线性方程组的解法
线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以用于描述多个未知数之间的关系。
解决线性方程组的问题是求解未知数的具体取值,从而得到方程组的解。
本文将介绍几种常见的解线性方程组的方法。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
它通过矩阵变换的方式,将线性方程组转化为一个三角矩阵,从而简化求解过程。
以下是高斯消元法的步骤:1. 将线性方程组写成增广矩阵的形式,其中最后一列为常数项。
2. 选取一个非零元素作为主元,在当前列中将主元素所在的行作为第一行,然后通过初等行变换将其他行的主元素变为0。
3. 重复第2步,直到所有的主元素都变成1,并且每个主元素所在的列的其他元素都变为0。
4. 反向代入,从最后一行开始,依次回代求解未知数的值。
二、矩阵的逆矩阵法矩阵的逆矩阵法是利用矩阵的逆矩阵来求解线性方程组。
以下是逆矩阵法的步骤:1. 对于线性方程组Ax=b,如果矩阵A可逆,将方程组两边同时左乘A的逆矩阵AI,得到x=A^(-1)b。
2. 通过求解矩阵A的逆矩阵来得到未知数向量x的值。
3. 如果矩阵A不可逆,那么线性方程组没有唯一解,可能有无穷多解或者无解。
三、克拉默法则克拉默法则是另一种解决线性方程组的方法,它利用行列式的性质来求解未知数的值。
以下是克拉默法则的步骤:1. 对于线性方程组Ax=b,令|A|=D,其中D表示矩阵A的行列式。
2. 分别计算将矩阵A的第i列替换为常数列b所得到的行列式|A_i|。
3. 未知数向量x的第i个分量可以通过x_i = |A_i|/D来得到。
克拉默法则的优点是简单直观,但是当方程组的规模很大时,计算行列式将变得非常复杂。
四、矩阵的广义逆法矩阵的广义逆法是一种应对方程组无解或者有无穷多解的情况的方法。
对于线性方程组Ax=b,如果矩阵A不可逆,我们可以通过求解广义逆矩阵A^+来得到一个特解x_0。
1. 分别计算A^+ = (A^T·A)^(-1)·A^T和x_0 = A^+·b。
线性方程组的求解方法

线性方程组的求解方法线性方程组是数学中的基础概念,广泛应用于各个领域,如物理、经济学、工程学等。
解决线性方程组的问题,对于推动科学技术的发展和解决实际问题具有重要意义。
本文将介绍几种常见的线性方程组的求解方法,包括高斯消元法、矩阵法和迭代法。
一、高斯消元法高斯消元法是求解线性方程组的经典方法之一。
它的基本思想是通过一系列的行变换将方程组化为阶梯形或行最简形,从而得到方程组的解。
首先,将线性方程组写成增广矩阵的形式,其中增广矩阵是由系数矩阵和常数向量组成的。
然后,通过行变换将增广矩阵化为阶梯形或行最简形。
最后,通过回代法求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现。
但是,当方程组的规模较大时,计算量会很大,效率较低。
二、矩阵法矩阵法是求解线性方程组的另一种常见方法。
它的基本思想是通过矩阵运算将方程组化为矩阵的乘法形式,从而得到方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,通过矩阵运算将方程组化为矩阵的乘法形式。
最后,通过求逆矩阵或伴随矩阵求解得到方程组的解。
矩阵法的优点是计算效率高,适用于方程组规模较大的情况。
但是,对于奇异矩阵或非方阵的情况,矩阵法无法求解。
三、迭代法迭代法是求解线性方程组的一种近似解法。
它的基本思想是通过迭代计算逐步逼近方程组的解。
首先,将线性方程组写成矩阵的形式,其中矩阵是由系数矩阵和常数向量组成的。
然后,选择一个初始解,通过迭代计算逐步逼近方程组的解。
最后,通过设定一个误差限,当迭代结果满足误差限时停止计算。
迭代法的优点是计算过程简单,适用于方程组规模较大的情况。
但是,迭代法的收敛性与初始解的选择有关,有时可能无法收敛或收敛速度较慢。
综上所述,线性方程组的求解方法有高斯消元法、矩阵法和迭代法等。
每种方法都有其适用的场景和特点,选择合适的方法可以提高计算效率和解决实际问题的准确性。
在实际应用中,根据问题的具体情况选择合适的方法进行求解,能够更好地推动科学技术的发展和解决实际问题。
线性方程组的解法

线性方程组的解法线性方程组是数学中一种重要的数学模型,它描述了线性关系的集合。
解决线性方程组的问题在数学和应用数学中具有广泛的应用。
本文将介绍线性方程组的两种常见解法:矩阵消元法和矩阵求逆法。
一、矩阵消元法矩阵消元法是解决线性方程组的常见方法之一。
它通过对增广矩阵进行一系列的行变换来化简线性方程组,最终达到求解方程组的目的。
步骤如下:1. 将线性方程组写成增广矩阵的形式。
2. 选取主元,即第一行第一列的元素作为主元,将主元移到对角线上。
3. 利用主元,通过一系列的行变换,将主元下方的元素化为零。
4. 对于主元右方的元素,依次选取主元,重复第2、3步,将其化为零。
5. 重复以上步骤,直到将矩阵化为上三角矩阵。
6. 反向求解未知数,得到线性方程组的解。
这种方法的优点是简单易行,适用于任意大小的线性方程组。
然而,该方法在某些情况下可能会出现无法求解的情况,例如矩阵的某一行全为零或等于其他行。
二、矩阵求逆法矩阵求逆法是另一种常见的解决线性方程组的方法。
该方法利用矩阵的逆矩阵,通过左乘逆矩阵将线性方程组转化为标准形式,从而求解未知数。
步骤如下:1. 将线性方程组写成矩阵形式:AX = B,其中A为系数矩阵,X为未知数向量,B为常数向量。
2. 判断系数矩阵A是否可逆,若可逆,则存在逆矩阵A^-1。
3. 左乘逆矩阵A^-1,得到X = A^-1 * B。
4. 计算逆矩阵A^-1和常数向量B的乘积,得到未知数向量X,即线性方程组的解。
矩阵求逆法相较于矩阵消元法更加灵活,但对于大规模矩阵的求逆可能会涉及到较复杂的计算。
此外,在某些情况下,系数矩阵A可能不存在逆矩阵,此时该方法无法求解。
总结线性方程组是数学领域中研究的重要课题,矩阵消元法和矩阵求逆法都是常见的解决线性方程组的方法。
选择合适的解法取决于问题的具体要求和所涉及的矩阵特性。
在实际问题中,我们根据具体情况选择适当的方法,以求得线性方程组的解。
注:本文中所使用的线性方程组解法仅涵盖了部分常见方法,并不是穷尽全部解法。
线性方程组的解法

线性方程组的解法线性方程组是数学中的重要概念,广泛应用于各个领域。
解决线性方程组可以帮助我们求解未知数的值,解释不同变量之间的关系。
本文将介绍线性方程组的解法,包括高斯消元法和矩阵法。
一、高斯消元法高斯消元法是解决线性方程组的一种常见方法。
它通过逐步操作将方程组转化为一种更容易求解的形式。
下面以一个三元一次方程组为例进行说明:方程组1:2x + 3y - z = 63x + 2y + 2z = 5x - 2y + z = 0首先,将方程组写成增广矩阵的形式:[2 3 -1 | 6][3 2 2 | 5][1 -2 1 | 0]然后,通过初等行变换,将增广矩阵化简成上三角矩阵的形式。
具体步骤如下:1. 将第一行乘以3,将第二行乘以2,分别得到新的第一行和第二行。
[6 9 -3 | 18][6 4 4 | 10][1 -2 1 | 0]2. 将第二行减去第一行,将第三行减去第一行,分别得到新的第二行和第三行。
[6 9 -3 | 18][0 -5 7 | -8][1 -2 1 | 0]3. 将第二行除以-5,得到新的第二行。
[6 9 -3 | 18][0 1 -7/5 | 8/5][1 -2 1 | 0]4. 将第一行减去9倍的第二行,得到新的第一行。
[6 0 48/5 | -72/5][0 1 -7/5 | 8/5][1 -2 1 | 0]5. 将第一行除以6,得到新的第一行。
[1 0 8/5 | -12/5][0 1 -7/5 | 8/5][1 -2 1 | 0]至此,我们得到了一个上三角矩阵。
接下来,通过回代来求解变量的值。
1. 由最后一行我们可以得到 z = 0。
2. 将 z = 0 代入到第一行和第二行,可以得到:x + 8/5 = -12/5,即 x = -4;y - 7/5 = 8/5,即 y = 3。
所以,原始方程组的解为 x = -4,y = 3,z = 0。
二、矩阵法除了高斯消元法,我们还可以使用矩阵法来解决线性方程组。
线性方程组的解法

线性方程组的解法作为一个线性代数主题,线性方程组的解法是一个非常重要的领域。
在本文中,我们将介绍几种解决线性方程组问题的方法。
我们将从初等变换、高斯消元法、矩阵展开式等几个方面来深入探讨。
一、初等变换初等变换往往是解决线性方程组问题的起点。
我们可以对方程组进行一些基本的操作来得到一个简化的等价方程组,从而方便我们去寻找方程组的解,初等变换主要包括三种操作:1.交换方程组中的两个方程的位置。
2.将某个方程的倍数加到另一个方程上。
3.用一个非零常数来乘某个方程。
执行初等变换时,我们必须记住每个变换对解x的影响。
在交换方程x 和y 的位置时,它们的解不变,而在加上一只方程的某个倍数时,系数矩阵和右侧向量也会随之改变,但解不变。
用一个非零常数乘以方程只会改变右侧向量,同时系数矩阵也会改变。
二、高斯消元法高斯消元法是解决线性方程组问题的另一种方法。
该方法通过使用矩阵增广形式来解决线性方程组问题。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式,其中右侧向量位于最后一列。
2. 使用初等变换来将增广矩阵化为行梯阵形式。
行梯阵是矩阵的形式,其中每一行从左侧开始的第一个非零元素称为主元(pivot),每个主元下方的元素均为零。
3. 从最后一行开始,使用回带算法来求得线性方程组的解。
高斯消元法对于小规模的线性方程组可以轻松解决。
但是,在大规模问题上,该方法可能会产生误差或需要很长时间才能找到解决方案。
三、克拉默法则克拉默法则是解决线性方程组问题的第三种方法。
该方法的关键在于将解决方案表示为每个未知数的一个比值。
这个比值是通过计算每个未知数对其余所有未知数的系数行列式比率而得到的。
这个方法的好处在于消去解方程组所需要的系数矩阵增广形式和行梯阵形式的需要。
但是,如果有许多未知数,计算每个比率可能会非常繁琐。
另外,如果有两个或更多个未知数系数具有相同的值,则克拉默法则计算行列式比率会失败。
四、矩阵展开式最后,我们来看一下使用矩阵展开式来解决线性方程组问题的方法。
线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,解决线性方程组可以帮助我们求解各种实际问题。
在本文中,我们将介绍几种常见的求解线性方程组的方法。
一、高斯消元法高斯消元法是最常见、最简单的一种求解线性方程组的方法。
该方法的基本思想是通过一系列的行变换将线性方程组化为简化的梯形方程组,并进一步求解出方程组的解。
具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。
2. 选取矩阵中的一个元素作为主元,将主元所在的行进行换位,使主元尽可能地靠近对角线。
3. 使用消元法,通过将主元下方的所有元素消为零,将矩阵化为简化的梯形矩阵。
4. 从最后一行开始,逆推求解出每个未知数的值。
高斯消元法的优点是简单易懂,适用于一般的线性方程组。
然而,该方法在涉及大规模矩阵的情况下计算量较大,效率相对较低。
二、矩阵的逆和逆矩阵法矩阵的逆和逆矩阵法是通过求解矩阵的逆矩阵来求解线性方程组的方法。
这种方法需要先求出矩阵的逆矩阵,然后利用逆矩阵和增广矩阵相乘得到方程组的解。
具体的步骤如下:1. 将线性方程组写成增广矩阵的形式。
2. 求解增广矩阵的逆矩阵。
3. 将逆矩阵与增广矩阵相乘,得到方程组的解。
矩阵的逆和逆矩阵法的优点是适用于包含多个方程组的情况,且相对于高斯消元法在计算大型矩阵时具有更高的效率。
然而,该方法要求矩阵可逆,且逆矩阵存在才能得到准确的解。
三、克拉默法则克拉默法则是一种基于行列式的方法,用于求解含有n个未知数的n个线性方程组的解。
该方法通过求解方程组的行列式来得到各个未知数的解。
具体的步骤如下:1. 将线性方程组写成矩阵形式,并求出系数矩阵的行列式D。
2. 分别将系数矩阵的每一列替换成常数项的列向量,分别求出替换后的矩阵的行列式D1、D2...Dn。
3. 通过D1/D、D2/D...Dn/D得到方程组的解。
克拉默法则的优点是对于小规模的线性方程组简单易懂,但对于大规模的线性方程组计算量较大,效率较低。
总结:以上介绍了几种常见的线性方程组的求解方法,包括高斯消元法、矩阵的逆和逆矩阵法,以及克拉默法则。
线性方程组的解法

线性方程组的解法一、引言线性方程组是数学中的重要概念,广泛应用于各个领域,包括物理学、经济学、工程学等。
解决线性方程组有多种方法,本文将介绍常见的三种解法:高斯消元法、矩阵法和克拉默法。
二、高斯消元法高斯消元法是一种基于矩阵变换的解法,可以将线性方程组转化为简化行阶梯形矩阵,从而快速求解解向量。
具体步骤如下:1. 将线性方程组写成增广矩阵形式;2. 选择一个非零首元,在该列中其余元素乘以某个系数并相减,使得除首元外该列其他元素变为零;3. 重复第二步,直至将矩阵转化为简化行阶梯形矩阵;4. 从简化行阶梯形矩阵中读出解。
三、矩阵法矩阵法是一种基于矩阵运算的解法,将线性方程组转化为矩阵形式,并求解矩阵的逆矩阵,从而得到解向量。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 求解矩阵的逆矩阵;3. 用逆矩阵乘以等号右边的向量,得到解向量。
四、克拉默法克拉默法是一种利用行列式性质求解线性方程组的方法,适用于方程组个数与未知数个数相等的情况。
具体步骤如下:1. 将线性方程组写成矩阵形式;2. 计算行列式的值;3. 分别用等号右边的向量替换矩阵中对应的列,再求解行列式的值;4. 将第三步得到的值除以第二步得到的值,得到解向量。
五、比较与应用场景1. 高斯消元法在实际计算中具有高效性和稳定性,适用于任意线性方程组求解;2. 矩阵法需要先求解矩阵的逆矩阵,计算过程相对复杂,适用于方程组个数与未知数个数相等的情况;3. 克拉默法计算过程较为复杂,不适用于大规模方程组的求解,但对于小规模方程组求解比较便捷。
六、总结线性方程组的解法有多种,本文介绍了高斯消元法、矩阵法和克拉默法三种常见方法。
应根据具体情况选择合适的方法来求解线性方程组,以达到高效、准确的目的。
对于大规模方程组的计算,高斯消元法更具优势;对于方程组个数与未知数个数相等的情况,矩阵法和克拉默法更适用。
随着数学计算方法的不断发展,越来越多的解法将出现,为解决复杂的线性方程组提供更多选择。
线性方程组的解法

线性方程组的解法线性方程组是数学中常见的问题,它可以表示为多个线性方程的组合,我们需要找到满足所有方程的解。
下面将介绍几种常用的线性方程组解法。
一、高斯消元法高斯消元法是最常用的线性方程组解法之一,它通过矩阵的初等行变换,将线性方程组转化为等价的简化行阶梯形矩阵。
具体步骤如下:1. 将线性方程组写成增广矩阵的形式;2. 选取一个主元(通常是矩阵的第一行第一列元素);3. 将选中的主元通过初等行变换变为1,并将该列其他元素通过初等行变换变为0;4. 重复上述步骤,直到将整个矩阵化简成行阶梯形矩阵。
通过高斯消元法得到的行阶梯形矩阵可以帮助我们找到线性方程组的解。
如果矩阵中存在形如0=1的方程,则说明该线性方程组无解。
二、克拉默法则克拉默法则是另一种解线性方程组的方法,它利用了行列式的概念。
对于一个n元线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量,如果A的行列式不为0,那么该线性方程组有唯一解,可以通过如下公式求解:xi = |Ai| / |A|, i=1,2,...,n其中|Ai|表示将A的第i列替换成向量b后的新矩阵的行列式,|A|为A的行列式。
克拉默法则的优点是直观易懂,适用于较小规模的线性方程组。
然而,它的计算过程较为繁琐,不适用于大规模线性方程组的求解。
三、矩阵求逆法对于一个n元线性方程组Ax=b,我们可以通过求解系数矩阵A的逆矩阵来得到方程组的解:x = A^(-1) * b其中A^(-1)表示A的逆矩阵,*为矩阵乘法运算。
然而,矩阵求逆法在实际应用中往往需要消耗大量的计算资源和时间,尤其是在维数较高的情况下。
因此,该方法适用于对较小规模的线性方程组求解。
四、迭代法迭代法是一种数值解法,适用于大规模稀疏线性方程组的求解。
其基本思想是通过迭代计算逼近线性方程组的解。
常用的迭代方法有雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法等。
雅可比迭代法的计算公式为:xi(k+1) = (bi - Σ(aij * xj(k))) / aii, i = 1, 2, ..., n其中k表示迭代的次数,xi(k)表示第k次迭代后第i个未知数的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
lim xi( k ) xi* 迭 代 收 敛
k
否则 迭代发散
用矩阵形式来表示雅可比迭代公式
设有方程组:
AX = b
其中A=(aij)n为非奇异矩阵,X=(x1, x2, · · · , xn)T,
b=(b1, b2, · · · , bn)T,唯一解为X*=(x1*, x2*, · · · , xn*)T
(0) x1 0 (0) x 2 0 x ( 0 ) 0 3
( k 1) ( k 1) (k ) x2 (8 x1 x3 ) / 10
( k 1) ( k 1) ( k 1) x3 (13 x1 x2 ) / 15
线性方程组的解法
解线性方程组的迭代法
Iterative Methods for Linear Systems
Jacobi迭代和Gauss-Seidel迭代
迭代法的矩阵表示
Matrix form of the Iterative Methods
线性方程组的解法在计算数学中占有极其 重要的地位。 线性方程组的解法大致分为迭代法与直接 法两大类
(0) x1 0 (0) x 2 0 x ( 0 ) 0 3
( k 1) (k ) (k ) x2 (8 x1 x3 ) / 10
( k 1) (k ) (k ) x3 (13 x1 x2 ) / 15
据此建立迭代公式
x1 (7 x2 x3 ) / 9 ( k 1 ) (k ) (k ) x2 (8 x1 x3 ) / 10 x ( k 1 ) (13 x ( k ) x ( k ) ) / 15 1 2 3
( k 1 ) (k ) (k )
( k 1) (k ) x x 0 0 1 1 0 1 / 9 1 / 9 1 7 / 9 ( k 1) (k ) 1 / 10 1 0 x 0 0 1 / 10 x 8 / 10 2 2 x ( k 1 ) 0 0 x ( k ) 13 / 15 1 / 15 1 / 15 1 0 3 3
矩阵形式的高斯-塞德尔迭代公式。 B:迭代矩阵
例 9 x1 x 2 x 3 7
x1 10 x 2 x 3 8 x x 15 x 13 2 3 1
( k 1) (k ) (k ) x1 (7 x2 x3 )/ 9
x1 ( 7 x 2 x 3 ) / 9 x 2 (8 x1 x 3 ) / 10 x (13 x x ) / 15 1 2 3
问题: (1)如何构造迭代格式? (2)迭代格式是否收敛?
(3)收敛速度如何?
(4)如何进行误差估计?
高斯塞德尔Gauss-Seidel迭代法
Gauss-Seidel迭代法是通过对Jacobi迭代法稍加改 进得到的。 Jacobi迭代法的每一步迭代新值 x(k+1)=[x1(k+1),x2(k+1) , · · · ,xn(k+1)]T
将A分解为:A=U+D+L
其中
a11 0 a12 a1n 0 a 2n D U 0 0 0 a 22
0 1 a nn
0 an 2
0 0
于是
(U+D+L)X = b
得
X= -D- (U+L)X +D-b X(k+1)=-D-(U+L)X(k) +D-b
据此得矩阵形式的雅可比迭代公式 记 B=-D- (U+L), f= D-b
· · · · · ) X(k+1)= BX(k) + f ( k=0,1,2,· B:迭代矩阵
有
任取 X(0), 迭代计算产生向量序列:
都是用前一步的旧值
x(k)=[x1(k),x2(k) , · · · ,xn(k)]T
的全部分量计算出来的。那么在计算第i个分量 xi(k+1) 时,已经计算出 x1(k+1),x2(k+1) , · · · ,xi-1(k+1) (i-1) 个分量,这些分量新值没用在计算xi(k+1) 上。将这
将这些分量利用起来,有可能得到一个收敛更 快的迭代公式。 具体作法:将分量形式的雅可比迭代公式右端 前(i-1)个分量的上标为k换成k+1,即
雅可比(Jacobi)迭代法
举例说明雅可比迭代法的基本思路
9 x1 x 2 x 3 7 例4.1 x1 10 x 2 x 3 8 特点:系数矩阵主 x x 15 x 13 对角元均不为零 2 3 1
将方程改写成如下等价形式
x1 ( 7 x 2 x 3 ) / 9 x 2 (8 x1 x 3 ) / 10 x (13 x x ) / 15 1 2 3
A=[9 -1 -1;-1 10 -1;-1 -1 15]; b=[7;8;13];x=[0;0;0]; er=1;k=0; while er>0.00005 er=0;k=k+1; for i=1:3 s=0;t=x(i);x(i)=0; for j=1:3 s=s+A(i,j)*x(j); end x(i)=t; y(i)=(b(i)-s)/A(i,i); er=max(abs(x(i)-y(i)),er); end x=y;x' end
a
j 1
n
ij
x j bi
(i = 1,2, · · · ,n)
将第i个方程的第i个变量xi分离出来,据此建立分量形式 的雅可比迭代公式
xi( k 1)
i 1 n 1 [bi aij x (jk ) aij x (jk ) ] aii j 1 j i 1
(i = 1,2, · · · ,n; k=0,1,2, · · · )
( k 1) (k ) x1 1 x 0 0 0 1 / 9 1 / 9 1 7 / 9 ( k 1) (k ) x 1 / 10 1 0 0 0 1 / 10 x 8 / 10 2 2 x ( k 1) 1 / 15 1 / 15 1 0 0 x ( k ) 13 / 15 0 3 3 (k ) x 0 0 0 1 / 9 1 / 9 1 7 / 9 1 (k ) 1 / 10 1 0 0 0 1 / 10 x2 8 / 10 x ( k ) 13 / 15 11 / 150 1 / 15 1 0 0 0 3 (k ) x 1/ 9 1 / 9 1 7 / 9 0 (k ) 0 1 / 90 1 / 9 x2 8 / 10 x ( k ) 13 / 15 0 1 / 1350 2 / 135 3
例 9 x1 x 2 x 3 7
x1 10 x 2 x 3 8 x x 15 x 13 2 3 1
( k 1) (k ) (k ) x1 (7 x2 x3 )/ 9
x1 ( 7 x 2 x 3 ) / 9 x 2 (8 x1 x 3 ) / 10 x (13 x x ) / 15 1 2 3
以上这种迭代方法称雅可比(Jacobi)迭代法。 基本思想:将方程组的求解问题转化为重复 计算一组彼此独立的线性表达式。
设有方程组
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
( k 1) (k ) x1 0 x 1 / 9 1 / 9 1 7 / 9 ( k 1) (k ) x 1 / 10 0 1 / 10 x 8 / 10 2 2 x ( k 1) 1 / 15 1 / 15 x ( k ) 13 / 15 0 3 3
X(1),
若 X(2),· · · · · · , X(k),· · · · · ·
lim x ( k ) x *
k
则迭代过程收敛。x* 是方程组 Ax = b 的解
迭代法适用于解大型稀疏方程组 (万阶以上的方程组,系数矩阵中零元素占很 大比例,而非零元按某种模式分布) 背景: 电路分析、边值问题的数值解和数学物 理方程
用矩阵形式来表示高斯-塞德尔迭代公式 DX(k+1)=b-LX(k+1) - UX(k)
即
(D+L)X(k+1) = -UX(k)+b
X(k+1) =-(D+L)- UX(k)+ (D+L)- b
如果 (D+L)-存在,则 记 则 B=(D+L)-, f= (D+L)- b · · ) X(k+1)= BX(k) + f ( k=0,1,2,·
取迭代初值x1(0) =0, x2(0) =0, x3(0) =0
x(0)
x(1)
x(2)
x(3)
x(4)
· · · · · · · ·
0
0 0
0.7778
0.8000 0.8667
0.9630
0.9644 0.9778
0.9929
0.9935 0.9952
0.9987