用百分数解决问题例3、例4
如何用比例和百分数解决问题

如何用比例和百分数解决问题比例和百分数是数学中常用的概念,可以帮助我们解决各种实际问题。
无论是在商业、金融、统计、经济或者其他领域,掌握比例和百分数的应用都是非常重要的。
本文将介绍如何运用比例和百分数解决问题,并提供一些实际的案例进行说明。
一、比例的应用比例是指两个或多个数之间的关系。
在实际生活中,我们经常遇到比例的问题。
比例可以用于解决各种数量关系、尺寸关系、比较关系等。
例子1:小明的体重是小红的2倍,小明体重80千克,求小红的体重。
解析:假设小红的体重为x,则有80/x = 2/1。
通过求解这个比例方程,可以得到x = 40。
所以小红的体重是40千克。
例子2:A国的人口是B国的3倍,B国有6000万人口,请问A国有多少人口?解析:假设A国的人口为x,则有x/6000 = 3/1。
通过求解这个比例方程,可以得到x = 18000万。
所以A国有18000万人口。
二、百分数的应用百分数是指以100为基数的比例。
在实际生活中,我们常常使用百分数来表示比例、比率、增减幅度等。
例子1:商品打折,原价为200元,现在打8折,请问现价是多少?解析:打8折即为原价的80%,所以现价为200 * 80% = 160元。
例子2:某城市去年的人口是100万,今年增长了10%,请问今年的人口是多少?解析:增长10%即为原来人口的110%,所以今年的人口为100 * 110% = 110万。
三、比例和百分数的案例分析现在,让我们通过一些实际的案例来进一步了解比例和百分数的应用。
案例1:某公司的销售额从去年的100万增长到今年的120万,销售额增长了多少百分比?解析:销售额增长了(120-100)/100 * 100% = 20%。
所以销售额增长了20%。
案例2:某商品原价为200元,商家进行促销活动,以150元的价格出售,打了多少折扣?解析:打折扣的百分比为(200-150)/200 * 100% = 25%。
所以打了25%的折扣。
百分数用百分数解决问题优秀7篇

百分数用百分数解决问题优秀7篇用百分数解决问题数学说课稿篇一《用百分数解决问题》数学教案设计教学重点:掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:正确、灵活地解答这类百分数应用题的实际问题。
教学过程:一、复习1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。
现在图书室有多少册图书?2、学生找出这道题目的分率句,确定单位1,并根据数量关系列式:1400(1+)二、新授1、教学例3(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。
现在图书室有多少册图书?(2)学生读题,找条件和问题,明确这道题是把谁看成单位1。
(3)引导思考:从今年图书册数增加了12%这句话中,你能知道些什么?①今年图书增加的部分是原有的12%。
②今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:第一种:140012%=168(册)1400+168=壹伍68(册)第二种:1400(1+12%)=1400112%=168(册)2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的。
百分之几,都要用乘法计算)3、巩固练习:完成P93做一做第1题。
三、练习1、补充练习(1)出示练习:①油菜子的出油率是42%。
2100千克油菜子可榨油多少千克?②油菜子的出油率是42%。
一个榨油厂榨出油菜子2100千克,用油菜子多少千克?(2)分析理解:A、出油率是什么意思?这两道题有什么相同和不同?B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
教学追记:本部分内容是求比一个数多(少)百分之几的应用题,这部分内容与求比一个数多(少)几分之几的应用题相似,只是相应的分率转换成了百分率。
因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。
七年级百分数应用题

七年级百分数应用题概要这份文档将提供一些七年级学生可以应用百分数解决的实际问题。
通过这些例子,学生们将能够掌握百分数的基本概念,并且学会如何在日常生活中运用百分数进行计算和解决问题。
问题1:打折销售小明在商场看中了一件原价为100元的衣服,商场正在举行20%的打折促销活动。
求小明购买这件衣服时需要支付的金额。
解答:首先,要计算打折后的价格,我们需要乘以打折折扣,即100元乘以20%。
计算出的结果是20元。
然后,我们将原价减去打折后的价格,即100元减去20元,得出小明需要支付的金额是80元。
问题2:考试成绩小红参加了一次数学考试,共有50道题,她答对了45道。
请计算小红的考试成绩,并将其以百分数表示。
解答:我们知道,考试成绩是通过正确答题数量与总题目数量的比例来表示的。
所以,我们需要将小红答对的题目数量除以总题目数量,然后乘以100。
计算过程如下:45(答对的题目数量) ÷ 50(总题目数量) × 100 = 90因此,小红的考试成绩为90%。
问题3:人口比例某个城市的总人口是800,000人。
其中男性人口占总人口的55%。
请计算该城市的男性人口数量。
解答:要计算男性人口数量,我们需要将总人口乘以男性人口的百分比。
即800,000人乘以55%。
计算过程如下:800,000 × 55% = 440,000因此,该城市的男性人口数量为440,000人。
问题4:涨工资李工作了一年,他的老板决定给他涨薪10%。
如果李的工资是每月2,000元,请计算涨薪后他每月能拿到的工资。
解答:要计算涨薪后的工资金额,我们需要将原工资乘以涨薪的百分比,然后加上原工资。
计算过程如下:2,000(原工资) × 10% = 2002,000(原工资) + 200(涨薪金额) = 2,200因此,涨薪后李每月能拿到的工资为2,200元。
总结通过解答以上实际问题,我们能够看到百分数在我们日常生活中的应用。
百分数应用题总结及答案解析(学生用)

(一)典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?例2、(解决“求一个数比另一个数少百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
计划比实际少生产百分之几?例3、(难点突破)一筐苹果比一筐梨重20%,那么一筐梨就比一筐苹果轻20%例4、(考点透视)一种电子产品,原价每台5000元,现在降低到3000元。
降价百分之几?例5、(考点透视)一项工程,原计划10天完成,实际8天就完成了任务,实际每天比原计划多修百分之几?例6、(应纳税额的计算方法)益民五金公司去年的营业总额为400万元。
如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?例7、(和应纳税额有关的简单实际问题)王叔叔买了一辆价值16000元的摩托车。
按规定,买摩托车要缴纳10%的车辆购置税。
王叔叔买这辆摩托车一共要花多少钱?例8、扬州某风景区2007年“十一”黄金周接待游客9万人次,门票收入达270万元。
按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
模拟试题一、填空。
1、篮球个数是足球的125%,篮球比足球多()%,足球个数是篮球的()%,足球个数比篮球少()%。
2、排球个数比篮球多18%,排球个数相当于篮球的()%。
3、足球个数比篮球少20%。
排球个数比篮球多18%,()球个数最多,()球个数最少。
4、果园里种了60棵果树,其中36棵是苹果树。
苹果树占总棵数的()%,其余的果树占总棵数的()%。
5、女生人数占全班的百分之几 = ()÷()杨树的棵数比柏树多百分之几 = ()÷()实际节约了百分之几 = ()÷()比计划超产了百分之几 = ()÷()6、20的40%是(),36的10%是(),50千克的60%是()千克,800米的25%是()米。
《解决问题(3)》百分数PPT

知识总结
用假设法解决连续求“一个数比另一个数多 (或少)百分之几”的问题 可以用抽象“1”解决实际问题的方法,即: 可以将商品原价假设成“1” 。
总结收获
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ 手抄报:/shouchaobao/ 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
原 今有年::
1400册
?册
方法一:
增加了12%
先求出今年图书比去年增加的册数: 1400×12%=168(册) 再求今年图书的册数: 168+1400=1568(册)
知识讲解
例题4 学校图书室原有图书1400册,今年图书册数增加了12%。 现在图书室有多少册图书? 单位“1”
原 今有年::
1400册
假设3月的价格是100元。 4月的价格:100×(1-20%)=80(元) 5月的价格: 80×(1+20%)=96(元) 5月是3月的百分之几:96÷100=0.96=96% 5月与3月的变化幅度:1-96%=4%
知识讲解
某种商品4月的价格比3月降了20%,5月的价格比4月又涨了20%。 5月的价格和3月比是涨了还是降了? 变化幅度是多少? 题中3月的价格未知,可以设一个价格帮助解题。单位“1”不同
例题3 我们原计划造林12公顷,实际造林14公顷。实际造林比原计 划增加了百分之几?
原计划: 实际:
百分数的应用例

• (学生自主学习→分小组讨论,教师巡视 点拨、收集学情→小组汇报、学生或教师 答疑→教师强调讲解)(教学时次页删除)
例3 学校图书室原有图书1400册,今年创建“书香 校园”图,书册数增现加在了图12书%室。有多少册图书?
说一说
自己有什么收获,有什么遗憾?
10
问题引入
你能解决这个问题吗? 2、学校图书室有故事书600本,科普书的本数比 故事书少10 %,科普书有多少本?
例3 学校图书室原有图书1400,今年创建
“书香校园”,图书册数增加了12%。 现在图书室有多少册图书?
例3 学校图书室原有图书1400,今年创建
“书香校园”,图书册数增加了12%。 现在图书室有多少册图书?
现在比原来增加了12%。
原来:
现在:
1400册
比原来增 加了12%
?册
解决问题
你能解决这个问题吗? 学校图书室有故事书600本,科普书的本数比故 事书少10 ,%科普书有多少本?
讨论 • 解决此内问题的方法与思路是什么?
解决问题
解决问题某工厂九月份生源自了零件1000个,超出 计划的25%,九月份计划生产零件多少 个?
复习一
找单位“1”
男生比女生多11%。 甲绳比乙绳短30%。 女生人数占全班的46%。 我们班今天的出勤率是98%。
今天我们班出勤的人数占全班人数的98%。
复习二
120千克相当于480千克的几分之几? 8千克比10千克少几分之几?
复习三
学校图书室有故事书600本,科普书的本数比故 事书少 ,1 科普书有多少本?
百分数解决问题(比谁多或少百分之几)

课堂练习:
1.阳光小学今年有学生1800人,比去年减少10%,去 年有学生多少人?
2.某厂今年收入240万元,比去年增收20%,去年收 入多少万元?
二、探索新知
例3:一种商品4月比3月份降了20%, 5月份比4月又涨了20%,5月和3月相 比涨了还是降了?变化幅度是多少?
课堂练习:
1.一种电视机计划比去年增产50%,实际又比计划多 了10%。今年实际是去年的百分之几?
二、探索新知
例1:学校图书室原有图书1200册,今 年新增20%,今年有图书多少册?
课堂练习:
1.龙泉小学去年有学生2800人,今年比去年减少了 0.5%,减少了多少学生?今年有多少学生?
2.某厂去年收入300万元,今年比去年增收了20%, 增收了多少万元?今年多少万元?
二、探索新知
例2:学校图书室今年有图书1440册, 比去年增加20%,去年有图书多少册?
复习检测:
1.阳光小学去年有学生500人,今年700 人,今年比去年增加了百分之几?
2.某厂去年获利100万元,受疫情影响, 今年获利80万元。今年比去年减少百分 之几?
Hale Waihona Puke 比练习:(1)明德小学去年有学生800人,今 年增加了200人,增加了百分之几? (2)明德小学今年有学生1000人,比 去年增加200人,增加了百分之几? (3)明德小学去年800人,今年1000 人,今年比去年增加了百分之几?
用百分数解决实际问题

用百分数解决实际问题百分数是我们日常生活中经常遇到的一种表示方式,它能够有效地反映出各种比例关系和增减情况。
在实际问题中,我们可以运用百分数来解决各种计算、比较、分析等问题。
本文将以几个例子来说明如何用百分数解决实际问题。
一、销售增长率计算假设某公司去年全年销售额为100万元,今年全年销售额为120万元。
那么我们可以用百分数表示今年的销售额相较于去年的增长情况。
计算公式如下:增长率 = (今年销售额 - 去年销售额)/ 去年销售额 × 100%根据以上公式,我们可以算出这家公司今年的销售增长率为20%。
这意味着今年的销售额相较于去年增长了20%。
二、比较大小在日常生活中,我们常常需要比较不同事物的大小或者数量。
百分数可以帮助我们快速比较不同变量之间的关系。
例如,如果我们想知道两个城市的人口增长情况,可以利用百分数进行比较。
假设A城市的人口从去年的100万增长到今年的120万,而B城市的人口从去年的90万增长到今年的100万。
我们可以用百分数来表示两个城市的人口增长情况。
A城市的人口增长率 = (今年人口 - 去年人口)/ 去年人口 × 100% = (120 - 100)/ 100 × 100% = 20%B城市的人口增长率 = (100 - 90)/ 90 × 100% = 11.11%通过比较两个城市的人口增长率,我们可以得出A城市的人口增长率(20%)大于B城市的人口增长率(11.11%),即A城市的人口增长速度更快。
三、价格计算与比较在购物中,我们经常会遇到打折、促销等情况。
百分数可以帮助我们快速计算折扣力度,并比较价格优惠的程度。
例如,某商品原价100元,现在打8折,我们可以用百分数计算出打折后的价格。
打折后的价格 = 原价 ×折扣百分数打折后的价格 = 100 × 0.8 = 80元通过上述计算,我们得知该商品打折后的价格为80元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原计划: 实 际:
12公顷 实际比原计划多的 14公顷
是求多的公顷数与计划造林数的比, 要以原计划造林的公顷数(12公顷)作 为单位“1”,求(14-12)是12的百分之 几,用除法计算。
第一步:求实际比计划多的公顷数。
第二步:求多的公顷数占计划的百分之几。
(2)王生储蓄的钱数比张华多20%,王生储蓄 的钱数是张华的百分之几?
(3)甲的岁数和乙的岁数的比是4︰5,甲的岁
数是乙的百分之几?
(4)农场葡萄园的公顷数是苹果园面积的 萄园的面积比苹果园少百分之几?
4 5
,葡
六年级学生去植树,男生植树320棵,比女 生多植20%,比女生多植了多少棵?
王丽打一份资料,她上午打 了2300个字,比下午少打了 10%。你能算出她下午打了
(14-12) ÷12
单位“1”
=2÷12
≈0.167
=16.7% 答:实际造林比原计划多16.7%。
单位“1”
原计划:
12公顷 实际比原计划多的
实 际:
14公顷
第一步:求实际公顷数占原计划的百分之几。
第二步:求实际造林比原计划多百分之几。
14÷12 -1≈0.167=16.7%
下列句子是求谁占 谁的百分之几? 哪个量是单位“1”?
①今年产量比去年多百分之几?
(和去年比较,去年产量是单位“1”)
②这个月用电比上个月节约了百分之几?
(和上个月比较,上个月用电量是单位“1”)
③彩电降价了百分之几?
(现价和原价比较,原价是单位“1”)
解答“谁比谁多百分之几”的问 题的解题关键是:
弄懂问题是求份数占单位 “1”的百分之几,找准单位
“1”。
(原成本×15%)数量÷对应的分率=单位“1”的量
单位“1”的量未知,可用方程解 。
答
现成本
解:设原来每件成本x元。
现成本占单位 “1”的百分率
x-15%x=37.4 37.4 ÷(1-15%)
百分数应用题的解题思路和分数 应用题的相同。
关键是找准单位“1”。
1.单位“1”的量已知,根据求一个 数的几分之几是多少用乘法计算。 2.单位“1”的量未知,可根据等量 关系列方程或用除法计算。
数量÷对应分率=单位“1”的量
数学诊所
①一个足球运动员,经训练速度提高了2%米。(×) ②甲数比乙数多10%,乙数就比甲数少10%。(×)
③王师傅生产了100个零件,结果98个零件合格,
合格的零件占生产零件总数的98%。(√)
辨一辨
(1)甲校的图书是乙校的150%,甲校比乙校 的图书多百分之几?
把“1400册”看作单位“1”。
1400×12%
1400×(1+12%)
=168(册)
=1400×112%
1400+168=1568(册) =1568(册)
答:现在图书室有1568册图书。
一个工厂由于采用了新工艺,现在每件 产品成本是37.4元,比原来降低了15%。 原来每件产品的成本是多少元?
现成本﹦原成本-降低的成本 算术方法解:
2 有一堆煤,第一次用去总数的 5,第 二次用去总数的30%,哪次用去的多? 多用了总数的百分之几?
填表。(百分号前保留一位小数)
计划产量 实际产量 实际比计划增 (件) (件) 产的百分率
四月份 600650ຫໍສະໝຸດ 8.3%五月份 620
700
12.9%
六月份 620
720
16.1%
返回
3 学校图书室原有图书1400册, 今年图书册数增加了12%。现在图 书室有多少册图书?
多少个字吗?
(1)2千克比2.5千克少( C )。
选一选
A:20% B:25% C:80%
(2)用小麦磨面粉,麸皮的重量是
小麦的
1 4
,出粉率是(
)B。
选一选
A:25%
B:75%
C:85%
(3)10增加10%后,再减少10%, 结果是( C )。
选一选
A:10.1
B:10
C:9.9
填一填
①80千克比50千克多( 30)千克, 多( 60)%。
②50千克比80千克少( 30)千克, 少(37.5)%。
③50千克是80千克的(62.5)%。
④80千克是50千克的(160 )%。
这台音响降价了百分之几?
原价:1200元 现价: 900元
浓度为20%的糖水100克,这些糖 水中,糖比水少多少克?
教学目标
1. 学会解答“求一个数比另一个数多(或 少)百分之几”的应用题,理解比较量与标 准量间的差。
2.能解答求一个数是另一个数的百分之几的 应用题,解决生活中一些简单的实际问题。
3.培养大家的知识迁移能力和数学的应用意 识。
一个乡去年原计划造林12公顷,实际造林14 公顷。实际造林比原计划多百分之几?