数据结构八皇后问题

合集下载

八皇后问题(经典算法-回溯法)

八皇后问题(经典算法-回溯法)

⼋皇后问题(经典算法-回溯法)问题描述:⼋皇后问题(eight queens problem)是⼗九世纪著名的数学家⾼斯于1850年提出的。

问题是:在8×8的棋盘上摆放⼋个皇后,使其不能互相攻击。

即任意两个皇后都不能处于同⼀⾏、同⼀列或同⼀斜线上。

可以把⼋皇后问题扩展到n皇后问题,即在n×n的棋盘上摆放n个皇后,使任意两个皇后都不能互相攻击。

思路:使⽤回溯法依次假设皇后的位置,当第⼀个皇后确定后,寻找下⼀⾏的皇后位置,当满⾜左上、右上和正上⽅向⽆皇后,即矩阵中对应位置都为0,则可以确定皇后位置,依次判断下⼀⾏的皇后位置。

当到达第8⾏时,说明⼋个皇后安置完毕。

代码如下:#include<iostream>using namespace std;#define N 8int a[N][N];int count=0;//判断是否可放bool search(int r,int c){int i,j;//左上+正上for(i=r,j=c; i>=0 && j>=0; i--,j--){if(a[i][j] || a[i][c]){return false;}}//右上for(i=r,j=c; i>=0 && j<N; i--,j++){if(a[i][j]){return false;}}return true;}//输出void print(){for(int i=0;i<N;i++){for(int j=0;j<N;j++){cout<<a[i][j]<<" ";}cout<<endl;}}//回溯法查找适合的放法void queen(int r){if(r == 8){count++;cout<<"第"<<count<<"种放法\n";print();cout<<endl;return;}int i;for(i=0; i<N; i++){if(search(r,i)){a[r][i] = 1;queen(r+1);a[r][i] = 0;}}}//⼊⼝int main(){queen(0);cout<<"⼀共有"<<count<<"放法\n"; return 0;}。

八皇后问题

八皇后问题

计算机科学与技术专业数据结构课程设计报告设计题目:八皇后问题目录1需求分析 (2)1.1功能分析 (2)1.2设计平台 (3)2概要设计 (3)2.1算法描述 (4)2.2算法思想 (5)2.3数据类型的定义 (5)3详细设计和实现 (6)3.1算法流程图 (6)3.2 主程序 (6)3.3 回溯算法程序 (7)4调试与操作说明 (9)4.1调试情况 (9)4.2操作说明 (9)5设计总结 (11)参考文献 (12)附录 (12)1需求分析1.1功能分析八皇后问题是一个古老而著名的问题,该问题是十九世纪著名的数学家高斯1850年提出的,并作了部分解答。

高斯在棋盘上放下了八个互不攻击的皇后,他还认为可能有76种不同的放法,这就是有名的“八皇后”问题。

在国际象棋中,皇后是最有权利的一个棋子;只要别的棋子在它的同一行或同一列或同一斜线(正斜线或反斜线)上时,它就能把对方棋子吃掉。

所以高斯提出了一个问题:在8*8的格的国际象棋上摆放八个皇后,使其不能相互攻击,即任意两个皇后都不能处于同一列、同一行、或同一条斜线上面,问共有多少种解法。

现在我们已经知道八皇后问题有92个解答。

1、本演示程序中,利用选择进行。

程序运行后,首先要求用户选择模式,然后进入模式。

皇后个数设0<n<11。

选择皇后个数后,进入子菜单,菜单中有两个模式可以选择。

2、演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的运算命令:相应的输入数据和运算结果显示在其后。

3、程序执行的命令包括:1)进入主菜单。

2)选择皇后问题,输入是几皇后。

3)进入子菜单。

4)选择皇后显示模式。

5)选择结束4、测试数据1)N的输入为4;2)共有2个解答。

3)分别是○●○○○○●○○○○●●○○○●○○○○○○●○○●○○●○○1.2设计平台Windows2000以上操作系统;Microsoft Visual C++ 6.02概要设计问题:N后问题问题描述:国际象棋中皇后可以攻击所在行,列,斜线上的每一个位置,按照此规则要在一个n*n的棋盘上放n个皇后使每一个皇后都不互相攻击问题分析:引入1个数组模拟棋盘上皇后的位置引入3个工作数组行数组[k]=1,表示第k行没有皇后右高左低数组[k]=1,表示第k条右高左低的斜线上没有皇后左高右低数组[k]=1,表示第k条左高右低的斜线上没有皇后观察棋盘找到规律同一右高左低的斜线上的方格,它们的行号和列号之和相等;同一左高右低的斜线上的方格,它们的行号和列号只差相等;开始时,所有行和斜线上都没有皇后,从第一列的第一行配置第一个皇后开始,在第m列的皇后位置数组[m]行放置了一个合理的皇后之后,准备考察第m+1列时,在数组行数组[],右高左低数组[],左高右低数组[]中为第m列,皇后位置数组[m]的位置设定有皇后标志如果按此放置位置得不到结果,则把当前列中的有皇后标记改为无皇后标记。

算法入门经典-第七章例题7-2八皇后问题

算法入门经典-第七章例题7-2八皇后问题

算法⼊门经典-第七章例题7-2⼋皇后问题原本利⽤回溯思想解决的经典⼋皇后问题,其实也是可以⽤递归解决的~⼋皇后的递归解决思路:从第⼀⾏开始,依次判断0~8列的哪⼀列可以放置Queen,这样就确定了该⾏的Queen的位置,然后⾏数递增,继⽽递归实现下⼀⾏的判断,依次类推直到⾏数增加到8(⾏数从0开始的),此时为递归-----归的条件,即表⽰⼀种⼋皇后的解决⽅法完成,打印结果;之后进⾏下⼀种解决⽅法的寻找,⼤致思路个⼈理解是这样noDanger(row,j,(*chess)[8])函数是判断第row⾏第j列是否可以放置Queen#include<stdio.h>int count=0;//参数row:起始⾏//参数n:表⽰列数//参数(*chess)[8]表⽰指向棋盘每⼀⾏的指针int NotDanger(int row,int j,int (*chess)[8])//⽐较不同⾏同列上是否有其他皇后{int i,k,flag1=0,flag2=0,flag3=0,flag4=0,flag5=0;//判断列⽅向for(i=0;i<8;i++){if(*(*(chess+i)+j)!=0) //在这之前列上有其他皇后{flag1=1;break;}}for(i=row,k=j;i>=0&&k>=0;i--,k--){if(*(*(chess+i)+k)!=0) //左上⽅{flag2=1;break;}}for(i=row,k=j;i<8&&k<8;i++,k++){if(*(*(chess+i)+k)!=0) //右下⽅{flag3=1;break;}}for(i=row,k=j;i>=0&&k<8;i--,k++){if(*(*(chess+i)+k)!=0) //右上⽅{flag4=1;break;}}for(i=row,k=j;i<8&&k>=0;i++,k--){if(*(*(chess+i)+k)!=0) //左下⽅{flag5=1;break;}}if(flag1||flag2||flag3||flag4||flag5){return0;//如果有⼀个位置被占有危险}else return1;} /*int noDanger(int row,int j,int (*chess)[8]){int flag1=0,flag2=0,flag3=0,flag4=0,flag5=0;int i,k;//判断列for(i=0;i<8;i++){if(*(*(chess+i)+j)!=0){flag1=1;break;}}//判断左上⽅for(i=row,k=j;i>=0&&k>=0;i--,k--){if(*(*(chess+i)+k)!=0){flag2=1;break;}}//判断右下⽅for(i=row,k=j;i<8&&k<8;i++,k++){if(*(*(chess+i)+k)!=0){flag3=1;break;}}//判断左下⽅for(i=row,k=j;i<8&&k>=0;k--,i++){if(*(*(chess+i)+k)!=0){flag4=1;break;}}//判断右上⽅for(i=row,k=j;i>=0&&k<8;k++,i--){if(*(*(chess+i)+k)!=0){flag5=1;break;}}if(flag1||flag2||flag3||flag4||flag5){return 0;}else{return 1;}} */EightQueen(int row,int n,int (*chess)[8]){int chess2[8][8];int i,j;for(i=0;i<8;i++){for(j=0;j<8;j++){chess2[i][j]=chess[i][j];}}if(8==row){printf("第%d 种\n",count+1);for(i=0;i<8;i++){for(j=0;j<8;j++)printf("%3d ",*(*(chess2+i)+j));printf("\n");}count++;}else{//判断这个位置是否危险 j<列for(j=0;j<n;j++){if(NotDanger(row,j,chess2))//尝试每⼀列是否危险 {for(i=0;i<8;i++){//整⾏所有列的位置赋值为0*(*(chess2+row)+i)= 0;}*(*(chess2+row)+j)=1;//皇后的位置赋值为1EightQueen(row+1,n,chess2);//继续往下⼀⾏递归 }}}}int main(){int chess[8][8],i,j;for(i=0;i<8;i++){for(j=0;j<8;j++)chess[i][j]=0;}EightQueen(0,8,chess);printf("总共有%d种解决⽅法",count);return0;}。

八皇后问题代码实现

八皇后问题代码实现

八皇后问题代码实现/*代码解析*//* Code by Slyar */ #include &lt;stdio.h&gt;#include&lt;stdlib.h&gt; #define max 8 int queen[max], sum=0; /* max为棋盘最大坐标*/ void show() /* 输出所有皇后的坐标*/{ int i; for(i = 0; i &lt; max; i++){ printf("(%d,%d) ", i, queen[i]); }printf("\n"); sum++;} int check(int n) /* 检查当前列能否放置皇后*/{ int i; for(i = 0; i &lt; n; i++) /* 检查横排和对角线上是否可以放置皇后*/ { /* ///题目的要求是所有皇后不在同一横排、竖排、对角线上。

1、queen[n]值为竖排号,可看为Y轴上值。

n值为横排号,可看为X轴上值。

2、(1)先从横坐标第n点排开始放皇后,再放第n+1,所有不会同一横坐标点即同一竖排。

(2)queen[i] == queen[n]时即y坐标相等,即在同一横排,此时判断不合规则点。

(3)abs(queen[i] - queen[n]) == (n - i),可变形为(queen[n] - queen[i]) /(n - i)==tan45°或tan135° 由公式可得出,点(n,queen[n])与点(i,quuen[i])在同一条左斜线135°或右斜45°,即国际象棋上的每个格子的两条斜角线。

3、由2即可得出当前格式是否能放置一个皇后。

*/ if(queen[i] == queen[n] || abs(queen[i] - queen[n]) == (n - i)) { return1; } } return 0;} void put(int n) /* 回溯尝试皇后位置,n为横坐标*/{ int i; for(i = 0; i &lt; max;i++) { queen[n] = i; /* 将皇后摆到当前循环到的位置*/ if(!check(n)){ if(n == max - 1){ show(); /* 如果全部摆好,则输出所有皇后的坐标*/ } else { put(n + 1); /* 否则继续摆放下一个皇后*/ } } }} int main(){ put(0); /*从横坐标为0开始依次尝试*/ printf("TTTTTT----%d\n", sum); //system("pause"); //while(1); return 0;}/*算法系列---回溯算法引言寻找问题的解的一种可靠的方法是首先列出所有候选解,然后依次检查每一个,在检查完所有或部分候选解后,即可找到所需要的解。

C++课程设计八皇后问题

C++课程设计八皇后问题

安徽建筑工业学院数据结构设计报告书院系数理系专业信息与计算科学班级11信息专升本学号11207210138姓名李晓光题目八皇后指导教师王鑫1.程序功能介绍答:这个程序是用于解决八皇后问题的。

八皇后问题等于要求八个皇后中的任意两个不能被放在同一行或同一列或同一斜线上。

做这个课题,重要的就是先搞清楚哪个位置是合法的放皇后的位置,哪个不能,要先判断,后放置。

我的程序进入时会让使用者选择程序的功能,选【1】将会通过使用者自己手动输入第一个皇后的坐标后获得答案;选【2】将会让程序自动运算出固定每一个皇后后所有的排列结果。

2.课程设计要求答:(1)增加函数,完成每输入一组解,暂停屏幕,显示“按任意键继续!”。

(2)完善程序,编程计算八皇后问题共有集中排列方案。

(3)增加输入,显示在第一个皇后确定后,共有几组排列。

(4)将每组解的期盼横向排列输出在屏幕上,将五个棋盘并排排列,即一次8行同时输出5个棋盘,同样完成一组解后屏幕暂停,按任意键继续。

(5)求出在什么位置固定一个皇后后,解的数量最多,在什么位置固定皇后后,解的数量最少,最多的解是多少,最少的解是多少,并将最多,最少解的皇后位置及所有的解求出,同样5个一组显示。

3.对课程题目的分析与注释答:众所周知的八皇后问题是一个非常古老的问题,问题要求在一个8*8的棋盘上放上8个皇后,使得每一个皇后既攻击不到另外七个皇后,也不被另外七个皇后所攻击。

按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任何棋子。

因此,本课程设计的目的也是通过用C++语言平台在一个8*8的棋盘上放上8个皇后,使得每一个皇后既攻击不到另外七个皇后,也不被另外七个皇后所攻击的92种结构予以实现。

使用递归方法最终将其问题变得一目了然,更加易懂。

首先要用到类,将程序合理化:我编辑了一个盘棋8*8的类:class Board,还有个回溯法的类:class Stack,关键的类好了,然后编辑好类的成员,然后编辑主函数利用好这些类的成员,让其运算出结果。

八皇后以及N皇后问题分析

八皇后以及N皇后问题分析

⼋皇后以及N皇后问题分析⼋皇后是⼀个经典问题,在8*8的棋盘上放置8个皇后,每⼀⾏不能互相攻击。

因此拓展出 N皇后问题。

下⾯慢慢了解解决这些问题的⽅法:回溯法:回溯算法也叫试探法,它是⼀种系统地搜索问题的解的⽅法。

回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。

在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满⾜某种要求的可能或最优的情况,从⽽得到整个问题的解。

回溯算法就是解决这种问题的“通⽤算法”,有“万能算法”之称。

N皇后问题在N增⼤时就是这样⼀个解空间很⼤的问题,所以⽐较适合⽤这种⽅法求解。

这也是N皇后问题的传统解法,很经典。

算法描述:1. 算法开始,清空棋盘。

当前⾏设为第⼀⾏,当前列设为第⼀列。

2. 在当前⾏,当前列的判断放置皇后是否安全,若不安全,则跳到第四步。

3. 在当前位置上满⾜条件的情况: 在当前位置放⼀个皇后,若当前⾏是最后⼀⾏,记录⼀个解; 若当前⾏不是最后⼀⾏,当前⾏设为下⼀⾏,当前列设为当前⾏的第⼀个待测位置; 若当前⾏是最后⼀⾏,当前列不是最后⼀列,当前列设为下⼀列; 若当前⾏是最后⼀⾏,当前列是最后⼀列,回溯,即清空当前⾏以及以下各⾏的棋盘,然后当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置; 以上返回第⼆步。

4.在当前位置上不满⾜条件: 若当前列不是最后⼀列,当前列设为下⼀列,返回到第⼆步; 若当前列是最后⼀列,回溯,即,若当前⾏已经是第⼀⾏了,算法退出,否则,清空当前⾏以及以下各⾏的棋盘,然后,当前⾏设为上⼀⾏,当前列设为当前⾏的下⼀个待测位置,返回第⼆步。

如何判断是否安全:把棋盘存储为⼀个N维数组a[N],数组中第i个元素的值代表第i⾏的皇后位置,这样便可以把问题的空间规模压缩为⼀维O(N),在判断是否冲突时也很简单, ⾸先每⾏只有⼀个皇后,且在数组中只占据⼀个元素的位置,⾏冲突就不存在了, 其次是列冲突,判断⼀下是否有a[i]与当前要放置皇后的列j相等即可。

八皇后问题

八皇后问题

安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称八皇后问题专业计算机科学与技术班级学号姓名联系方式指导教师2011 年 12 月 25日目录1、数据结构课程设计任务书.............................................................................................. 11.1、题目..................................................................................................................... 11.2、要求..................................................................................................................... 12、总体设计....................................................................................................................... 12.1、功能模块设计 ...................................................................................................... 12.2、所有功能模块的流程图........................................................................................ 23、详细设计....................................................................................................................... 53.1、程序中所采用的数据结构及存储结构的说明........................................................ 53.2、算法的设计思想................................................................................................... 53.3、稀疏矩阵各种运算的性质变换 ............................................................................. 54、调试与测试:................................................................................................................ 64.1、调试方法与步骤: ............................................................................................... 64.2、测试结果的分析与讨论: .................................................................................... 64.3、测试过程中遇到的主要问题及采取的解决措施:................................................. 65、时间复杂度的分析:..................................................................................................... 66、源程序清单和执行结果 ................................................................................................. 67、C程序设计总结 ........................................................................................................ 108、致谢.......................................................................................................................... 109、参考文献................................................................................................................... 101、数据结构课程设计任务书1.1、题目八皇后问题1.2、要求编写程序实现将八个皇后放置在国际象棋棋盘的无冲突的位置上的算法,并给出所有的解。

八皇后问题数据结构课程设计报告

八皇后问题数据结构课程设计报告

数据结构课程设计报告八皇后问题设计任务书指导教师(签章):年月日摘要:众所周知的八皇后问题是一个非常古老的问题,具体如下:在8*8的国际象棋棋盘上放置了八个皇后,要求没有一个皇后能吃掉另一个皇后,即任意两个皇后都不处于棋盘的同一行、同一列或同一对角线上,这是做出这个课题的基础。

要求编写实现八皇后问题的递归解法或非递归解法,对于任意给定的一个初始位置,输出八皇后问题的一个布局。

本次设计旨在学习各种算法,训练对基础知识和基本方法的综合运用及变通能力,增强对算法的理解能力,提高软件设计能力。

在实践中培养独立分析问题和解决问题的作风和能力。

要求熟练运用C++语言、基本算法的基础知识,独立编制一个具有中等难度的、解决实际应用问题的应用程序。

通过对题意的分析与计算,用递归法回溯法及枚举法解决八皇后是比较适合的。

递归是一种比较简单的且比较古老的算法。

回溯法是递归法的升华,在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而枚举法,更是一种基础易懂简洁的方法。

把它们综合起来,就构成了今天的算法。

不论用什么法做这个课题,重要的就是先搞清楚哪个位置是合法的放皇后的位置,哪个不能,要先判断,后放置。

关键词:八皇后;递归法;回溯法;数组;枚举法…….目录1 课题综述…………………………………………………………………………………1.1 八皇后问题概述---------------------------------------------------1.2 预期目标---------------------------------------------------------1.3 八皇后问题课题要求-----------------------------------------------1.4 面对的问题-------------------------------------------------------2 需求分析…………………………………………………………………………………2.1 涉及到的知识基础--------------------------------------------------2.2 总体方案----------------------------------------------------------3 模块及算法设计……………………………………………………………………………………3.1 算法描述----------------------------------------------------------3.2.详细流程图-------------------------------------------------------4.代码编写…………………………………………………………………………5 程序调试分析……………………………………………………………………………………6 运行与测试……………………………………………………………………………………总结…………………………………………………………………………1 课题综述1.1 八皇后问题概述八皇后问题是一个古老而著名的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
一需求分析............................................ 错误!未定义书签。

1.1程序的功能:...................................... 错误!未定义书签。

1.2程序的输入输出要求:.............................. 错误!未定义书签。

二概要设计............................................ 错误!未定义书签。

2.1程序的主要模块:.................................. 错误!未定义书签。

2.2程序涉及:........................................ 错误!未定义书签。

三详细设计............................................. 错误!未定义书签。

3.1相关代码及算法..................................... 错误!未定义书签。

3.1.1 定义相关的数据类型如下:...................... 错误!未定义书签。

3.1.2 主模块类C码算法:............................. 错误!未定义书签。

3.1.3 画棋盘模块类C码算法........................... 错误!未定义书签。

3.1.4 画皇后模块类C码算法:........................ 错误!未定义书签。

3.1.5 八皇后摆法模块(递归法):.................... 错误!未定义书签。

3.1.6 初始化模块.................................... 错误!未定义书签。

3.1.7 输出摆放好的八皇后图形(动态演示):.......... 错误!未定义书签。

3.2相关流程图......................................... 错误!未定义书签。

四调试分析............................................. 错误!未定义书签。

五设计体会............................................ 错误!未定义书签。

六附录................................................ 错误!未定义书签。

七参考文献............................................ 错误!未定义书签。

一需求分析
1.1 程序功能:
八皇后问题是一个古老而著名的问题。

该问题是十九世纪著名的数学家高斯1850年提出的。

八皇后问题要求在一个8*8的棋盘上放上8个皇后,使得每一个皇后既攻击不到另外七个皇后,也不被另外七个皇后所攻击.按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任何棋子,问有多少种不同的摆法?并找出所有的摆法。

因此,八皇后问题等于要求八个皇后中的任意两个不能被放在同一行或同一列或同一斜线上。

本程序通过对子函数void qu(int i)的调用,将八皇后的问题关键通过数据结构的思想予以了实现。

虽然题目以及演算看起来都比较复杂,繁琐,但在实际中,只要当一只皇后放入棋盘后,在横与列、斜线上没有另外一只皇后与其冲突,再对皇后的定位进行相关的判断。

即可完成。

如果在这个程序中,我们运用的是非递归的思想,那么将大量使用if等语句,并通过不断的判断,去推出答案,而且这种非递归的思想,大大的增加了程序的时间复杂度。

如果我们使用了数据结构中的算法后,那么程序的时间复杂度,以及相关的代码简化都能取得不错的改进。

这个程序,我运用到了数据结构中的栈、数组,以及树和回溯的方法。

特别是在对于树以及二叉树的学习,更是为八皇后的问题提供了科学的解决方案,通过对树的分析,把八皇后的问题看成了树,而在衍生第一个变化后,上面的第一层八个变化就变成了八个结点,而这八个结点再继续的衍生……,这样比较形象的将八皇后的问题简单化了。

然后再通过回溯法进行设计,回溯法是设计递归过程的一个重要的方法。

它的求解过程实质上是一个先序遍历一棵“状态树“的过程。

在这个程序设计中,它先进行判断,棋盘上是否已经得到一个完整的布局(即棋盘是否已经摆上8个棋子),如果是,则输出布局;如果不是则依次先根遍历满足约束条件的各棵子树,流程即是:
判断该子树根的布局是否合法:如果合法的话,则先根遍历该子树;如果不合法的话,则剪去该子树的分支。

1.2 程序的输入输出要求:
用TC软件进行编译以及调试,调试正确之后,运行结果如下图:
输出结果如下图所示:
第1种情况
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
第92种情况
二概要设计
2.1 主要模块:
这个程序主要由4个模块组成,分别是画棋盘模块,画皇后模块,输出皇后摆法模块,和解决如何摆置皇后模块。

这4个模块隶属于主函数模块。

既主函数通过对这4个模块的合理调用解决“8皇后问题”,同时这4个模块之间也互有调用。

2.2 程序设计的数据结构及其关系:
数据结构的实现:数组a[i]:a [i]表示第i个皇后放置的列;i的范围:1-8;对角线数组:b[j](主对角线),c[j](从对角线),根据程序的运行,去决定主从对角线是否放入皇后;然后进行数据的初始化。

从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):如果是,摆放第n个皇后,并宣布占领(切记要横列竖列斜列一起来),接着进行递归;如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。

三详细设计
3.1 定义相关的数据类型:
3.1.1 定义的相关数据类型:
int A[21],B[21],C[21],Y[8];
void *buff1,*buff2
3.1.2 设计思想:
本程序通过对子函数void qu(int i)的调用,将八皇后的问题关键通过数据结构。

相关文档
最新文档