得222

044

2K m gR h B L = (2)由于a 棒从小于进入h 0释放,因此b 棒在两棒相碰前将保持静止。

流过电阻R 的电量q I t =? 又E B s I R R t R t

φ??===??总总总 所以在a 棒穿过磁场I 的过程中,通过电阻R 的电量2B S BLd q R R ?=

=总 将要相碰时a 棒的速度00002224

v v v v d v d -=-?= 此时电流 028BLv BLv I R R == 此时b 棒电功率 2222064b B L v P I R R

== (3)由于a 棒从高度大于h 0处释放,因此当a 棒进入磁场I 后,b 棒开始向左运动。由

于每时每刻流过两棒的电流强度大小相等,两磁场的磁感强度大小相等,所以两棒在各自磁场中都做变加速运动,且每时每刻两棒的加速大小均相同,

所以当a 棒在t 1时间内速度改变11121()33

v v v -=时,b 棒速度大小也相应改变了113v ,

即此时b 棒速度大小为113

v 两棒的速度大小随时间的变化图像大致右图所示

8、(2010·安徽省合肥市高三第一次教学质量检测)如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B 0,用电阻率为ρ、横截面积为S 的导线做成的边长为l 的正方形线圈abcd 水平放置,'OO 为过ad 、bc 两边中点的直线,线圈全部都位于磁场中。现把线圈右半部分固定不动,而把线圈左半部分以'OO 为轴向上转动60°,如图中虚线所示。 (1)求转动过程中通过导线横截面的电量; (2)若转动后磁感应强度随时间按B=B 0+kt 变化(k 为常量),求出磁场对方框ab 边的作用力大小随时间变化的关系式。 (1)线框在翻折过程中产生的平均感应电动势 t l B t l B t ?=??=??=

460cos 212020φε① 在线框产生的平均感应电流R I ω=② S

l R 4ρ=③ 翻折过程中通过导线某横截面积的电量t I q ?=④ 联立①②③④解得:ρ

160ls B q =⑤ (2)若翻折后磁感应强度随时间按B=B 0+kt 变化,在线框中产生的感应电动势大小

k l t B l l t 4

3)260cos 21(22

2=??+?=??=φε⑥ 在线框产生的感应电流R I ε=⑦ 导线框ab 边所受磁场力的大小为,BIl F =⑧

联立⑥⑦⑧解得:ρ

163)(20S kl kt B F +=⑨

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

高中物理-电磁感应双滑杆问题

电磁感应中的双杆运动问题 江苏省特级教师 戴儒京 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 例1.2006年高考重庆卷第21题 21.两根相距为L 的足够长的金属直角导轨如题21图所示放 置,它们各有一边在同一水平内,另一边垂直于水平面。质 量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路, 杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总 电阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向 上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用 下以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下 匀速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为μmg +R V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ= 1222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断 A . 因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg +R V L B 2122,A 正确; B . 因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =, 或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为 R V L B f 2122μ=,总之,B 错误; C . 因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为 R BLV I 21=,C 错误; D . 根据B 中mg f =和R V L B f 2122μ=,得μ=1 222V L B Rmg ,所以D 正确。

电磁感应,杆,双杆模型(教师版)

第九章冲刺985深化内容 电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型) 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 模型一 单杆+电阻+导轨模型 [初建模型] [母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 [思路点拨] [解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+1 2mv m 2 又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θ B 4L 4。 [答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2 ,方向沿导轨平面向下 (2)1 2 mgx sin θ-m 3g 2R 2sin 2θ B 4L 4 [内化模型] 单杆+电阻+导轨四种题型剖析 杆以速度v 切割

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

高中物理选修3-2第四章电磁感应中“滑轨”问题(含双杆)归类

电磁感应双导轨问题 1、两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。导轨间的距离L=0.2m 。磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s ,金属杆甲的加速度为1.37m/s 2,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少? R v v l B F 2)(2122-=安 ① ma F F =-安 ② 21mv mv Ft += ③ 由①②③三式解得:s m v s m v /85.1,/15.821== 对乙:2mv t HB =? ④ 得C Q mv QIB 85.12 == 又R BlS R Q 22相对=?=φ ⑤ 得m S 5.18=相对 2、如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存在磁感强度为B 、方向竖直向下的匀强磁场。ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。 ⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大? ⑵在达到稳定状态时ab 棒产生的热功率多大? 解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,速度分别为v 1、v 2,加速度分别为a 1、a 2,则

电磁感应双杆问题

电磁感应双杆问题(排除动量畴) 1.导轨间距相等 例3. (04)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。 解法1:设杆2的运动速度为v ,由于两杆运动时,两 杆间和导轨构成的回路中的磁通量发生变化,产生感 应电动势 )(0v v Bl E -= ① 感应电流 2 1R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([212 2202R R l B g m v g m P +- =μμ ⑤ 解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ① 对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③ 以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212 202R R l B g m v g m P g +- =μμ ⑤ 2. 导轨间距不等 例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11y x 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路上的热功率。 解:设金属杆向上运动的速度为υ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小υ)(21l l B E -= 回路中的电流R E I = 方向沿着顺时针方向 两金属杆都要受到安培力的作用,作用于杆11y x 的安培力为11BIL f =,方向向上;作用于杆22y x 的安培力为22BIL f =,方向向下。当金属杆作匀速运动时,根据牛顿第二定律有 0f f g m g m F 2121=-+-- 2 1 0v

高中物理电磁感应双杆模型

电磁感应双杆模型 学生姓名:年级:老师: 上课日期:时间:课次: 电磁感应动力学分析 1.受力情况、运动情况的动态分析及思考路线 导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→…周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动. 2.解决此类问题的基本思路 解决电磁感应中的动力学问题的一般思路是“先电后力”. (1)“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r; (2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力; (3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; (4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 3.两种状态处理 (1)导体处于平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零),列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件. (2)基本思路 注意当导体切割磁感线运动存在临界条件时: (1)若导体初速度等于临界速度,导体匀速切割磁感线; (2)若导体初速度大于临界速度,导体先减速,后匀速运动; (3)若导体初速度小于临界速度,导体先加速,后匀速运动. 1、【平行等间距无水平外力】如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为

电磁感应中的单杆和双杆问题(习题,答案)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值 为R的电阻.一根与导轨接触良好、阻值为R/2的金属 导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L= m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分 电阻不计,框架足够长.垂直于框平面的方向存在向上的 匀强磁场,磁感应强度B=为金属杆,其长度为L= m,质量m= kg,电阻r=Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=(已知sin37°=,cos37°=;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一 端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应 强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab 从高h处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间问金属棒的做什么运动棒落地时的速度为多大 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ、MN光滑,相距5.0 l m,处在同一水平面中, 磁感应强度B=的匀强磁场竖直向下穿过导轨 面.横跨在导轨上的直导线ab的质量m =、电阻 R=Ω,导轨电阻不计.导轨间通过开关S将电动 势E =、内电阻r =Ω的电池接在M、P两端,试计算分析: (1)在开关S刚闭合的初始时刻,导线ab的加速度多大随后ab的加速度、速

电磁感应中的双杆运动问题

电磁感应中的双杆运动问题 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 例1.2006年高考重庆卷第21题 两根相距为L 的足够长的金属直角导轨如题21图所示放置, 它们各有一边在同一水平内,另一边垂直于水平面。质量均 为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆 与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电 阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上 的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下 以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀 速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为μmg +R V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ=1 222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断 1、因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg+R V L B 2122,A 正确; 2、因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =,或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为R V L B f 2122μ=,总之,B 错误; 3、因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为R BLV I 21=,C 错误; 4、根据B 中mg f =和R V L B f 2122μ=,得μ=1 222V L B Rmg ,所以D 正确。 本题答案为AD 。 【点评】ab 杆和cd 杆两杆在同一个金属直角导轨上都做匀速运动,因为ab 杆切割磁感线而cd 杆不切割磁感线,所以感应电动势是其中一个杆产生的电动势,即1BLV E =,而不是)(21V V BL E +=, 电流是R BLV I 21=,而不是R V V BL I 2)(21+=。

电磁感应中“滑轨”问题(含双杆)归类

电磁感应中“滑轨”问题归类例析1 一、“单杆”滑切割磁感线型 例1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P 间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以 及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个 电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的 匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻 r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程 中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/ s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.

例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab从高h处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间?问金属棒的做什么运动?棒落地时的速度为多大? 解析:I=0,安培力为0 ,自由下落 2 1 ,, 2 a g h gt t v === 请问解答是否正确? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。

(完整版)4.4电磁感应中的双杆问题分类例析

电磁感应中的双杆问题分类例析 “双杆”类问题是电磁感应中常见的题型,也是电磁感应中的一个难道,下面对“双杆”类问题进行分类例析 1、“双杆” 在等宽导轨上向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆” 在等宽导轨上同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 【例5】如图所示,间距为l 、电阻不计的两根平行金属导轨MN 、PQ (足够长)被固定在同一水平面内,质量均为m 、电阻均为R 的两根相同导体棒a 、b 垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a 棒连接,其下端悬挂一个质量为M 的物体C ,整个装置放在方向竖直向上、磁感应强度大小为B 的匀强磁场中。开始时使a 、b 、C 都处于静止状态,现释放C ,经过时间t ,C 的速度为1υ、b 的速度为2υ。不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g ,求: (1)t 时刻C 的加速度值; (2)t 时刻a 、b 与导轨所组成的闭合回路消耗的 总电功率。 解析:(1)根据法拉第电磁感应定律,t 时刻回路的感应电动势12()E Bl t φυυ?= =-? ① 回路中感应电流 2E I R = ② 以a 为研究对象,根据牛顿第二定律 T BIl ma -= ③ 以C 为研究对象,根据牛顿第二定律 Mg T Ma -= ④ 联立以上各式解得 22122()2() MgR B l a R M m υυ--=+ (2)解法一:单位时间内,通过a 棒克服安培力做功,把C 物体的一部分重力势能转化为闭合回路的电能,而闭合回路电能的一部分以焦耳热的形式消耗掉,另一部分则转化为b 棒的动能,所以,t 时刻闭合回路的电功率等于a 棒克服安培力做功的功率,即 221211()2B l P BIl R υυυυ-?== 解法二:a 棒可等效为发电机,b 棒可等效为电动机 a 棒的感应电动势为 1a E Blv = ⑤ 闭合回路消耗的总电功率为 a P IE = ⑥ 联立①②⑤⑥解得 221211()2B l P BIl R υυυυ-?==

电磁感应中的“双杆问题要点

问题3:电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。 由以上各式并代入数据得N (2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代 入数据得Q=1.28×10-2J。 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

(完整版)电磁感应双杆模型

b a c d B R M N P Q L 应用动量定理与动量守恒定律解决双导体棒切割磁感线问题 1.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求: (1)开始时,导体棒ab 中电流的大小和方向; (2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为 4 3 v 0时,cd 棒加速度的大小。 2.如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .忽略摩擦 (1)求:ab 到达圆弧底端时对轨道的压力大小 (2)在图中标出ab 刚进入磁场时cd 棒中的电流方向 (3)若cd 离开磁场时的速度是此刻ab 速度的一半, 求:cd 离开磁场瞬间,ab 受到的安培力大小 3.(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。请问: (1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少? (2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少? 4.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。重力加速度为g 。开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab 与棒cd 落地点到桌面边缘的水平距离之比为3: 1。求: (1)棒ab 和棒cd 离开导轨时的速度大小; (2)棒cd 在水平导轨上的最大加速度; (3)两棒在导轨上运动过程中产生的焦耳热。 B a b c d R

电磁感应应中的双杆模型

双杆金属棒在磁场中滑轨上运动归类例析: 一、问题分析 这类问题常规的要用到能量观点,求解能的转化,常见的有机械能能间转移,机械能 向电能转化,电能向内能即系统内能转化。常用到一种平衡一一回路中的1=0,而不是两棒的 速度相等。当两导轨平行时,系统动量守恒,稳定态为两棒速度相等;若两导轨不平行,系统(两棒)受合力不为0,动量不守恒,这时稳定态为两棒运动通过的①相同,即1=0( △①=0),两棒的 速度比与两棒对应有效长成反比关系,这一点有些学生受思维定势影响,套用结论,从而导致 错误? 二、问题分类 A.两根棒,无其它力: 例1.如图所示,光滑水平导轨间距为L,电阻不计,处在竖直方向的匀强磁场中,磁感应 强度为B,质量均为m,电阻均为R的导体棒ab和cd静止于导轨上,若给 ab棒一个水平向右的瞬时冲量I,求两导体棒最终的运动速度。 例2.如图所示,固定于同一水平面内的光滑平行金属导轨分为两段且相连,AB段的宽为 CD段宽的2倍,BC两侧两段导轨足够长且处在竖直方向的同一匀强磁场B中,两质量均 为m的直金属棒a、b分别放在AB、CD段且均与导轨垂直。现给 a施以作用时间极短的冲击,使其获得大小为V。的初速度。求; (1)若a、b距离两端导轨的连接处 BC足够远,则a在AB段上,b在CD段上的最终速度各为多大? (2)从a获得的初速度 V0到a和b达到上述最终速度的过程中,系统中产生的热量是多少? (3)如果a和b分别在AB段和CD段上达到上述最终速度后进入同一段导轨AB或CD 上且永不相碰,则 a和b在AB或CD上的最终速度各为多大?

B.两根棒,受其它力: (3) ab 杆和cd 杆的瞬时速度 V ab 与V cd 练习: 1.杆平行的金属导轨,固定在同一水平面上,磁感强度B = 0.50T 的匀强磁场与导轨所在平 面垂直,导轨的电阻很小,可不计。导轨间的距离 I = 0.20m 。两根质量均为 m = 0.10kg 的平行杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电 阻R=0.50 Q, t = 0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力作 用于金属杆甲上,使金属杆在导轨上滑动, 经过t = 0.50s ,金属杆甲的加速度 a = 1.37m/s , 问此时两金 属杆的速度各为多少? 例1?如图所示,足够长的水平光滑导轨间距为 L,电阻不计,处于竖直向上的匀强磁场中,磁 感应强度为B ,质量均为m ,电阻均为R 的导 体棒ab 、cd 静止于导轨上并与导轨良好接触, 今对导体棒ab 施加水平向右的恒力 F 而使之由 静止开始运动? (1) 试分析两根导体棒的运动情况。 (2) 最终ab 杆和cd 杆的加速度是多大? \ B L J c a z / 厶 d b 例2.如图所示,导体棒 匀竖直向下,b 的质量为m ,与导轨摩擦系数为 速度向右作匀速运动时, b 棒也将向右运动。设 L,求: (1) 棒的速度V 2 (2) a 和b 即导轨组成回路的电功率 P 电 (3) 外力的功率P 外 a 和 b 平行放置水平的平行金属导轨上且与导轨垂直, B 的方向均 ,a 棒光滑。当a 棒在外力作用下以 V i a 、 b 两导体棒电阻分别为 r i 和r 2导轨宽

电磁感应中的单双杆模型

电磁感应中的单双杆问题 一、单杆问题 (一)与动力学相结合的问题 1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN, 电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd, 整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初 速度v,试求金属棒的最大速度? (二)与能量相结合的题型 1、倾斜轨道与水平面夹角为 ,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连 有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时 V,且在此过程中电阻上生成的热量为Q。 间后达到最大速度 m 求:(1)金属杆达到最大速度时安培力的大小 (2)磁感应强度B为多少 (3)求从静止开始到达到最大速度杆下落的高度 2.(20分) 如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的 光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑 金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2

=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。 (1)求导体棒ab从A下落r/2时的加速度大小。 (2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h 和R2上的电功率P2。 (3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab 从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。 二、双杆问题 (一)、同一磁场中的等宽轨道 1、水平放置的光滑金属轨道上静止两根质量为m的金属棒MN、PQ。电阻均为R,现给PQ一个向右的初速度v,其他部分及连接处电阻不计,试求:(1)金属棒MN在轨道上 的最大速度?(2)回路中产生的最大热量 (二)、同一磁场不等宽轨道 如图所示,光滑、足够长、不计电阻、轨道处在磁感应强度为B的匀强磁场当中,间距左边为l,右边为2l的平行金属导轨上静止M、N两根同样粗细的同种金属棒,除金属棒上电阻为R、2R外,其他电阻均不计。现给N棒一根瞬时冲量I (1)求金属棒N受到冲量后的瞬间通过金属导轨的感应电流 (2)设金属棒N在运动到宽轨道前M已经达到最大速度,求金属棒M的最大速度值;(3)金属棒N进入Ⅱ宽轨道区后,金属棒MN再次达到匀速运动状态,。求整个过程中金属棒MN中产生的总焦耳热。 (三)、不同磁场区域的平行轨道 1、(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2。在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b。开始时b静止,给a 一个向右冲量I后a、b开始运动。设运动过程中,两金属棒总是与导轨垂直。 (1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流; (2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值;

专题训练:电磁感应——双杆问题

专题训练:电磁感应——双杆问题 一、单选题(共5小题,每小题5.0分,共25分) 1.如图所示,两根光滑的平行金属导轨位于水平面内,匀强磁场与导轨所在平面垂直,两根金属杆甲和乙可在导轨上无摩擦地滑动,滑动过程中与导轨接触良好且保持垂直.起初两根杆都静止.现突然给甲一个冲量使其获得速度v而开始运动,回路中的电阻不可忽略,那么在以后的运动中,下列说法正确的是() A.甲克服安培力做的功等于系统产生的焦耳热 B.甲动能的减少量等于系统产生的焦耳热 C.甲机械能的减少量等于乙获得的动能与系统产生的焦耳热之和 D.最终两根金属杆都会停止运动 2.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨等宽 的粗糙金属细杆ab、cd和导轨垂直且接触良好.已知ab、cd杆的质量,电阻值均 相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场中.当ab杆在水平拉力F 作用下沿导轨向右匀速运动时,cd杆沿轨道向下运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 3.竖直放置的平行光滑导轨,其电阻不计,磁场方向如图所示,磁感应强度B=0.5 T,导体 ab及cd长均为0.2 m,电阻均为0.1 Ω,重均为0.1 N,现用力向上推动导体ab,使之匀速上升(与导轨接触良好),此时,cd恰好静止不动,那么ab上升时,下列说法正确的是() A.ab受到的推力大小为2 N B.ab向上的速度为2 m/s C.在2 s内,推力做功转化的电能是0.8 J D.在2 s内,推力做功为0.6 J 4.如图所示,两平行金属导轨固定在水平面上.匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动.两棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉棒cd,经过足够长时间以后() A.两棒间距离保持不变 B.棒ab、棒cd都做匀速运动 C.棒ab上的电流方向是由a向b D.棒cd所受安培力的大小等于 5.如图所示,两平行金属导轨固定在水平面上.匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动.两棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉棒cd,经过足够长时间以后() A.两棒间距离保持不变 B.棒ab、棒cd都做匀速运动 C.棒ab上的电流方向是由a向b D.棒cd所受安培力的大小等于

电磁感应中的双杆运动问题的导学案答案

电磁感应中的双杆运动问题 江苏省特级教师戴儒京 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 1.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离 为L,导轨上面横放着两根质量均为m,电阻均为R(其余部分电阻不计) 的导体棒ab和cd,构成矩形回路。在整个导轨平面内都有竖直向上的磁 感应强度为B的匀强磁场,如图所示,设两导体棒均可沿导轨无摩擦滑行。 开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动 过程中始终不接触,则(BC ) A、棒ab、cd在运动过程中,回路中始终有感应电流 B、当棒ab、cd的运动稳定后,棒ab、cd有共同速度 C、在运动过程中,产生的的焦耳热最多为 D、在运动过程中,安培力对棒cd做的功数值上等于回路中的电能 2.(2012?宁城县模拟)足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l,导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图2所示,两根导体棒的质量皆为m,电阻皆为R,回路中其余电阻不计,整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B,设两导体棒均可沿导轨无摩擦的滑行,开始时棒cd静止,棒ab有指向棒cd的初速度v0, 若两导体棒在运动中始终不接触,求: 1、运动中产生焦耳热最多是多少? 2、当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少? 【解析】ab棒向cd棒运动时,两棒和导轨构成的回路的面积变小,穿过它的磁通量也变小,在回路中产生了感应电流,用楞次定律和安培定则判断其方向如图3所示,又由左手定则可 判断ab棒受到的与运动方向相反的安培力作用,作减速运动, cd棒受到安培力作用作加速运动,在ab棒速度大于cd棒的速 度时,两棒间的距离总会减小,回路中总有感应电流,ab会继 续减速,cd会继续加速,当两棒的速度相等时,回路的面积保 持不变,磁通量不变化,不产生感应电流,两棒此时不受安培

相关文档
最新文档