数学建模《计算机随机模拟》教材
数学建模讲义(电子科技大学_徐全智_)

m
其中
d y dt
2
2
W B D
(1)
w dy m , D Cv , v g dt
或
g dv cg v (W B ), W dt W V (0) 0.
( 2)
方程的解为
W B v(t ) (1 e C
Cg t W
),
t 0
计算碰撞速度,需确定圆桶和海底的碰撞时间t0 分析:考虑圆桶的极限速度 W B 527.436 470.327 limv ( t ) t C 0.08 ≈713.86(英尺/秒)>>40(英尺/秒) 实际极限速度与圆桶的承受速度相差巨大! 结论:解决问题的方向是正确的.
(2) 确定随机到达车辆的身长车。 汽车类型及车身长模拟原理分析
(3) 关于车辆的排放. 甲板可停放两列汽车,可供停车的总长为 32×2=64米 排放原则:两列尽可能均衡。(怎样实现?) 结果分析:由一组特定随机数确定车型和车身 长度,仅得到一个解答. 将一组随机数模拟确定的结果,看成对一次 实际运载情况的“观察”,少数几次观察是无意义 的.
需多次重复模拟, 再进行统计分析
例2.3 人口增长模型 据人口学家们预测,到2033年,世界人口将突 破100亿,每年增加近1亿人口,以后还会迅猛增长. 人们开始考虑,我们赖以生存的地球究竟是否 能承受如此的增长.现建立数学模型来预测人口 的增长. 分析 设任意时刻的人口总数为N(t),影响一个 地区总人口数的最显著的因素应包括哪些?
(1) 应该怎样安排摩托车? (2) 下一辆到达的车是什么类型? (3) 怎样描述一辆车的车身长度? (4) 如何安排到达车辆加入甲板上两列车队 中的哪一列中去? 问题的解决: (1) 认为摩托车不会占有实际空间. (2) 确定即将到达车辆类型,利用随机模拟方法
数学建模之随机性模型与模拟方法

三、随机数的生成
我们知道对于丢硬币的随机结果可以用以下的离散 随机变量的改里函数来描述
X P(x) 0 0.5 1 0.5
如果我们需要模拟随机变量的以个值或一个集合, 可以用丢硬币然后记录其其结果的方法来得到,然 而这具又相当的局限性,这里我们用数学程序来产 生拟随机变量。即看上去是随机出现的,但并非真 正的随家便朗,它们产生于一个梯推公式。不过这 些拟随机数并没有明显的规律,当给于适当的伸缩 之后,它们非常接近于在 0,1 区间的均匀分布。
600
1030 3408 2520
382.5
489 1808 859
3.137
3.1595 3.141592 3.1795
由此可以看出蒙特卡罗方法的基本步骤:首先,建立 一个概率模型,使它的某个参数等于问题的解。然后按 照假设的分布,对随机变量选出具体的值(这一过程又 叫着抽样),从而构造出一个确定性的模型,计算出结 果。再通过几次抽样实验的结果,的到参数的统计特性, 最终算出解的近似值。 蒙特卡罗方法主要用再难以定量分析的概率模型,这 种模型一般的不到解析的结果,或虽然又解析结果,但 计算代价太大以至不可用。也可以用在算不出解析结果 的定性模型中。 用蒙特卡罗方法解题,需要根据随机变量遵循的分布 规律选出具体的至,即抽样。随机变量的抽样方法很多, 不同的分布采用的方法不尽相同。在计算机上的各种分 布的随机数事实上都是按照一定的确定性方法产生的伪 随机数。
X 1 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
和
X 2 [2 ln( RND1 )]1/ 2 cos(2 RND2 )
来给出 X 的两个值,令X X 2 或 X X1 可以生成 ( , ) 型的正态分布。
杭州电子科技大学本科生数学建模指导书

杭州电子科技大学本科生数学建模指导书建模指导书方法接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座)培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。
数学建模应当掌握的十类算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)竞赛参考书l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育出版社(1993,1997,1998).3、数学建模教育与国际数学建模竞赛《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).国内教材、丛书。
《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。
第16章 pythonMonte Carlo模拟

第16章
第16章 Monte Carlo模拟
第3页
早在 17 世纪,人们就已经知道用事件发生的“频率”作为事件的“概率” 的近似值。只要设计一个随机试验,使一个事件的概率与某未知数有关,然 后通过重复试验,以频率近似表示概率,即可求得该未知数的近似解。显然, 利用随机试验求近似解,试验次数要相当多才行。随着 20 世纪 40 年代电 子计算机的出现,人们便开始利用计算机来模拟所设计的随机试验,使得这 种方法得到迅速的发展和广泛的应用。
累积概率 0.2 0.5 1
第16章
16.1随机变量的模拟
第8页
我们用产生[0,1]区间上均匀分布的随机数,来模拟事件 A, B,C 的发生。 由错误!未找到引用源。的数据和几何概率的知识,可以认为如果产生的随 机数在区间[0,0.2]上,事件 A发生了;产生的随机数在区间(0.2,0.5]上,事件 B发生了;产生的随机数在区间(0.5,1]上,事件C 发生了。产生 100000 个 [0,1]区间上均匀分布的随机数,统计随机数落在相应区间上的次数,就是在 这 100000 次模拟中事件 A, B,C 发生的次数,再除以总的试验次数 100000, 即得到事件 A, B,C 发生的频率。
第16章
16.1随机变量的模拟
第9页
#程序文件 Pex16_1.py
from numpy.random import rand import numpy as np n=100000; a=rand(n); n1=np.sum(a<=0.2) n2=np.sum((a>0.2) & (a<=0.5)); n3=np.sum(a>0.5) f=np.array([n1,n2,n3])/n; print(f)
数学建模第五章随机模型

05
随机模拟
随机模拟的基本原理
随机模拟是一种基于概率统计的数值计算方法,通过模拟随机事件或过程来求解实 际问题。
随机模拟的基本原理包括抽样、统计推断和误差分析,其中抽样是随机模拟的核心 步骤,通过从概率分布中抽取样本,模拟随机事件的概率特征。
随机模拟的精度取决于样本数量和分布的准确性,样本数量越多,模拟结果越接近 真实情况。
THANKS FOR WATCHING
感谢您的观看
蒙特卡洛积分
蒙特卡洛积分是一种基于随机抽样的 数值积分方法,通过将积分转化为求 和的形式,利用大数定律和中心极限 定理来估计积分值。
蒙特卡洛积分在金融、物理、工程等 领域有广泛应用,可以用于求解复杂 的高维积分问题。
蒙特卡洛积分的精度与样本数量和积 分的可积性有关,对于不可积的积分, 可以通过增加样本数量来提高估计精 度。
马尔科夫链蒙特卡洛方法
总结词
马尔科夫链蒙特卡洛方法是一种基于马尔科夫链的随机抽样方法,常用于求解复杂数学 问题的不确定性。
详细描述
马尔科夫链蒙特卡洛方法通过构造一个马尔科夫链,使其平稳分布为目标分布,从而通 过抽样得到目标分布的近似解。这种方法在统计学、物理、经济学等领域有广泛应用, 可以用于求解复杂数学问题的不确定性,如概率论中的积分、统计推断中的参数估计等。
描述随机变量取值概率分布的函数称 为随机变量的分布函数。常见的分布 函数有离散型分布和连续型分布,如 二项分布、泊松分布、正态分布等。
03
随机过程
随机过程的定义与分类
定义
随机过程是随机变量在时间或空间上的扩展,描述了一个随机现象在连续时间或 离散时间上的变化。
分类
根据过程的性质和特点,随机过程可以分为平稳随机过程、非平稳随机过程、离 散随机过程和连续随机过程等。
讲数学模型和建模的书籍

讲数学模型和建模的书籍
以下是一些关于数学建模和建模的书籍:
《数学建模算法与应用》司守奎
《数学建模基础教程》刘保东
《R语言实战》 (美)卡巴科弗(Robert I. Kabacoff)
《Matlab在数学建模中的应用》卓金武
《SAS常用统计分析教程》胡良平
《SPSS统计分析基础教程》&《SPSS统计分析高级教程》张文彤
《数学建模方法与分析》(美)Mark M. Meerschaert
《数学建模》(美)Frank R. Giordano; William P. Fox; Steven B. Horton 《数学建模竞赛优秀论文评析》杨桂明/朱家明
《美国大学生数学建模竞赛题解析与研究》王杰
《正确写作美国大学生数字建模竞赛论文》王杰
《Matlab神经网络43个案例分析》王小川
《Matlab智能算法30个案例》史峰
《Matlab与数学实验》艾冬梅
《系统动力学》钟永光
以上书籍仅供参考,可以到图书馆查阅或咨询专业人士,以获取更多关于数学建模和建模的书籍。
(整数值)随机数(random numbrrs)的产生

(整数值)随机数( )的产生一、内容和内容解析本节课的内容是介绍利用计算器产生取整数值的随机数的方法,让学生初步学会利用计算器或计算机统计软件来产生随机(整数值)数。
它是在学生学习了随机事件、频率、概率的意义和性质以及用概率解决实际问题和古典概型的概念后,为了让学生进一步体会用频率估计概率思想,同时也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。
计算随机事件发生的概率,除了用古典概率的公式来计算事件发生的概率以外,还可以通过做试验或者用计算器、计算机模拟试验等方法产生随机数,从而得到事件发生的频率,以此来近似估计概率。
产生(整数值)随机数的方法有两种(1)是由试验产生的随机数,例如我们要产生1~25之间的随机整数,我们把25个大小形状等均相同的小球分别标上1,2,3,…,24,25,放入一个袋中,把它们充分搅拌,然后从中摸出一个球,这个球上的数就是随机数。
它的优点在于真正体现了随机性,缺点在于如果随机数的量很大,统计起来速度就会太慢;(2)是用计算器或计算机产生的随机数,它的优点在于统计方便、速度快,缺点在于,计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的性质,但并不是真正的随机数,是伪随机数。
教学中将结合具体实例,让学生了解随机数在一些随机模拟方法中的作用,加深对随机现象的理解,然后通过计算器(机)模拟估计古典概型随机事件发生的概率和建立非古典概型题求解。
用模拟方法来估计某些随机事件发生概率的必要性:通过大量重复试验,用随机事件发生的频率来估计其概率,但人工进行试验费时、费力,并且有时很难实现。
这部分内容是新增加的内容,是随机模拟中较简单、易操作的部分,所以要求每个学生会操作。
利用古典概型产生的随机数是取整数值的随机数.本节课的教学重点是了解随机数的概念,运用随机模拟的方法得到事件发生的频率,以此来近似估计概率。
二、目标和目标解析本节课让学生理解产生(整数值)随机数的意义,并初步学会利用计算器或计算机模拟试验方法产生随机数,理解随机模拟方法的基本思想:初步学会设计和运用模拟方法近似计算概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 利用软件产生一组[0,24]上的随机数xi: 10.4 5.3 0.3 9.0 20.1 6.8 7.8 …… 5.4 分别代表甲船到达码头时间;
• 再产生一组[0,24]上的随机数yi: 6.0 3.4 8.1 17.5 0.8 13.4 ……14.0 分别代表乙船到达码头时间;
船能相遇的条件就是:x y x 2且y x y 1
两船到达的时刻x和y可以随机生成,生成一组到 达时刻,可以确定是否能相遇。 如果重复很多次,统计相遇的比例就可近似为相 遇的概率。 这也是Monte Carlo思想.
云南师范大学数学学院
两船到达码头时刻服从[0,24]上的均匀分布,甲 船停留2小时,乙船停留1小时,相遇概率?
2 计算函数:z = norminv(p,mu,sigma)
云南师范大学数学学院
统计直方图matlab函数hist
2000
• 直方图绘图函数: hist(data,n) 1000
其中,data是需要处理的数据块,
0 1 234 5
绘图原理:利用data中最小数和最大数构成一区间,
将区间等分为n个小区间,统计落入每个小区间的
云南师范大学数学学院
三、一些随机模拟的例子
[例1](相遇问题) 甲、乙两船在24小时内独立 地随机到达码头. 设两船到达码头时刻都服从 [0,24]上的均匀分布,如果甲船到达码头后停 留2小时,乙船到达码头后停留1小时.问两船相 遇的概率有多大?(可用几何概率,此处略)
分析:如果知道甲、乙两船到达的时刻x和y,两
购进数量n=510份 需求量X 500 510 520
概率P 0.34 0.36 0.30
按照需求量的分布规律,随机生成N=20个数据:
510 520 500 510 520 500 500 500 500
510 500 500 500 520 510 520 510 510 代表20天的需求量,计算出报童在这20天的总利 润和平均利润,用平均利润来近似报童的平均收 入。这也是Monte Carlo方法.
说明 [0,1]上均匀分布 [a,b]上均匀分布 1,…,N的等概率分布 标准正态分布N(0,1) 均值为λ 的指数分布 均值为λ 的泊松分布 正态分布N(μ ,σ 2)
云南师范大学数学学院
有关正态分布matlab计算函数
• 正态分布变量X的数学期望,方差 2 ,密度函数
f ( x) 1 exp[ ( x )2 / 2 2 ) x (, ) 2
问 •如何按分布规律产生随机数据? 题 •随机数据很多时,如何编程?
云南师范大学数学学院
报童诀窍的简化版
问题1:如何产生以下分布规律的随机数据?
需求量X 500 510 520 注:rand(m,n)可以生成 概率P 0.34 0.36 0.30 [0,1]上均匀分布随机数
注意:每次运行的结果一般都不一样
云南师范大学数学学院
报童诀窍的简化版
[例2] (报童诀窍的简化版)报童每天清晨从 报社购进报纸零售,晚上退回没有卖掉的报纸.
ห้องสมุดไป่ตู้
若每份报纸的购进价为b=0.75元,售出价为a=1
元,退回价为c=0.6元.每天需求量X是离散型随
机变量,其分布为 X 500 510 520
云南师范大学数学学院
计算机随机模拟(Monte Carlo)
(建模培训)
张洪波 主讲
云南师范大学数学学院
一、简介
有些问题,由于随机因素很多,用概率论 的方法进行求解可能很难和复杂,这时就需要 借助随机模拟方法得到近似解答。
随机模拟法也叫蒙特卡罗(Monte Carlo) 方法,也称为计算机随机模拟方法。
由于Monte Carlo法计算量大,精度不高, 因而需要借助计算机,并仅适合一些用解析方 法或常规数值方法难以解决问题的低精度求解 和验证
云南师范大学数学学院
二、Matlab中的部分随机数产生命令
注:以下都是产生不同分布m×n 阶随机矩阵
命令 rand(m,n) unifrnd(a,b,m,n) unifrnd(N,m,n) randn(m,n) exprnd(λ,m,n) poissrnd(λ,m,n) normrnd(μ,σ,m,n)
P 0.34 0.36 0.30
问:如果报童每天购进报纸为n=510份,每天的 平均利润是多少?
方法一:概率方法(略)
方法二:如果我们知道每天的需求量,可直接计算利润。 而每天需求量可以按分布生成(随机模拟思想)
云南师范大学数学学院
报童诀窍的简化版
售出价a=1,购进价b=0.75,退回价c=0.6,
for i=1:N
%重复N次到达时间
x=unifrnd(0,24,1,1); %甲船到达时间x(随机数)
y=unifrnd(0,24,1,1); %乙船到达时间y(随机数)
if((x<=y & y<=x+2) |(y<=x & x<=y+1))
c=c+1;
%如果能相遇,则计数器加1
end
end P=c/N %显示相遇的概率近似值
数据量,以数据量为高度绘小矩形,形成直方图。
如果省略参数n,MATLAB将n的默认值取为10。
• 直方图统计计算函数:N=hist(data,n) 计算结果N是n个数的一维数组,分别表示data中各 个小区间的数据量。这种方式只计算而不绘图。
• 其他用法:hist(data,x)或 N= hist(data,x)
• 把(xi,yi)(i=1,2…)当作一天中甲船乙 船到达的时间,统计出能相遇的频数,计算 出相遇的频率做为相遇的概率。
云南师范大学数学学院
两船到达码头时刻服从[0,24]上的均匀分布,甲
船停留2小时,乙船停留1小时,相遇概率?
方法二 %计算机模拟程序
clc; N=1000; c=0; %模拟次数N,相遇次数c清零
计算密度值函数:normpdf(x,mu,sigma) • 累积分布函数,即积分上限函数
P{ X x} 1 x exp[ (t )2 / 2 2 ]dt
2
计算概率值函数:normcdf(x,mu,sigma)
• 逆累积分布函数值,即已知概率值p,求z使得
P{ X z} 1 z exp[ (t )2 / 2 2 ]dt p