数学建模 ,教材.
高等数学建模系列教材推荐

高等数学建模系列教材推荐高等数学是大学数学课程中的一门重要课程,它为学生提供了数学思维和解决实际问题的能力。
在高校教学中,合适的教材对学生的学习效果有着至关重要的影响。
因此,本文将推荐几本优秀的高等数学建模系列教材,供广大学习者参考。
1. 《高等数学建模与应用》该教材是由清华大学数学系编写的,内容全面、结构合理。
教材注重理论与应用相结合,通过实际问题引入数学知识,培养学生的建模思维能力。
教材从数列与级数开始,逐步引入微积分、方程与不等式、多元函数与偏导数、多重积分等内容,同时涵盖了常微分方程及其应用、概率与统计等知识点。
每个章节都配有大量的习题及答案,供学生巩固所学知识。
2. 《高等数学建模与实践》该教材是由北京大学数学科学学院编写的,注重理论联系实际,培养学生的数学建模能力。
教材内容系统全面,包含了数列、极限、微分、积分、级数、微分方程、向量及其运算等内容。
教材中融入大量经典实际问题,如物体运动、最优化问题、生物模型等,让学生能够直观地感受到数学在实际问题中的应用。
3. 《高等数学建模与案例分析》该教材是由上海交通大学数学系编写的,采用案例教学法,让学生在解决实际问题中学习和应用高等数学知识。
教材内容涵盖数列、极限、微积分、多元函数、微分方程等重要内容,并通过实际案例引入,让学生深入理解和掌握数学的本质。
教材中还特别强调数学思维与逻辑推理的培养,通过分析解决问题的过程,提高学生的数学素养和解决问题的能力。
4. 《高等数学建模与实践教程》该教材是由复旦大学数学系编写的,视角独特,注重理论与实践的结合。
该教材从数学概念的质疑出发,通过建模的方式引入高等数学的各个知识点,使学生能够主动思考和探索数学的应用场景。
教材中还包含了大量的实例和案例分析,让学生真实感受到数学对实际问题的解决能力。
总结起来,以上推荐的高等数学建模系列教材都具有全面系统的内容,结构合理,注重理论与实际问题的结合。
在学习过程中,学生可以根据自身的掌握情况选择适合自己的教材进行学习。
数学建模参考书大全

专业性参考书(这方面书籍很多,仅列几本供参考) :1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4.数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5.数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7.数学模型,陈义华编著,重庆大学出版社,(1995)8.数学模型建模分析,蔡常丰编著,科学出版社,(1995).9.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11.数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13.数学模型方法,齐欢编著,华中理工大学出版社,(1996).14.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。
17.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19.数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).20.经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21.数学模型讲义,雷功炎编,北京大学出版社(1999).22.数学建模精品案例,朱道元编著,东南大学出版社,(1999),23.问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24.数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社,(1999).25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).26.数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).27.数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).28.数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).国外参考书(中译本):1、数学模型引论,E.A。
初中生数学建模类书籍

初中生数学建模类书籍数学是一门极具挑战性的学科,它不仅能够帮助我们理解自然界的规律,还能够帮助我们解决实际问题。
而数学建模是一种将数学知识运用到实际问题中的方法,它是一种将数学和现实相结合的学科。
因此,学习数学建模不仅能够培养我们的数学思维能力,还能够提高我们解决实际问题的能力。
在初中阶段,我们应该通过学习数学建模来提高自己的数学素养。
下面,我们将介绍几本适合初中生学习的数学建模类书籍。
一、《初中数学建模》《初中数学建模》是一本适合初中生学习数学建模的教材。
该书以初中数学知识为基础,通过实例介绍了数学建模的基本方法和技巧。
该书分为三个部分,第一部分介绍了数学建模的基本概念和方法;第二部分介绍了数学建模的实例和应用;第三部分介绍了数学建模的综合应用和实践。
该书内容详实,图文并茂,适合初中生自学和教师授课使用。
二、《初中生数学建模实践》《初中生数学建模实践》是一本适合初中生进行数学建模实践的教材。
该书以初中数学知识为基础,通过实例介绍了数学建模的实践方法和技巧。
该书分为四个部分,第一部分介绍了数学建模的基本概念和方法;第二部分介绍了数学建模的实践案例和应用;第三部分介绍了数学建模的实践技巧和方法;第四部分介绍了数学建模的实践项目和实践体验。
该书内容丰富,实用性强,适合初中生进行实践和教师指导使用。
三、《初中数学建模竞赛》《初中数学建模竞赛》是一本适合初中生参加数学建模竞赛的教材。
该书以初中数学知识为基础,通过实例介绍了数学建模竞赛的基本规则和技巧。
该书分为三个部分,第一部分介绍了数学建模竞赛的基本概念和规则;第二部分介绍了数学建模竞赛的实例和应用;第三部分介绍了数学建模竞赛的技巧和方法。
该书内容丰富,实用性强,适合初中生参加竞赛和教师指导使用。
四、《初中数学建模实验》《初中数学建模实验》是一本适合初中生进行数学建模实验的教材。
该书以初中数学知识为基础,通过实例介绍了数学建模实验的基本方法和技巧。
该书分为三个部分,第一部分介绍了数学建模实验的基本概念和方法;第二部分介绍了数学建模实验的实例和应用;第三部分介绍了数学建模实验的技巧和方法。
数学建模.参考资料

附录1 数学建模参考书籍一、竞赛参考书l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育出版社(1993,1997,1998).3、数学建模教育与国际数学建横竞赛《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).二、国内教材、丛书:1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5、数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7、数学模型,陈义华编著,重庆大学出版杜,(1995)8、数学模型建模分析,蔡常丰编著,科学出版社,(1995).9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13、数学模型方法,齐欢编著,华中理工大学出版社,(1996).14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社.17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版杜,(1998).20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21、数学模型讲义,雷功炎编,北京大学出版社(1999).22、数学建模精品案例,朱道元编著,东南大学出版杜,(1999),23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999).25、数学建模案例分析,白其岭主编,海洋出版杜,(2000年,北京).26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版杜,(2000).27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).三、国外参考书(中译本):1、数学模型引论, E.A。
数学建模参考文献

一、竞赛参考书l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育出版社(1993,1997,1998).3、数学建模教育与国际数学建模竞赛《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).二、国内教材、丛书:1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5、数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7、数学模型,陈义华编著,重庆大学出版社,(1995)8、数学模型建模分析,蔡常丰编著,科学出版社,(1995).9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13、数学模型方法,齐欢编著,华中理工大学出版社,(1996).14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社.17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21、数学模型讲义,雷功炎编,北京大学出版社(1999).22、数学建模精品案例,朱道元编著,东南大学出版社,(1999),23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社,(1999).25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).28、数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).三、国外参考书(中译本):1、数学模型引论,E.A。
初中教材数学建模教案

初中教材数学建模教案一、教学目标1. 让学生了解数学建模的基本概念和方法,培养学生的数学应用意识。
2. 通过对购物预算的实际问题进行分析,培养学生运用数学知识解决实际问题的能力。
3. 培养学生团队合作精神,提高学生的沟通与表达能力。
二、教学内容1. 数学建模的基本概念和方法。
2. 线性方程组的应用。
3. 购物预算问题的实际分析。
三、教学过程1. 导入:通过一个实际购物场景,引导学生思考如何制定购物预算,引出本节课的主题——数学建模。
2. 知识讲解:(1)介绍数学建模的基本概念和方法,让学生了解数学建模的意义和应用。
(2)讲解线性方程组的解法,为学生解决购物预算问题打下基础。
3. 实例分析:(1)给出一个购物预算的实际问题,让学生分组讨论,分析问题并建立数学模型。
(2)引导学生运用线性方程组的知识,求解购物预算问题。
4. 实践操作:让学生分组进行实践活动,每组选取一个购物预算问题,运用所学知识进行分析和求解。
5. 成果展示:各组汇报自己的研究成果,其他组进行评价和讨论。
6. 总结提升:总结本节课所学内容,强调数学建模在实际生活中的应用。
四、教学评价1. 学生对数学建模的基本概念和方法的理解程度。
2. 学生运用线性方程组解决实际问题的能力。
3. 学生在团队合作中的表现,包括沟通、表达和协作能力。
五、教学资源1. 购物预算问题的实际案例。
2. 数学建模的基本概念和方法的PPT。
3. 线性方程组的解法教程。
4. 实践活动所需的各种购物预算问题。
六、教学建议1. 注重培养学生的数学应用意识,让学生认识到数学建模在实际生活中的重要性。
2. 引导学生积极参与实践活动,提高学生的动手能力和实际问题解决能力。
3. 鼓励学生在团队合作中发挥自己的特长,培养学生的团队合作精神。
4. 注重教学评价,及时发现和纠正学生在学习过程中的错误,提高学生的学习效果。
《 数学建模 》教学大纲(新)

《数学建模》教学大纲一、课程的基本信息课程编码:课程性质:专业必修课总学时:64学时学分:4开课单位:信息管理学院适用专业:信息与计算科学先修课程:高等数学、线性代数、概率论与数理统计二、课程目的与任务数学建模(实验)课程是信息与计算科学专业的必修课,是利用数学和计算机基础平台进行实践应用课程之一。
是基础数学科学联系实际的主要途径之一。
通过该课程的学习,要使学生系统地获得数学建模的基本知识、基本理论和方法,培养和训练学生的数学建模素质。
要求学生具有熟练的计算推导能力;通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
熟练掌握一至两种数学软件(matlab,lingo等),为学生适应日后在社会中实际应用奠定必要的基础。
三、课程教学基本要求数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,数学建模是集经典数学、现代数学和实际问题为一体的一门新型课程,是应用数学解决实际问题的重要手段和途径。
要求掌握的初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型等模型及求解方法。
由于课时的关系,可以适当删减某些比较难的内容,但是务必要使学生在学习过程有所得,要求至少掌握基本建模方法思想,会使用操作数学软件工具解决基本数值分析问题。
五、课程教学基本内容导引建立数学模型教学内容:1、什么是数学建模2、为什么学习数学建模3、怎样学习数学建模MATLAB软件初步(1)MATLAB软件初步(2)重点:1、数学建模基本方法;2、数学建模能力的培养;难点:MATLAB软件应用;第1章数据分析模型教学内容:1.1 薪金到底是多少1.2 评选举重总冠军1.3 估计出租车的总数1.4 解读CPIMATLAB 矩阵1.5 NBA赛程的分析与评价——全国大学生数学建模竞赛2008年D题MATLAB 多项式重点:1、薪金到底是多少;2、评选举重总冠军;3、NBA赛程的分析与评价;难点: MATLAB 矩阵;第2章简单优化模型教学内容:2.1 倾倒的啤酒杯2.2 铅球掷远2.3 不买贵的只买对的MATLAB符号计算2.4 影院里的视角和仰角MATLAB 绘图2.5 易拉罐形状和尺寸的最优设计——全国大学生数学建模竞赛2006年C题重点:1、倾倒的啤酒杯;2、不买贵的只买对的;3、易拉罐形状和尺寸的最优设计;难点:MA TLAB 绘图;第3章差分方程模型教学内容:3.1 贷款购房3.2 管住嘴迈开腿MATLAB m文件与m函数3.3 物价的波动3.4 动物的繁殖与收获期中测试3.5 中国人口增长预测——全国大学生数学建模竞赛2007年A 题MATLAB 数据拟合重点:1、贷款购房;2、物价的波动;3、中国人口增长预测难点:MA TLAB m文件与m函数第4章微分方程模型教学内容:4.1 人口增长MATLAB 插值4.2 火箭发射MATLAB 实验报告4.3 给药方案4.4 海上追踪LINGO基础入门4.5 SARS的传播——全国大学生数学建模竞赛2003年A题和C题LINGO 线性规划重点:1、人口增长;2、火箭发射;3、SARS的传播难点:LINGO 线性规划第5章随机数学模型教学内容:5.1 博彩中的数学5.2 报童售报与飞机预订票LINGO集5.3 作弊行为的调查与估计5.4 汽车租赁与基因遗传LINGO 实验报告5.5 自动化车床管理——全国大学生数学建模竞赛1999年A 题LINGO 线性规划重点:1.博彩中的数学2.作弊行为的调查与估计3.自动化车床管理难点:LINGO 线性规划六、考核方式与成绩评定考核方式:考查考试用时:2学时成绩评定:本课程成绩构成比例为:期末考试成绩占总成绩的60%,期中考试成绩占总成绩的20%,平时成绩占总成绩的20%;平时成绩的构成及比例为:考勤占5%,课堂测验成绩占5%,实验成绩占5%,作业占5%。
高中数学教材数学建模内容设置的比较分析

2、在《北师大版》教材中,数学建模的题目多以探究性问题出现。例如,在 必修三“概率”这一章节中,有一道题要求学生通过抛硬币实验,建立概率模 型来估算硬币正面朝上的概率。
3、在《苏教版》教材中,数学建模的题目多与实际生活相关。例如,在必修 三“统计”这一章节中,有一道题要求学生调查本班学生的身高情况,建立统 计模型分析身高的分布情况。
二、数学建模内容设置比较
1、章节安排:两版教材在数学建模章节的安排上略有不同。人教A版将数学建 模分散在各章,而北师版则专门设立了数学建模章节,突出了建模的重要性。
2、案例选择:两版教材在数学建模案例的选择上也有所不同。人教A版的案例 较为生活化,更贴近学生的实际生活,如“手机话费计算”等。而北师版的案 例则更注重数学知识的应用,如“矩阵方程的应用”等。
参考内容
随着教育改革的深入发展,数学建模在数学教育中的地位逐渐提升。本次演示 通过对中国两套高中数学教材——人教A版和北师版的比较分析,探讨其数学 建模内容的设置,以期为优化教材编写和提升教学质量提供参考。
一、两版教材概述
人教A版教材由人民教育社发行,是我国使用最广泛的高中数学教材之一。其 编写风格较为简洁明了,重视基础知识和基本技能的训练。而北师版教材由北 京师范大学社,注重数学知识的系统性和理论性。
在搜索相关关键词时,我们主要围绕“数学史”、“高中数学新教材”展开。 通过对比不同社和不同版本的新教材,我们可以发现,数学史内容在高中数学 教材中所占比例逐渐增加,且呈现多样化的特点。
在整理内容时,我们可以按照时间顺序对数学史进行分类。从古希腊时期开始, 数学作为一门独立的学科开始发展。这一时期的数学家如毕达哥拉斯、欧几里 得等为数学的发展奠定了基础。高中数学新教材中引入了许多古希腊数学家的 内容,如毕达哥拉斯定理、欧几里得算法等,帮助学生了解数学学科的起源和 发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
13
五 5-6
2
14
15
五 5-6 10.1牙膏的销售量
五 5-6 Mtlab,Mathematcia数学软件学习 (上机) 数学建模实验(上机) 数学建模实验(上机)
2
2
评估周
16 17
五 5-6 五 5-6
型》 姜启源 主编
数学模型
课 程 简 介
课 程 名 称
数学模型与数学建模 Mathematical Modeling
学时
学分 课程类别
36
3 专业选修课
先 修 课 程
微积分、线性代数、概率论与数理统计 课 程 简 介 本课程是计算机及管理专业的一门专业选修课。也是本科生参加数学建 模竞赛的辅导课程。数学模型是架于数学理论和实际问题之间的桥梁。 数学建模是应用数学解决实际问题的重要手段和途径。本书介绍数学建 模中常用的一些基本概念、理论和典型的数学模型,包括:数据拟合, 网络模型,优化模型,离散模型、随机模型,时间序列预报模型,回归 分析及其试验设计。通过数学模型和数学建模有关问题的论述和模型实 例的介绍,使学生应用数学解决实际问题的能力有所提高。
B´ B A´
用(对角线与x轴的夹角)表示椅子位置
• 四只脚着地 椅脚与地面距离为零
距离是的函数
C
O D
D´
A
x
四个距离 (四只脚)
正方形 对称性
两个距离
C´
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的具体应用
• 分析与设计
• 预报与决策
•
控制与优化
• 规划与管理
数学建模
如虎添翼
计算机技术
知识经济
《数学模型》 姜启源 主编
第一章 建立数学模型
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
放稳 ~ 四只脚着地
问题分析 通常 ~ 三只脚着地 模 型 假 设
教 材 及 参 考 书 目
《数学模型》,姜启源主编, 高等教育出版社
《数学模型》 姜启源 主编
数学模型
第一章
建立数学模型
第二章
第三章 第四章 第五章 第六章
初等模型
简单的优化模型 数学规划模型 微分方程模型 稳定性模型
第七章
第八章
差分方程模型
离散模型
第九章
第十章
概率模型
统计回归模型
附录: 数学建模实验
答:船速每小时20千米/小时.
《数学模型》 姜启源 主编
第一章 建立数学模型
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数);
• 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);
• 求解得到数学解答(x=20, y=5);
• 回答原问题(船速每小时20千米/小时)。
《数学模型》 姜启源 主编
第一章 建立数学模型
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling) 数学模型
对于一个现实对象,为了一个特定目的,
根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
2 2
18
考试
《数学模型》 姜启源 主编
数学模型
第一章
建立数学模型
1.1 从现实对象到数学模型 1.2 数学建模的重要意义
1.3 数学建模示例
1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1
从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型 水箱中的舰艇、风洞中的飞机… … ~ 物理模型 地图、电路图、分子结构图… … ~ 符号模型
模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物
模型集中反映了原型中人们需要的那一部分特征
《数学模型》 姜启源 主编
第一章 建立数学模型
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少? 用 x 表示船速,y 表示水速,列出方程:
( x y ) 30 750 ( x y ) 50 750
求解
x =20 y =5
数学 建模
建立数学模型的全过程
(包括表述、求解、解释、检验等)
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2
数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。 • 在一般工程技术领域数学建模仍然大有用武之地; • 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地。
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
《数学模型》 姜启源 主编
第一章 建立数学模型
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置
利用正方形(椅脚连线)的对称性
课时
2
作业
执行情况
2
五 5-6
2
3 4 5 6
五 5-6 五 5-6 五 5-6 五 5-6
2 2 2 2 2
7 8
五 5-6 五 5-6
2
《数学模型》 姜启源 主编 9 五 5-6
数学模型
6.4种群的相互依存 7.1市场经济中的蛛网模型 2
10
12
五 5-6
五 5-6
7.2减肥计划-节食与运动 8.3层次分析模型
《数学模型》 姜启源 主编
周次
1
数学模型
教学进度
节次
五 5-6
教学内容
1.1-1.5数学模型的介绍 1.6数学模型的基本方法步骤、特点 和分类 2.1公平的席位分配(讨论课) 2.2录像机计数器的用途 2.3双层玻璃的功效 2.7实物交换 3.2生猪的出售时机 3.3森林救火(讨论课) 3.4最优价格 3.6消费者的选择 4.3汽车生产与原油采购 4.5饮料厂的生产与检修 5.1传染病模型(讨论课) 5.2经济增长模型 5.6人口的预测和控制 6.1捕鱼业的持续收获 6.2军备竞赛(讨论课)