2016届高三第三次统一考试-数学文科试卷-1

合集下载

数学-2016年高考真题——全国Ⅲ卷(文)(精校解析版)

数学-2016年高考真题——全国Ⅲ卷(文)(精校解析版)

2016年普通高等学校招生全国统一考试(全国Ⅲ卷)文科数学第Ⅰ卷一、选择题:本大题共12个小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·全国Ⅲ,文,1)设集合A ={0,2,4,6,8,10},B ={4,8},则∁A B 等于( ) A .{4,8} B .{0,2, 6} C .{0,2,6,10}D .{0,2,4,6,8,10}2.(2016·全国Ⅲ,文,2)若z =4+3i ,则z |z |等于( )A .1B .-1 C.45+35i D.45-35i3.(2016·全国Ⅲ,文,3)已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120°4.(2016·全国Ⅲ,文,4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个5.(2016·全国Ⅲ,文,5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( )A.815B.18C.115D.1306.(2016·全国Ⅲ,文,6)若tan θ=-13,则cos 2θ=( )A .-45B .-15 C.15 D.457.(2016·全国Ⅲ,文,7)已知a =243,b =323,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b8.(2016·全国Ⅲ,文,8)执行下面的程序框图,如果输入的a =4,b =6,那么输出的n 等于( )A .3B .4C .5D .69.(2016·全国Ⅲ,文,9)在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A 等于( )A.310B.1010C.55D.3101010.(2016·全国Ⅲ,文,10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+18 5C .90D .8111.(2016·全国Ⅲ,文,11)在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π312.(2016·全国Ⅲ,文,12)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) A.13 B.12 C.23 D.34第Ⅱ卷二、填空题:(本大题共4小题,每小题5分)13.(2016·全国Ⅲ,文,13)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.14.(2016·全国Ⅲ,文,14)函数y =sin x -3cos x 的图象可由函数y =2sin x 的图象至少向右平移________个单位长度得到.15.(2016·全国Ⅲ,文,15)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD |=________. 16.(2016·全国Ⅲ,文,16)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.三、解答题(解答应写出文字说明,证明过程或演算步骤.)17.(2016·全国Ⅲ,文,17)(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.18.(2016·全国Ⅲ,文,18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码17分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y )2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^=∑i =1n(t i -t )(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .19.(2016·全国Ⅲ,文,19)(本小题满分12分)如图,四棱锥P-ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体NBCM 的体积.20.(2016·全国Ⅲ,文,20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 21.(2016·全国Ⅲ,文,21)(本小题满分12分)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x .22.(2016·全国Ⅲ,文,22)(本小题满分10分)选修41:几何证明选讲 如图,⊙O 中AB 的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD . 23.(2016·全国Ⅲ,文,23)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α,(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 24.(2016·全国Ⅲ,文,24)(本小题满分10分)选修45:不等式选讲 已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围.答案解析1.解析 A ={0,2,4,6,8,10},B ={4,8},∴∁A B ={0,2,6,10}. 答案 C2.解析 z =4+3i ,|z |=5,z|z |=45-35i. 答案 D3.解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.答案 A4.解析 由题意知,平均最高气温高于20 ℃的六月,七月,八月,故选D. 答案 D5.解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为115,故选C.答案 C6.解析 tan θ=-13,则cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.答案 D7.解析 a =243=316,b =323=39,c =2513=325,所以b <a <c . 答案 A8.解析 第一次循环a =6-4=2,b =6-2=4,a =4+2=6,s =6,n =1; 第二次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =10,n =2; 第三次循环a =6-4=2,b =6-2=4,a =4+2=6,s =16,n =3;第四次循环a =4-6=-2,b =4-(-2)=6,a =6-2=4,s =20,n =4,满足题意,结束循环. 答案 B9.解析 设BC 边上的高AD 交BC 于点D ,由题意B =π4,BD =13BC ,DC =23BC ,tan ∠BAD=1,tan ∠CAD =2,tan A =1+21-1×2=-3,所以sin A =31010.答案 D10.解析 由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5. 答案 B11.解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.答案 B12.解析 设M (-c ,m ),则E ⎝ ⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M三点共线,所以m 2(a -c )=m a +c ,a =3c ,e =13.答案 A13.解析 可行域为一个三角形ABC 及其内部,其中A (1,0),B (-1,-1),C (1,3),直线z =2x +3y -5过点B 时取最小值-10. 答案 -1014.解析 y =sin x -3cos x =2sin ⎝⎛⎭⎫x -π3,由y =2sin x 的图象至少向右平移π3个单位长度得到. 答案 π315.解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,则y 1+y 2=33,又y 2=23,∴y 1=3, ∴A (-3,3),B (0,23). 过A ,B 作l 的垂线方程分别为y -3=-3(x +3),y -23=-3x ,令y =0,则x C =-2,x D =2,∴|CD |=2-(-2)=4. 答案 416.解析 设x >0,则-x <0,f (-x )=e x -1+x ,因为f (x )为偶函数,所以f (x )=e x -1+x ,f ′(x )=e x -1+1,f ′(1)=2,y -2=2(x -1),即y =2x . 答案 y =2x17.解 (1)由题意得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.18.解 (1)由折线图中数据和附注中参考数据得 t =4,∑i =17(t i -t )2=28,∑i =17(y i -y )2=0.55.∑i =17 (t i -t )(y i -y )=∑i =17t i y i -t ∑i =17y i =40.17-4×9.32=2.89,r ≈ 2.890.55×2×2.646≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =9.327≈1.331及(1)得b ^=∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=2.8928≈0.103, a ^=y -b ^t ≈1.331-0.103×4≈0.92. 所以y 关于t 的回归方程为y ^=0.92+0.10t .将2016年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.19.(1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体N-BCM 的体积V N-BCM =13×S △BCM ×P A 2=453.20.(1)证明 由题意知,F ⎝⎛⎭⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =b -0-12-12=k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2.由题意可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1).而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1. 所以,所求轨迹方程为y 2=x -1.21.(1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x -1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x , 则g ′(x )=c -1-c x ln c ,令g ′(x )=0.解得x 0=ln c -1ln cln c .当x <x 0时,g ′(x )>0,g (x )单调递增; 当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c <c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x .22.解 (1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为AP =BP ,所以∠PBA =∠PCB ,又∠BPD =∠BCD . 所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD , 所以3∠PCD =180°, 因此∠PCD =60°.11 (2)证明 因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心.所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .23.解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0. (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值.d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 24.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3.因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a .当x =12时等号成立, 所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.当a ≤1时,①等价于1-a +a ≥3,无解.当a >1时,①等价于a -1+a ≥3,解得a ≥2.所以a 的取值范围是[2,+∞).。

河南省2016届高三第三次统一考试数学试题(文)及答案

河南省2016届高三第三次统一考试数学试题(文)及答案

洛阳市2015——2016学年高三第三次统一考试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卷上. 2.考试结束,将答题卷交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.复数z 满足(1+i )z =3+i ,则复数z 在复平面内所对应的点的坐标是 A .(1,-2) B .(-2,1) C .(-1,2) D .(2,-1) 2.设集合A ={x |2x -6x +8<0},B ={x |2<2x<8},则A ∪B = A .{x |2<x <3} B .{x |1<x <3} C .{x |1<x <4} D .{x |3<x <4} 3.下列函数中,在其定义域内,既是奇函数又是减函数的是A .f (x )=-3xB .f (xC .f (x )=-tanxD .f (x )=1x4.“等式sin (α+γ)=sin2β成立”是“α,β,γ成等差数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分又不必要条件5.设F 1、F 2分别是椭圆2212516x y +=的左、右焦点, P 为椭圆上一点,M 是F 1P 的中点,|OM |=3, 则P 点到椭圆左焦点的距离为 A .2 B .3 C .4 D .56.执行如图所示的程序框图,输出的T = A .17 B .29 C .44 D .52 7.为了得到函数y =12cos2x 的图象,可以把函数y = 12sin (2x +3)的图象上所有的点A .向右平移12π个单位 B .向右平移6π个单位 C .向左平移12π个单位 D .向左平移6π个单位8.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A .若α⊥γ,α⊥β,则γ∥βB .若m ∥n ,m ⊂α,n ⊂β,则α∥βC .若m ∥n ,m ∥α,则n ∥αD .若m ∥n ,m ⊥α,n ⊥β,则α∥β 9.在△ABC 中,点D 在线段BC 的延长线上,且BC =CD ,点O 在线段CD 上(点O 与点C ,D 不重合),若AO =x AB +y AC ,则x 的取值范围是A .(-1,0)B .(0,13) C .(0,1) D .(-13,0)10.已知正项等比数列{n a }满足a 7=a 6+2a 5,若a m ,a n8a 1,则1m +9n的最小值为A .2B .4C .6D .8 11.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的体积为 A .12+3π B .12+3π C+D.3+12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且 左、右焦点分别为F 1、F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,设椭圆与双曲线的离心率分别为e 1、e 2,则e 1+e 2的取值范围是 A .(54,+∞) B .(43,+∞) C .(32,+∞) D .(53,+∞) 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题。

2016年高考全国三卷文科数学试卷

2016年高考全国三卷文科数学试卷

2016年普通高等学校招生全国统一考试(III 卷)文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的。

1. 设集合A = {0,2,4,6,8,10},B = {4,8},则 =B AA. {4,8}B. {0,2,6}C. {0,2,6,10}D. {0,2,4,6,8,10}2. =+=||i 34z zz ,则若 A. 1B. 1-C.i 5354+D.i 5354- 3. 已知向量)21,23()23,21(==BC BA ,,则∠ABC = A. 30° B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约15℃,B 点 表示四月的平均最低气温约为5℃。

下面叙述不正确的是 A. 各月的平均最低气温都在0℃以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于20℃的月份有5个5. 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M 、I 、N 中的一个字母,第二位是1、2、3、4、5中的一个数字,则小敏输入一次密码 能够成功开机的概率是 A.158B.81C.151D.301 6. θθcos 31tan ,则若-=2016.6A. 54-B. 51-C.51D.54 7. 已知3132342532===c b a ,,,则A. b < a < cB. a < b < cC. b < c < aD. c < a < b8. 执行右面的程序框图,如果输入的a = 4,b = 6,那么输出的n =A. 3B. 4C. 5D. 69. 在△ABC 中,4π=B ,BC 边上的高等于31BC ,则sin A = A.103B.1010C.55D.10103 10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 A. 53618+ B. 51854+C. 90D. 8111. 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB = 6,BC = 8,AA 1 = 3,则V 的最大值是A. π4B.29π C. π6D.332π12. 已知O 为坐标原点,F 是椭圆C :)1(12222>>=+b a by a x 的左焦点,A 、B 分别为C 的左、右顶点。

2016年高考文科数学全国3卷(附答案)

2016年高考文科数学全国3卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2016年普通高等学校招生全国统一考试文科数学 全国III 卷(全卷共12页)(适用地区:广西、云南、四川、贵州、西藏)注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答案卡一并交回。

第I 卷一、 选择题:本题共12小题,每小题5分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A C B =( )A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}(2)若43z i =+,则zz=( ) A.1B.1-C.4355i + D.4355i - (3)已知向量1(22BA = ,31(),22BC = 则ABC ∠=( ) A.30︒B.45︒C.60︒D.120︒(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是A. 各月的平均最低气温都在00C 以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均气温高于200C 的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是,,M I N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.815B.18C.115D.130(6)若1tan 3θ=,则cos2θ=( ) A.45-B.15-C.15D.45(7)已知432a =,233b =,1325c =,则( )A.b a c <<B.a b c <<C.b c a <<D.c a b <<(8)执行右图的程序框图,如果输入的4,6a b ==,那么输出的n = ( )A. 3B. 4C. 5D. 6(9) 在ABC ∆中,B =1,,sin 43BC BC A π=边上的高等于则( )A.310(10) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A.18+B.54+C. 90D. 81(11) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是A. 4πB.92π C. 6π D. 323π(12) 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A.13B. 12C.23D. 34第Ⅱ卷本卷包括必考题和选考题两部分。

2016年普通高等学校招生全国统一考试文科数学(新课标III卷)试题及答案解析

2016年普通高等学校招生全国统一考试文科数学(新课标III卷)试题及答案解析

2016年普通高等学校招生全国统一考试文科数学(新课标III 卷)试题及答案解析注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð= (A ){48},(B ){026},,(C ){02610},,,(D ){0246810},,,,,(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i55 (D )43i55-(3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC =(A )30°(B )45°(C )60°(D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 (A )各月的平均最低气温都在0℃以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815(B )18(C )115(D )130(6)若tan θ=31-,则cos2θ= (A )45-(B )15-(C )15(D )45(7)已知4213332,3,25a b c ===,则(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b(8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(9)在ABC 中,B=1,,sin 43BC BC A π=边上的高等于则 (A)310 (B)1010 (C)55 (D)31010(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(11)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π(B )9π2(C )6π(D )32π3(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34第Ⅱ卷本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答.第22—24题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.(14)函数y =sin x –3cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.(15)已知直线l :360x y -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= __________. (16)已知f (x )为偶函数,当0x ≤时,1()x f x e x --=-,则曲线y = f (x )在点(1,2)处的切线方程是_________________________. 【分值】 5分三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,211(21)20n n n n a a a a ++---=(I )求a 2,a 3;(II )求{a n }的通项公式。

2016年普通高等学校招生全国统一考试文科数学(新课标III卷)试题及答案解析

2016年普通高等学校招生全国统一考试文科数学(新课标III卷)试题及答案解析

2016年普通高等学校招生全国统一考试文科数学(新课标III 卷)试题及答案解析注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试题和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð= (A ){48},(B ){026},,(C ){02610},,,(D ){0246810},,,,,(2)若43i z =+,则||zz = (A )1 (B )1-(C )43+i55 (D )43i55-(3)已知向量BA →=(12,32),BC →=(32,12),则∠ABC =(A )30°(B )45°(C )60°(D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是 (A )各月的平均最低气温都在0℃以上 (B )七月的平均温差比一月的平均温差大 (C )三月和十一月的平均最高气温基本相同(D )平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815(B )18(C )115(D )130(6)若tan θ=31-,则cos2θ= (A )45-(B )15-(C )15(D )45(7)已知4213332,3,25a b c ===,则(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b(8)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(9)在ABC 中,B=1,,sin 43BC BC A π=边上的高等于则 (A)310 (B)1010 (C)55 (D)31010(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(11)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π(B )9π2(C )6π(D )32π3(12)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34第Ⅱ卷本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答.第22—24题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设x ,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则z =2x +3y –5的最小值为______.(14)函数y =sin x –3cos x 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.(15)已知直线l :360x y -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l 的垂线与x 轴交于C 、D 两点,则|CD|= __________. (16)已知f (x )为偶函数,当0x ≤时,1()x f x e x --=-,则曲线y = f (x )在点(1,2)处的切线方程是_________________________. 【分值】 5分三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知各项都为正数的数列{a n }满足a 1=1,211(21)20n n n n a a a a ++---=(I )求a 2,a 3;(II )求{a n }的通项公式。

2016年高考全国3卷文数试题及标准答案

2016年高考全国3卷文数试题及标准答案

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试文科数学注意事项:ﻩ1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. ﻩ2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.ﻩ3.全部答案在答题卡上完成,答在本试题上无效.ﻩ4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =(A ){48},ﻩ (B){026},, ﻩ(C){02610},,,ﻩﻩ(D){0246810},,,,, (2)若43i z =+,则||z z = (A)1ﻩ (B )1-ﻩﻩ(C )43+i 55ﻩﻩ(D)43i 55-(3)已知向量BA →=(12),BC →,12),则∠AB C= (A )30°(B )45°(C)60°(D )120°(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A )815(B)18(C)115(D)130(6)若tanθ=13,则cos2θ=(A)45-(B)15-(C)15(D)45(7)已知4213332,3,25a b c===,则(A)b<a<cﻩ(B)a<b<c ﻩ(C)b<c<aﻩﻩ(D) c<a<b(8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n= (A)3(B)4(C)5(D)6(9)在ABC中,B=1,,sin43BC BC A π=边上的高等于则(A)310(B101055(D31010。

河南省2016届高三第三次联考试题数学文

河南省2016届高三第三次联考试题数学文

河南省郑州一中教育集团2016届高三第三次联考试题数学(文)第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、复数1z i =+,则1z z+(其中z 表示复数z 的共轭复数)对应的点所在的象限为 A .第一象限 B .第二象限 C .第三象限 D .第四象限2、已知命题12:1,log 0p x x ∀>>,命题3:,3xq x R x ∃∈>,则下列命题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ∧⌝D .()p q ⌝∧3、已知数列{}n a 和{}n b 都是等差数列,若22443,5a b a b +=+=,则77a b += A .7 B .8 C .9 D .104、在一组样本数据112212(,),(,),,(,)(2,,,,n n x y x y x y n x x n ≥不全相等)的散点图中,若所有样本点(,)(1,2,,)j j x y i n =都在直线112y x =-+上,则这组样本数据的样本相关系数为A .-1B .0C .12-D .1 5、若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为A .-2B .12-C .12D .2 6、如图,网格纸的各小格都是正方形,粗线画出的一个三棱锥的侧视图和俯视图,则该三棱锥的正视图可能是7、下列函数中,a R ∀∈,都有得()()1f a f a +-=成立是 A .()2ln(1)f x x x =+- B .()2cos ()4f x x π=-C .()21x f x x =+D .()11212x f x =+-8、函数ln x xx xe e y e e ---=+的图象大致为9、将函数()sin 2f x x =的图象向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图象,若对满足12()()2f x g x -=的12,x x ,有12min3x x π-=,则ϕ=A .512π B .3π C .4π D .6π10、已知,,A B C 2的球面上,且0,30AC BC ABC ⊥∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为 A 3π B .34πC 3πD .3π 11、如图,,A F 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左顶点和右焦点,过F 的直线l 与C 的一条渐近线垂直且与另一条渐近线和y 轴分别交于,P Q 两点,若AP AQ ⊥,则C 的离心率为A 2B 3.1134D 117+12、已知函数()2ln(2)(2x f x x a a=--为常数且0a ≠),若()f x 在0x 处取得极值, 且20[2,2]x e e ∉++,而()0f x ≥在2[2,2]e e ++上恒成立,则a 的取值范围是A .422a e e ≥+B .422a e e >+C .22a e e ≥+D .22a e e >+第Ⅱ卷二、填空题:本卷包括必考题和选考题两部分,第13-21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届高三第三次统一考试文科数学(新课标卷)2016.03本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(必考题和选考题两部分).考生作答时,将第Ⅰ卷的选择题答案填涂在答题卷的答题卡上(答题注意事项见答题卡),将第Ⅱ卷的必考题(13题-21题)和选考题(22、23、24)答在答题卷上.考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.01.设集合P = { 2, 3a } , Q = { a, b} ,若P∩Q = { 1},则PÈQ等于A.{ 2, 0}B.{ 2, 1, 0}C.{ 3,2, 0}D.{ 3,2, 1, 0}02.若复数1+2+bii的实部与虚部相等,则实数b等于A.3B.12- C.13D. 103.已知向量a,b满足∣a∣= 3,且a⊥(a+b),则b在a方向上的投影为A. 3B. -3C.-332D.33204.一只蚂蚁在边长分别为2,23,4的三角形内爬行,某时刻此蚂蚁距离三角形的三个顶点的距离均不超过1的概率为A.312πB.36πC.31-6πD.31-12π05.等差数列{}na的前n项和为nS,若12nnS na+=,则下列结论中正确的是A.232a a =B.2323aa=C.2332aa= D.2313aa=绝密★启用前06.如图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则满足上述条件的所有x 的值为A. -1,0,1,3B. 1,2,3C. 0,1, 3D. -3,-1,1,307.某四面体的三视图如图所示,则该四面体的四个面中面积最大的为A. 1B.2C. 3D. 208.若直线2ax ﹣by +2=0(a >0,b >0)被圆x 2+y 2+2x ﹣4y +1=0截得的弦长为4,则23+a b的最小值是 A .5B .6C .526+D .626+09.已知实数a ,b 满足等式:2a = 3b ,下列五个关系式中可能成立的关系式有① 0 < b < a ; ② a < b < 0;③ 0 < a < b ; ④ b < a < 0 ; ⑤ a = b .A.① ② ③B. ① ② ⑤C. ① ③ ⑤D. ③ ④ ⑤ 10.已知函数26()=-f x log x x,在下列区间中,包含()f x 的零点的区间是A.( 0, 1 )B.( 1, 2 )C.( 2, 4 )D.( 4, +∞ ) 11.棱长为2的正方体1111ABCD A B C D -,点M 在与正方体的各棱都相切的球面上运动,点N 在1ACB ∆的外接圆上运动,则线段MN 长度的最小值是A .3+12B .212-C .312-D .32-12.已知函数 ,若存在实数1x 、2x 、3x 、4x ,(其中 1234x x x x <<< )满足1234()()()()f x f x f x f x ===,则3412(2)(2)x x x x --⋅的取值范围是A .(0,12)B .(4,16)C .(9,21)D .(15,25)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上. 13.点A (-2, 0) 到抛物线C : y 2= 8x 的焦点F 的距离∣A F ∣等于 .14.二次函数2()f x ax =+2bx +c 的导函数为'()f x ,已知'(0)0f >且对任意实数x 有()0f x ≥,则(1)'(0)f f 的最小值为 . 15.若y x ,满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则x y -的取值范围为_____;16.已知定义在R 上的奇函数()f x 满足,(1)6f -=,数列{}n a 的前n 项和为n S ,且11a =-,2n n S a n =+(*n N ∈),则()()56f a f a += . 11a =-,2n n S a n =+(*n N ∈),则()()56f a f a += .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数()2cos (sin cos )f x x x x m =++在区间[0,]4π上的最大值为2.(Ⅰ)求实数m 的值;(Ⅱ)在ABC ∆中,三内角A ,B ,C 所对的三边分别为a ,b ,c ,若3()1,24f B a c =+=,求b 的取值范围. 18.(本小题满分12分)在某高校自主招生考试中,所有选报II 类志向的考生都要参加“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为,,,,A B C D E 五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)已知参加本考场测试的考生中恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.19.(本小题满分12分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是正方形,PD ⊥平面ABCD .点E 是线段BD 的中点,点F 是线段PD 上的动点.(Ⅰ)若F 是PD 的中点,求证:EF ∥平面PBC ; (Ⅱ)求证:CE ⊥BF ;(Ⅲ)若AB =2,PD =3,当三棱锥P ﹣BCF 的体积为43时,试判断点F 在边PD 上的位置并说明理由.20.(本小题满分12分)设A ,B 分别是直线22y x =和22y x =-上的动点,2AB =,设O 为坐标原点,动点P 满足OP OA OB =+。

(Ⅰ)求点P 的轨迹方程;(Ⅱ)过点()3,0作两条互相垂直的直线12,l l ,直线12,l l 与点P 轨迹的相交弦分别为,,CD EF 设,CD EF 的弦中点分别为,M N ,试判断直线MN 是否恒过一个定点,若恒过一个定点,请求出此定点,否则,说明理由. 21.(本小题满分12分)已知函数ln ()a x bf x x +=(其中20a a ≤≠且),函数()f x 在点(1,(1))f 处的切线过点(3,0).(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围.四、选考题:本小题满分10分,请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆为直角三角形,90=∠ABC , 以AB 为直径的圆O 交AC 于点E ,点D 是BC 边的中点,连OD 交圆O 于点M .(Ⅰ)求证:E D B O ,,,四点共圆;(Ⅱ)求证:AB DM AC DM DE ⋅+⋅=22.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xoy 中,曲线C 1的参数方程为:2sin 22cos ìï=+ïíïïîx αy =α(α为参数),曲线C 2的参数方程为:22sin 2cos ìï=ïíïïîx βy =+β(β为参数),以0为极点,x 轴正半轴为极轴建立极坐标系.(Ⅰ)求C 1和C 2的极坐标方程; (Ⅱ)已知射线)20(:1πααθ<<=l ,将1l 逆时针旋转6π得到2:6l πθα=+,且1l 与C 1交于P O ,两点,2l 与C 2交于Q O ,两点,求||||OQ OP ⋅取最大值时点P 的极坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数()||f x x =,()|4|g x x m =--+ (Ⅰ)解关于x 的不等式[()]20g f x m +->;(Ⅱ)若函数()f x 的图像恒在函数()g x 图像的上方,求实数m 的取值范围.2016届高三第三次统一考试文科数学(新课标卷)参考答案及评分标准 2016.03一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 题号 01 02 03 04 05 06 07 08 09 10 11 12 答案BABABCDCBCDA二、填空题:本大题共4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上.13、4; 14、2; 15、]3,0[; 16、-12.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()2cos (sin cos )f x x x x m =++在区间[0,]4π上的最大值为2.(Ⅰ)求实数m 的值;(Ⅱ)在ABC ∆中,三内角A ,B ,C 所对的三边分别为a 、b 、c 。

若3()1,24f B a c =+=,求b 的取值范围. 解:(Ⅰ)∵()2sin(2)14f x x m π=+++在区间[0,]4π上的最大值为2,∴1m =-(Ⅱ)∵3B π=,由正弦定理得 ∴b [1,2)∈18.(本小题满分12分)在某高校自主招生考试中,所有选报II 类志向的考生都要参加“数学与逻辑”和“阅读绝密★启用前与表达”两个科目的考试,成绩分为,,,,A B C D E五个等级.已知某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)已知参加本考场测试的考生中恰有两人的两科成绩均为A.在至少一科成绩为A的考生中随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.解:(Ⅰ)∵“数学与逻辑”科目中成绩等级为B的考生有10人,∴该考场有10÷0.25=40人∴该考场考生中“阅读与表达”科目中成绩等级为A的人数为40×(1-0.375-0.375-0.15-0.025)= 40×0.075 = 3(Ⅱ)∵两科考试中,共有6人得分等级为A,又恰有两人的两科成绩等级均为A,∴还有2人只有一个科目得分为A,设这四人为甲、乙、丙、丁,其中甲、乙是两科成绩都是A的同学,则在至少一科成绩等级为A的考生中,随机抽取两人进行访谈,基本事件空间为{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}, 有6个基本事件,设“随机抽取两人进行访谈,这两人的两科成绩等级均为A”为事件B,∴事件B中包含的基本事件有1个,则1 ()6=P B。

相关文档
最新文档