八年级数学上册 第十二章全等三角形12.2三角形全等的判定第3课时“角边角”“角角边”6-10

合集下载

浮山县一中八年级数学上册 第十二章 全等三角形12.2 三角形全等的判定第3课时 角边角 角角边教学

浮山县一中八年级数学上册 第十二章 全等三角形12.2 三角形全等的判定第3课时 角边角 角角边教学
12.2 三角形全等的判定〔3〕
旧知回顾
1.什么是全等三角形 ?
2.判定两个三角形全等要具备什么
条件? 边边边 :
三边対应相等的两个三角形全等。
边角边 :
有两边和它们夹角対应相等的两个三角形全等。
一张教学用的三角形硬纸板不小心 被撕坏了 , 如下图 , 你能制作一张与原来 同样大小的新教具 ?能恢复原来三角形 的原貌吗 ?
8.在△ABC中 , AB=n2+1 , AC=2n , BC=n2-1(n>1) , 那么这个三角
形是( C )
A.锐角三角形 B.钝角三角形 C.直角三角形 D.等腰三角形
9.如下图 , 在△ABC中 , AB=13 , AC=5 , BC=12.点O为∠ABC与∠CAB 的平分线的交点 , 那么点O到边AB的距离OP为______.2
解得 x=1270 ,则 AC=70-x=3770 ,
答:该点将绳子分成长度分别为1720 cm 和3770 cm 的两段
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
看看远处,要保护好眼睛哦~站起来动一动 对身体不好哦~
课堂小结
〔1〕学习了角边角、角角边 〔2〕注意角角边、角边角中两角与边的区别。 〔3〕会根据已知两角画三角形 〔4〕进一步学会用推理证明。
作业 这节课我们学习到这里 , 再见 !
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
10.(泰州中考)如下图 , 在长方形ABCD中 , AB=8 , BC=6 , P为AD上一 点 , 将△ABP沿BP翻折至△EBP, PE与CD相交于点O , 且OE=OD , 那么 AP的长为4_.8_____.

2022年人教版八年级上册数学第十二章全等三角形第2节 第3课时判定三角形全等ASA,AAS)

2022年人教版八年级上册数学第十二章全等三角形第2节 第3课时判定三角形全等ASA,AAS)

基基础础巩巩固固
能力提升
核心素养
-10-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
8.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两张 凳子之间(凳子与地面垂直).已知DC=a,CE=b,则两张凳子 的高度之和为 a+b .
基基础础巩巩固固
能力提升
核心素养
-11-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
∴△ABC≌△DCB(ASA),∴AB=DC.
基基础础巩巩固固
能力提升
核心素养
-5-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
知识点2 三角形全等的判定方法(AAS) 4.如图,在△ABC中,∠C=90°,D是AB上的一点,DM⊥AB,且DM =AC,过点M作ME∥BC交AB于点E,则△ACB≌△MDE , 判定依据是 AAS(答案不唯一) .(用字母表示)
-8-
第3课时 利用两角一边判定三角形全等(ASA,AAS)
解:∵AB∥DE,∴∠ABC=∠DEF.
∠ABC=∠DEF, 在△ABC 和△DEF 中, ∠A=∠D,
AC=DF,
∴△ABC≌△DEF(AAS),
∴BC=EF,∴EC=BF=3 m,
∴FC=10-3-3=4(m).
基基础础巩巩固固
能力提升
第3课时 利用两角一边判定三角形全 等(ASA,AAS)
第3课时 利用两角一边判定三角形全等(ASA,AAS)
限时:15分钟
知识点1 三角形全等的判定方法(ASA)
1.如图,已知∠1=∠2,则不一定能使△ABC≌△ABD的条件
是( B )
A.AC=AD
B.BC=BDC.∠C=∠来自 D.∠3=∠4第1题图

八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边

八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边
证明:先证∠ACB=∠DCE,再由互补证∠DEC = ∠B,从而证△ ABC≌△DEC.
17
8. 如图,在四边形 ABCD 中,AD∥BC,EF 过 AC 的中点 O,分别交 AD,BC 于点 E,F.
(1)求证:OE=OF; (2)若直线 EF 绕点 O 旋转一定角度后,与 AD,BC 分别交于点 E′,F′,仍有 OE′=OF′吗?为什么? (3)EF 绕点 O 旋转到何处时,线段 EF 最短?
∠2.又∵∠1=∠2,
∴∠1=∠BEO,∴∠AEC=∠BED.
∠A=∠B,
在△ AEC 和△ BED 中,
AE=BE, ∠AEC=∠BED,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED , ∴EC = ED , ∠C = ∠BDE.
在△ EDC 中,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE
第十二章 全等三角形 12.2 三角形全等的判定
第3课时 运用“角边角”和“角角边” 证三角形全等
1
三角形全等的判定方法三: 两角和它们的夹边对
应相等 的两个三角形全等(简写为“ 角边角 ”或
“ ASA ”).由于三角形的内角和为 180° ,所以,
我们也可以得到:两个角和其中一个角的对边对应相

=∠C=69°.
6
知识点 利用“AAS”判定三角形全等
4. 如图,C,B 是线段 AD 上的两点,已知 AM=CN,
∠A=∠DCN,下列条件中不能判定△ ABM≌△CDN 的
是( C )
A.∠M=∠N
B.AC=BD
C.BM=DN
D.BM∥DN
7
5. 如图,已知△ ABC 的六个元素,则对于甲、乙、 丙三个三角形,判断正确的是( C )

`122 三角形全等的判定(第3课时)(人教版八年级上)

`122  三角形全等的判定(第3课时)(人教版八年级上)

D O B
E
C
∴BD=CE
在△ABC和△DEF中,∠A=∠D,∠B=∠E ,BC=EF,
△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? A C B D
E
F
有两角和其中一个角所对的边对应相等的两个
三角形全等(简写成“角角边”或“AAS”).
有几种填法?
B
1.如图,应填什么就有 △AOC≌ △BOD C ∠A=∠B(已知) AC=BD (已知) _______ ∠C=∠D(已知) ∴△AOC≌△BOD( ASA )
=∠C(即使两角和它们的夹边对应相等).
(3)把你画好的Δ A′B′C′放到刚才同桌的Δ ABC上重叠 (对应角对齐,对应边对齐).你发现了什么? (4)所画得三角形和同桌画的三角形都能相互( 重合).
三角形全等判定三
两角和它们的夹边对应相等的两个三角形全等 (可以简写成“角边角”或“ASA”).
O D
A
B
如图,应填什么就有△AOC≌△BOD∠A源自∠B(已知)C O

CO=DO ________ (已知)
∠C=∠D (已知)
∴△AOC≌△BOD( AAS
D
A
B
如图,应填什么就有△AOC≌△BOD ∠A=∠B(已知)
C O D
AO=BO (已知) _______
∠C=∠D (已知) ∴△AOC≌△BOD( AAS )
A
4 2
1
E
3
F
D
B
C
G
【解析】 (1)∵四边形ABCD是正方形,∴AB=AD.
2 1 在△ABE和△DAF中, AB DA 4 3
∴△ABE≌△DAF(ASA).

2019秋八年级数学上册12.2 三角形全等的判定 第3课时“角边角”“角角边”导学案(无答案)新人教版

2019秋八年级数学上册12.2 三角形全等的判定 第3课时“角边角”“角角边”导学案(无答案)新人教版

第十二章 全等三角形12.2 全等三角形的判定第3课时 “角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等. 重点:已知两角一边的三角形全等探究. 难点:理解,掌握三角形全等的条件:“ASA ”“AAS ”.一、知识链接1.能够 的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些?边边边: 对应相等的两个三角形全等.边角边: 和它们的 对应相等的两个三角形全等. 二、新知预习1. 在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探 究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两 种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了, 如图:你能制作一张与原来同样大小的新道具吗? 能恢复原来三角形的原貌吗? (1) 以①为模板,画一画,能还原吗? (2) 以②为模板,画一画,能还原吗? (3) 以③为模板,画一画,能还原吗?(4) 第③块中,三角形的边角六个元素中,固定不变的元素是_____________. 猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分ABCFED一、要点探究探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳:相等的两个三角形全等(简称“角边角”或“ASA ”). 几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF. 典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC ,求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB=AC, ∠B=∠C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决. 针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-9)A B CA BCFED探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm ,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳: 相等的两个三角形全等(简称“角角边”或“AAS ”).几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF.典例精析例3:在△ABC 和△DEF 中,∠A =∠D ,∠B = ∠E ,BC=EF. 求证:△ABC ≌△DEF .例4:如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化. 针对训练如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )教学备注3.探究点2新知讲授(见幻灯片10-15)二、课堂小结全等三角形判定定理3简称图示符号语言有两角及夹边(或一角的对边)对应相等的两个三角形全等“角边角”(ASA)或“角角边”(AAS)∴△ABC≌△A1B1C1(ASA).推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DF B.BC=EF C.∠A=∠D D.∠C=∠F2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等 B.一定全等C.不一定全等 D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF (写出一个即可),并说明理由.5.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.拓展提升6.已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的试说明AD=A′D′ ,并用一句话说出你的发现.当堂检测教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片16-22)⎪⎩⎪⎨⎧∠=∠=∠=∠,,,1111BBBAABAA。

12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等

12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等

17.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形
槽中,使三角板的三个顶点A,B,C分别在槽的两壁及底边上滑
动,已知∠D=∠E=90°. (1)在滑动过程中你发现线段AD与BE有什么关系?试说明你的结 论; (2)若AD=a,EC=b,求槽底DE的宽度.
解:(1)AD=BE.证明:∵∠ABC=90°,∴∠ABD+∠CBE= 90°.∵∠DAB+∠ABD=90°,∴∠DAB=∠CBE.又∵∠D=
璃店去配一块完全一样的玻璃,那么最省事的办法是(
A.带①去 B.带②去 C.带③去 D.带①和②去
C)
11.如图,将正方形 OABC 放在平面直角坐标系中,点 O 是原点, 点 A 的坐标为(1, 3),则点 C 的坐标为( A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
A
)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 14 为10,则△DCB的周长为______.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE
=CF,∠B=∠D,AD∥BC.求证:AD=BC.
解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章
第3课时
全等三角形
12.2 三角形全等的判定
用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等
1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙

12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等


2.如图,F,C为AD上两点,已知∠A=∠D,∠1=∠2,那么要得 到△ABC≌△DEF,在下列关系式中还应给出的条件是( D ) A.∠E=∠B B.ED=BC C.AB=EF D.AF=DC
3.如图,∠1=∠2,当BC=BD时,△ABC≌△ABD的依据是 ___S_A__S__;当∠3=∠4时,△ABC≌△ABD的依据是___A__S_A__.
A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 为10,则△DCB的周长为___1_4__.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE =CF,∠B=∠D,AD∥BC.求证:AD=BC. 解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章 全等三角形
12.2 三角形全等的判定
第3课时 用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等 1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( B) A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
14.如图,已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE,试 判断AB与AC的大小关系,并说明理由. 解:AB=AC.理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又 ∵∠ABD=∠ACE,BD=CE,∴△ABD≌△ACE(AAS),∴AB=
AC
15.如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD,BC 于点F,G.图中哪个三角形与△FAD全等?证明你的结论. 解:△FEB≌△FAD.证明:∵BE∥AC,∴∠ADB=∠EBF,∠DAF =∠BEF.又∵BE=AD,∴△FEB≌△FAD(ASA)

三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案

第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。

[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。

1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。

[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。

1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。

2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。

2.2 教学难点[1]数学语言表达和证明三角形全等。

[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。

此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。

4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。

6 教学过程6.1 引入新课【师】同学们好。

上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。

【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。

【师】没错。

那我们今天来继续学习两种新的判定三角形全等的方法。

【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。

请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。

八年级数学上册第十二章全等三角形12.2三角形全等的判定第3课时角边角和角角边教案

第3课时角边角和角角边【知识与技能】掌握两个三角形全等的条件:“ASA”与“AAS”,并指出用它们判别三角形是否全等。

【过程与方法】经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思问题的能力,形成理性思维。

【情感态度】敢于面对教学活动中的困难,能通过合作交流解决遇到的困难。

【教学重点】理解、掌握三角形全等的条件:“ASA”、“AAS".【教学难点】探究出“ASA"“AAS”及它们的应用。

一、情境导入,初步认识问题 1 一张教学用的三角形硬纸板不小心被撕成了如图形状,你能制作出与原来同样大的纸板吗?鼓励学生提出不同的思路方法,并要求学生用纸片对自己的思路操作实验。

【教学说明】教师讲课前,先让学生完成“自主预习”。

问题2 教材探究4。

先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?要求每个学生先独立动手画图并思考,再在小组内交流。

把画好的△A′B′C′剪下,放在△ABC上,观察出现的情形,并根据结果总结规律,说出每个人的发现并交流.二、思考探究,获取新知【归纳结论】根据学生的发言,予以不同的点评,重在鼓励,最后归纳出新知识点:两角和它们的夹边对应相等的两个三角形全等,简称“角边角”或“ASA".强调注意:“边”必须是“两角的夹边".例1 如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE。

证明:△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA).∴AD=AE.【课堂练习】由学生在黑板上完成证明过程.如图,AB=A′C,∠A=∠A′,∠B=∠C,求证:△ABE≌△A′CD.【分析】本例可直接应用“ASA"证得两个三角形全等,关键是准确地书写证明过程。

人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计

人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计一. 教材分析本节课为人教版八年级数学上册第十二章《全等三角形》的第3课时,主要讲解三角形全等的判定方法。

在此之前,学生已经学习了全等图形的概念和全等三角形的性质,本节课将进一步引导学生探究三角形全等的判定方法,培养学生解决实际问题的能力。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,但对三角形全等的判定方法可能还存在一定的困惑。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过观察、操作、思考、交流等活动,逐步掌握三角形全等的判定方法。

三. 教学目标1.理解并掌握三角形全等的判定方法(SAS、ASA、AAS)。

2.能够运用三角形全等的判定方法判断两个三角形是否全等。

3.培养学生的观察能力、操作能力、逻辑思维能力和空间想象力。

4.渗透数学转化思想,提高学生解决实际问题的能力。

四. 教学重难点1.教学重点:三角形全等的判定方法(SAS、ASA、AAS)。

2.教学难点:三角形全等判定方法的灵活运用。

五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、交流,培养学生解决问题的能力。

3.实践操作法:让学生动手操作,加深对三角形全等判定方法的理解。

4.小组合作学习:培养学生团队合作精神,提高解决问题的效率。

六. 教学准备1.教学课件:制作课件,展示三角形全等的判定方法及相关实例。

2.教学素材:准备一些三角形模型或图片,用于实践操作和举例说明。

3.教学视频:收集相关教学视频,用于引导学生观察和分析。

七. 教学过程1.导入(5分钟)利用生活实例引入三角形全等的概念,激发学生的学习兴趣。

例如,讲解一个变形金刚玩具,展示其形状发生变化但仍保持原貌的特点,引导学生思考三角形全等的问题。

2.呈现(10分钟)展示三角形全等的判定方法(SAS、ASA、AAS),并用课件或板书进行解释。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究4
先任意画出一个△ABC, 再画一个△A/B/C/,使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B 。把画好 的△A/B/C/剪下,放到△ABC上, 它们全等吗?
优质课件
1
已知:任意 △ ABC,画一个△ A/B/C/,
使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B : 画法:1、画A/B/=AB;
优质课件
5
我既爱金子,又怕金子制成的野兽;欲望叫我去拿它,性格又叫我躲着它。 这天,鲁国人扛着一根长长的竹竿进城去卖。过了一会儿,他心里平静了下来,觉得刚才对孩子太凶了——或许孩子真的很想买什么东西,再说
他平时很少要过钱。 综艺在线观看 https:///index.php/vod/type/id/3.html
2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。 △A/B/C/就是所要画的三角形。
问:通过实验可以发现什么事 实?
优质课件
2
探究反映的规律是:
有两角和它们夹边对应 相等的两个三角形全等质课件
3
用数学符号表示
证明:在△ABE和△A’CD中 ∠A=∠A’ (已知 ) AB=A’C(已知 ) ∠B=∠C(已知 )
∴ △ABE≌△A’CD(ASA)
A
A'
B
优质课件
ED
4C
例题讲解:
例1. 已知:点D在AB上,点E在AC上,BE和CD相交 于点O,AB=AC,∠B=∠C。
求证: △ABE≌△ACD
A
D O
B
E C
健太说:“嗬一哈,太不幸了。 小骆驼又大声叫喊起来,沿着海岸到处奔跑。,”说完,狮子立即就扑到狐狸身上
6
7
相关文档
最新文档