2018年高三文科数学模拟试卷04

合集下载

2018年普通高等学校招生全国统一考试仿真卷 文科数学(四)教师版

2018年普通高等学校招生全国统一考试仿真卷 文科数学(四)教师版

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷文科数学(四)本试题卷共14页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·丹东期末]设集合{}2|M x x x =∈=R ,{}1,0,1N =-,则M N =( )A .{}0B .{}1C .{}0,1D .{}1,0,1-【答案】C【解析】由题意{}0,1M =,∴{}0,1MN =.故选C .2.[2018·南阳一中]设i 1i 1z +=-,()21f x x x =-+,则()f z =( )A .iB .i -C .1i -+D .1i --【答案】A 【解析】()21f x x x =-+,()()()()i 11i i 12ii i 1i 11i 2z +--+-====-----,()()()()2i i i 1i f z f ∴=-=---+=,故选A .3.[2018·郴州一中]已知()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,则312f f ⎛⎫+=⎪⎝⎭⎝⎭( ) A .52B .52-C .32-D .12-【答案】B【解析】()()22log 111sin13x x f x xx ⎧--<<⎪=⎨π⎪⎩≥,223131sin log 122322f f ⎡⎤⎛⎛⎫π⎛⎫⎛⎫⎢⎥∴+=⨯+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2115sin 5log 26422π⎛⎫⎛⎫=π++=--=- ⎪ ⎪⎝⎭⎝⎭.故选B .4.[2018·衡水金卷]已知等差数列{}n a 的前n 项和为n S ,且96=πS ,则5tan a =( ) A.3B.C. D.3-【答案】C【解析】由等差数列的性质可得:()19959692+=π==a a S a ,∴523π=a,则52tan tan3π==a C . 5.[2018·承德期末]执行如图所示的程序框图,如果输入的100t =,则输出的n =( )A .5B .6C .7D .8【答案】A【解析】2+5+14+41+122100S =>,故输出5n =.6.[2018·漳州调研]已知函数()sin(2)(02)ϕϕπ=+≤<f x x 的图象向右平移3π个单位长度开始输入t输出n 结束k ≤t否是0,2,0S a n ===S S a=+31,1a a n n =-=+班级姓名 准考证号 考场号 座位号此卷只装订不密封后,得到函数()cos2=g x x 的图象,则下列是函数()=y f x 的图象的对称轴方程的为( ) A .6π=x B .12π=x C .3π=x D .0=x【答案】A【解析】函数()cos2=g x x 的图象的对称轴方程为()2π=∈Z k x k ,故函数()=y f x 的图象的对称轴方程为()23ππ=-∈Z k x k ,当1=k 时,6π=x ,故选A .7.[2018·云南联考]图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的个数与面积的和分别为( )A .21;n n -B .21;1n n -+C .121;n n +-D .121;1n n +-+【答案】D【解析】当1n =时,正方形的个数有0122+个;当2n =时,正方形的个数有012222++个;,则0121222221n n n S +=++++=-个,最大的正方形面积为1,当1n =时,由勾股定理知正方形面积的和为2,以此类推,所有正方形面积的和为1n +,故选D . 8.[2018·防城港模拟]已知点P 在圆C :224240x y x y +--+=上运动,则点P 到直线l :250x y --=的距离的最小值是( )A .4 B.C1D1【答案】D【解析】圆C :224240x y x y +--+=化为()()22211x y -+-=,圆心()2,1C 半径为1,=P 到直线l :250x y --=的距离的1.选D .9.[2018·唐山期末]已知偶函数()f x 在[)0,+∞单调递减,若()20f -=,则满足()10xf x ->的x 的取值范围是( )A .()(),10,3-∞-B .()()1,03,-+∞C .()(),11,3-∞-D .()()1,01,3-【答案】A【解析】∵偶函数()f x 在[)0,+∞单调递减,且()20f -=, ∴函数()f x 在(),0-∞单调递增,且()20f =.结合图象可得不等式()10xf x ->等价于()010>->⎧⎨⎩x f x 或()010<-<⎧⎨⎩x f x ,即013>-<⎨<⎧⎩x x 或01<<-⎧⎨⎩x x ,解得03x <<或1x <-. 故x 的取值范围为()(),10,3-∞-.选A .10.[2018·重庆期末]已知点()4,0A ,()0,4B ,点(),Pxy 的坐标x ,y 满足0034120+⎧⎪⎪-⎨⎩≥≥≤x y x y ,则AP BP ⋅的最小值为( ) A .254B .0C .19625-D .-8【答案】C【解析】由题意可得:()()()()2244228AP BP x x y y x y ⋅=-+-=-+--,()()2222x y -+-即为点(),P x y 与点()22,的距离的平方,结合图形知,最小值即为点()22,到直线的距离的平方25d ==,故最小值为221968525⎛⎫-=-⎪⎝⎭.本题选择C 选项.11.[2018·海南期末]某几何体的直观图如图所示,AB 是O 的直径,BC 垂直O所在的平面,且10AB BC ==,Q 为O 上从A 出发绕圆心逆时针方向运动的一动点.若设弧AQ 的长为x ,CQ 的长度为关于x 的函数()f x ,则()y f x =的图像大致为( )A .B .C .D .【答案】A【解析】如图所示,设AOQ θ∠=,则弧长AQ x =,线段()CQ f x =,5xθ=, 作OH BQ ⊥于H 当Q 在半圆弧AQB 上运动时,1()2QOH θ∠=π-,2sin 2cos 22BQ OQ OQ θθπ-=⨯=⨯,CQ ==== 即()f x =,由余弦函数的性质知当5=πx 时,即运动到B 点时y 有最小值10,只有A 选项适合,又由对称性知选A ,故选A .12.[2018·石家庄毕业]双曲线22221x y a b-=(0,0)a b >>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为60︒的直线与y 轴和双曲线的右支分别交于A ,B 两点,若点A 平分线段1F B ,则该双曲线的离心率是( ) AB.2 C .2 D1【答案】B【解析】双曲线22221x y a b-=(0,0)a b >>的左焦点F 为(),0c -,直线l的方程为)y x c =+,令0x =,则y =,即()A ,因为A 平分线段1FB ,根据中点坐标公式可得()B c ,代入双曲线方程可得2222121c c a b -=,由于()1c e e a=>,则2221211e e e -=-,化简可得421410e e -+=,解得27e =±1e >,解得2e =故选B .第Ⅱ卷本卷包括必考题和选考题两部分。

普通高等学校2018届高三招生全国统一考试模拟(四)数学(文)试题 Word版含答案

普通高等学校2018届高三招生全国统一考试模拟(四)数学(文)试题 Word版含答案

2018年普通高等学校招生全国统一考试模拟试题文数(四)本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.已知全集{}()()10,23U x U R A x B x x C A A B x +⎧⎫==≤=≤⋂⋃=⎨⎬-⎩⎭,集合,则A .[){}2,13--⋃B .[)2,1--C .[)2,3--D .[)1,2-2.已知复数z 满足12i i z -=-(i 为虚数单位),则其共轭复数z 的虚部为 A .15i -B .35i -C .15-D .35-3.某单位组织全体员工共300人听取了习总书记作的“党的十九大报告”之后,从中抽取15人分别到A ,B ,C 三个部门进行“谈感想,定目标”的经验交流.现将300人随机编号为1,2,3,…,300,分组后在第一组中采用简单随机抽样的方法抽得的号码是8号,抽到的15人中号码落入区间[1,150]去A 区,号码落入区间[151,250]去B 区,号码落入区间[251,300]去C 区,则到B 区去的人数为A . 2B .4C .5D .84.已知椭圆()222210x y a b a b+=>>的左,右焦点分别为()()12,0,,0F c F c -,过点1F 且斜率为1的直线l 交椭圆于点A ,B ,若212AF FF ⊥,则椭圆的离心率为A .12B 1C .2D .125.下列不等式中,恒成立的是 ①,,;a b c d a c b d >>+>+若则 ②,0,ln ln ;a b c a c b c ><+>+若则 ③22,;ac bc a b ><若则④0,;a b a b a b >>-<+若则A .①②B .③④C .①③D .②④6.在△ABC 中,内角A ,B ,C 满足()()sin 2cos sin cos 2sin cos 1A B C C A A -++-0=,则角A 的值为A .6πB .56π C .566ππ或D .233ππ或7.若αβ,是两个不同的平面,,m n 是两条不同的直线,则下列命题中正确的是 ①,//,m m αββα⊥⊥若则; ②//,//,//m n m n ββ若则;③,,//,////m n m n ααββαβ⊂⊂若,则; ④,,,,m n n m n αβαβαβ⊥⋂=⊂⊥⊥若则. A .①②B .①④C .②④D .①③④8.执行如图所示的程序框图,若输出的值为14-,则①处应填入的条件为A .7?n ≥B .6?n ≥C .5?n ≥D .4?n ≥9.已知函数()22sin cos 22f x x x x x =-+,则函数()f x 的一条对称轴方程为 A .512x π= B .3x π=C .12x π=D .3x π=-10.一几何体的三视图如图所示,则该几何体的表面积为A.3π+B .38π+C. 28π+D.2π+11.设实数,x y 满足不等式组()()2230,5260,21345,x y x y x y x y -+≥⎧⎪+-≤-+-⎨⎪+-≥⎩则的取值范围为A .5,54⎡⎤⎢⎥⎣⎦B .5,104⎡⎤⎢⎥⎣⎦C .36,1029⎡⎤⎢⎥⎣⎦D .1,1029⎡⎤⎢⎥⎣⎦12.已知等比数列{}n a 的前n 项和n S 满足()2,,k nn S m m k Z nN +*=+∈∈,且()24132a a a a +=+,若关于k 的不等式2nn nS a n N S *≤∈对恒成立,则k 的最小值为 A .1B .2C .3D .4第Ⅱ卷本卷包括必考题和选考题两部分。

2018届高三招生全国统一考试模拟数学(文)试题(四)含答案

2018届高三招生全国统一考试模拟数学(文)试题(四)含答案

18. ( 本小题满分 12 分 )
如图所示,四棱锥 P— ABCD的底面 ABCD为菱形, BAD 60 ,平面 PBA 平面 PAD, E,F
分别为 PA, PD的中点, PB=AB. (1) 证明: PD 平面 BEF;
(2) 若 PD PB, AB 1,VE BDF
2
,求 PD的长.
48
19. ( 本小题满分 12 分 )
6
B. 5 6
C. 或 5 66
D. 或 2 33
7.若 , 是两个不同的平面, m, n 是两条不同的直线,则下列命题中正确的是
① 若m ,m/ / ,则

② 若m / / n, m / / ,则 n / / ;
③ 若m , n , m / / , n / / ,则 / / ;
④若
,
m,n , n m,则n .
2018 年普通高等学校招生全国统一考试模拟试题
文数 ( 四 )
本试卷共 6 页, 23 题( 含选考题 ) 。全卷满分 150 分。考试用时 120 分钟。
注意事项:
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码
粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用
x2 a2
y2 b2
1a
b
0 的左,右焦点分别为
F1
c,0 , F2 c,0 ,过点 F1 且斜率
为 1 的直线 l 交椭圆于点 A, B,若 AF2 F1F 2 ,则椭圆的离心率为
A. 2 1 2
B. 2 1
5.下列不等式中,恒成立的是
C. 2 2
D. 1 2
① 若a b,c d, 则a c b d ;

2018年高考文科数学模拟卷(word版含答案)

2018年高考文科数学模拟卷(word版含答案)

[ ]x | x 2 - 3x ≥ 02018 年高考模拟检测数学(文科)本试题卷共 6 页,23 题(含选考题)。

全卷满分 150 分。

考试用时 120 分钟。

一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合 A = {x |1 < x ≤ 3}, B = {}则如图所示表示阴影部分表示的集合为A. [0,1)B.(0,3]C. (1,3)D. 1,32.设复数 z 满足 (1 + i ) z = 1 - 2i 3(i 为虚数单位),则复数 z 对应的点位于复平面内()A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5 步和12 步,问其内切圆的直径为多少步?” 现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A . 2π 3π 2π 3πB .C .1 -D .1 -15 20 15 204. 在如图所示的框图中,若输出 S = 360 ,那么判断框中应填入的关于 k 的判断条件是A . k > 2?B . k < 2?C . k > 3?D . k < 3?开始k = 6, S = 15.若函数 f ( x ) = sin( x + α -π12) 为偶函数,否是则 cos 2α 的值为 1 1 3 3 A. -B.C. -D.2222S = S ⨯ kk = k - 1输出 S结束1 / 117.若 x , y 满足约束条件 ⎨ x - y ≤ 0 ,则 z = x + 3 y 的取值范围是 ⎪ x + y - 1 ≥ 0 再将所得图像向左平移个单位得到函数 g (x ) 的图像,在 g ( x ) 图像的所有对称轴中,24B . x =4C . x = ⎪⎪ 2⎩6.已知函数 f ( x ) 是偶函数,当 x > 0 时, f ( x ) = (2 x - 1)ln x ,则曲线 y = f ( x ) 在点(-1, f (-1)) 处的切线斜率为A. -2B. -1C. 1D. 2⎧ x ≥ 0 ⎪⎩A. (-∞, 2]B. [2,3]C. [3, +∞)D. [2, +∞)8.将函数 f ( x )=2sin(2 x +π3) 图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,π12离原点最近的对称轴方程为A . x = -π9.某几何体的三视图如图所示,则该几何体的体积为A . 4B . 2π2正视图5π π D . x =24 1211侧视图C .4 2 D .3 321俯视图10.已知直线 x - 2 y + a = 0 与圆 O : x 2 + y 2 = 2 相交于 A , B 两点( O 为坐标原点),则“ a = 5 ”是“ OA ⋅ O B = 0 ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件⎧3 - log (7 - 2 x ),0 < x ≤ 2 11.已知定义域为 R 的奇函数 f ( x ) ,当 x > 0 时,满足 f ( x ) = ⎨, ⎪ f ( x - 3), x > 3 ⎪ 2则 f (1)+ f (2) + f (3) +⋅⋅⋅+ f (2020) =2 / 11TA . log 5B . -log 5C . -2D . 02212.已知函数 f ( x ) = ( x - m )2 + (ln x - 2m )2 ,当 f ( x ) 取最小值时,则 m =A . 1 1 1 2B . - - ln 2C . - ln 2D . -2ln 22 2 10 5二、填空题:本大题共 4 个小题,每小题 5 分.13.已知点 a = (2, m ), b = (1,1) ,若 a ⋅ b =| a - b | ,则实数 m 等于14.在 ∆ABC 中, a 、b 、c 分别为内角 A 、B 、C 的对边,若 2sin B = sin A + sin C ,cos B = 3且 S 5∆ABC= 4 ,则 b的值为 ;15.已知三棱锥 A - BCD 中, BC ⊥ 面 ABD , AB = 3, AD = 1, BD = 2 2, BC = 4 ,则三棱锥 A - BCD 外接球的体积为;16.已知过抛物线 y 2 = 2 px ( p > 0) 的焦点 F 的直线与抛物线交于 A , B 两点,且AF = 3FB ,抛物线的准线 l 与 x 轴交于点 C , AA ⊥ l 于点 A ,若四边形 AACF111的面积为12 3 ,则 p 的值为.三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第17 题 ~ 21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17.(12 分)已知各项均为正数的等比数列{a } 的前 n 项和为 S ,若 S = 120 ,且 3a 是n n 4 4a , -a 的等差中项.65(1)求数列{a } 的通项公式;n(2)若数列{b } 满足 b = log ann32n +1,且{b } 的前 n 项和为 T ,求1n n11 1 + + + . T T2 n3 / 11(1)请利用所给数据求违章人数y与月份x之间的回归直线方程yˆ=bx+aˆ;2212参考公式:b=∑x y-nx y∑(x-x)(y-y)∑x∑(x-x)-nx2,aˆ=y-bx.18.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:月份12345违章驾驶员人数1201051009085ˆ(2)预测该路口7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下2⨯2列联表:不礼让斑马线礼让斑马线合计驾龄不超过1年830驾龄1年以上820合计302050能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?ˆn ni i i ii=1=i=1n n22i ii=1i=1ˆK2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d)P(K2≥k)0.1500.1000.0500.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828 19.(12分)如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB//DC,AB⊥AD,AB=3,C D=2,PD=AD=5.E是PD上一点.(1)若PB//平面ACE,求PEED的值;4/11((2)若 E 是 PD 中点,过点 E 作平面 α / / 平面 PBC ,平面 α 与棱 PA 交于 F ,求三棱锥 P - CEF的体积20. 12 分)在平面直角坐标系中,点 F 、F 分别为双曲线 C : 1 2 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的3左、右焦点,双曲线 C 的离心率为 2 ,点 (1, ) 在双曲线 C 上.不在 x 轴上的动点 P 与2动点 Q 关于原点 O 对称,且四边形 PFQF 的周长为 4 2 .12(1)求动点 P 的轨迹方程;(2)已知动直线 l : y = kx + m 与轨迹 P 交于不同的两点 M 、N , 且与圆W : x 2+ y 2= 3 | MN |交于不同的两点 G 、 H ,当 m 变化时, 恒为定值,2 | GH |求常数 k 的值.21.(12 分)已知函数 f ( x ) = ae x - x - a , e = 2.71828 ⋅⋅⋅ 是 对数的底数.(1)讨论函数 f ( x ) 的单调性;(2)若 f ( x ) 恰有 2 个零点,求实数 a 的取值范围.自然5 / 11⎩y=2sinϕ⎪x=+t (2)已知点P(,0),直线l的参数方程为⎨⎪y=2t 相交于M,N两点,求1(2)在(1)的结论下,若正实数a,b满足1(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程(10分)以直角坐标系的原点O为极点,x轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线C的极坐标方程为ρsin2θ-4cosθ=0,曲线C的参数方程是12⎧x=-1+2cosϕ⎨(ϕ为参数).(1)求曲线C的直角坐标方程及C的普通方程;12⎧121⎪222⎪⎩21+的值.|PM||PN|23.选修4-5:不等式选讲(10分)已知函数f(x)=|x+1|+|x-2|.(1)求函数f(x)的最小值k;(t为参数),设直线l与曲线C1112+=k,求证:+a b a2b2≥2.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分.C A CD C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.6/11∴ S = = 40a = 120 ,∴ a = 31 - q + + +⋅⋅⋅+ = [( - ) + ( - ) + ( - ) ⋅⋅⋅ + ( 1 1 1 1 1 - 1 ) + ( - 1 )]n 2 1 3 ∴ 1 + + + ⋅⋅⋅+ = ( - -) ………………………………………12 分 ∑ x y - nx y∑ x- nx 2a ˆ = y - bx = 125.5 , ˆ13. -134 614. 15.3125 6 π 16. 2 2三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题~21 题为必考题,每个试题考生都必须作答.第 22、23 题为选考题,考生根据要求解答. (一)必考题:共 60 分.17. (本小题满分 12 分)解:(1) 3a 是 a , -a 的等差中项,∴ 6a = a - a ,465465设数列{a } 的公比为 q ,则 6a q 3 = a q 5 - a q 4n111∴ q 2 - q - 6 = 0 ,解得 q = 3 或 q = -2 (舍);…………………………………………3 分a (1- q 4 )1 4 1 1所以 a = 3n …………………………………………………………………………………6 分n(2)由已知得 b = log 32n +1 = 2n + 1 ;n 3所以 T = 3 + 5 +⋅⋅⋅⋅⋅⋅+ 2n + 1 = n (n + 2) ,………………………………………………8 分n11 1 1 1= = ( - ) T n (n + 2) 2 n n + 2 n1 1 1 1 1 1 1 1 T T T T2 43 5 n - 1 n + 1 n n + 2 1 2 3 1 1 1 1 3 1 1 T T T T 2 2 n + 1 n + 21 23n18.(本小题满分 12 分)解:(1)由表中数据知, x = 3, y = 100 ,…………………………………………………1 分∴ b= ni =1n i i2 i= 1415 - 1500 = -8.5 ,……………………………………………4 分55 - 45i =1∴所求回归直线方程为 y= -8.5 x + 125.5 ………………………………………………6 分7 / 1150 ⨯ (22 ⨯12 - 8 ⨯ 8)2 50 ≈ 5.556 > 5.024∴ PB // OE , ==∴ PE ∴ ∴ ∴ NB = CM = 1,∴ PE ∴ F 到平面PCE 的距离h = AD =(2)由(1)知,令 x = 7 ,则 y = -8.5 ⨯ 7 + 125.5 = 66 人. …………………………8 分(3)由表中数据得 K 2 = , 30 ⨯ 20 ⨯ 30 ⨯ 20 9根据统计有 97.5% 的把握认为“礼让斑马线”行为与驾龄有关.………………12 分19. 【解析】(1)连接 BD 交 AC 于 O ,连接 OE ,PB // 平面ACE , PB ⊂ 平面PBD , 平面ACE 平面PBD = OEPE OB ED OD又∆AOB ~ ∆COD ,∴ OB AB 3= =OD CD 23 =ED 2(2)过 E 作 EM//PC 交 CD 于 M ,过 M 作 MN//BC 交 AB 于 N ,过 N 作 NF//PB 交 PA 于 F ,连接EF则平面 EFNM 为平面 αE 为PD 的中点, M 为CD 的中点, CM = 1 2CD = 1BN 3= = ’PA AB 2PD ⊥ 平面ABCD , AD ⊂ 平面ABCD ,∴ PD ⊥ AD , 又AD ⊥ CD , PD ⊂ 平面PCD , C D ⊂ 平面PCD , PD CD = D∴ AD ⊥ 平面PCD ,PD = AD = 5, PD ⊥ AD ,∴ P A = 5 21 53 3 ∴V P -CEF= V F -PCE 1 25= S ∆PCE ⋅ h =3 18【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。

2018年高考文科数学模拟卷(word版含答案)

2018年高考文科数学模拟卷(word版含答案)

1 / 112018年高考模拟检测数学(文科)本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}2|13,|30A x x B x x x =<≤=-≥则如图所示表示阴影部分表示的集合为A.[)1,0B.(]3,0C.)3,1(D.[]3,12.设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( )A .第一象限B .第二象限C .第三象限D .第四象限3.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是A .215πB .320πC .2115π-D .3120π- 4. 在如图所示的框图中,若输出360S =,那么判断框中应填入的关于k 的判断条件是A .2?k >B .2?k <C .3?k >D .3?k <5.若函数()sin()12f x x πα=+-为偶函数,则cos2α的值为 A. 12-B. 12C. 32-D. 32否开始6,1k S ==S S k=⨯1k k =-输出S结束是2 / 116.已知函数是偶函数,当时,,则曲线在点处的切线斜率为A. -2B. -1C. 1D. 27.若,x y 满足约束条件0010x x y x y ≥⎧⎪-≤⎨⎪+-≥⎩,则3z x y =+的取值范围是A. (,2]-∞B. [2,3]C. [3,)+∞D. [2,)+∞ 8.将函数()=2sin(2+)3f x x π图像上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移12π个单位得到函数()g x 的图像,在()g x 图像的所有对称轴中,离原点最近的对称轴方程为 A .24x π=-B .4x π=C .524x π=D .12x π= 9.某几何体的三视图如图所示, 则该几何体的体积为A .4B .2C .43 D .2310.已知直线20x y a -+=与圆O :222x y +=相交于A ,B 两点(O 为坐标原点),则“a =”是“0OA OB ⋅=”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知定义域为R 的奇函数()f x ,当0x >时,则(1)(2)(3)(2020)f f f f +++⋅⋅⋅+=()f x 0x >()(21)ln f x x x =-()y f x =(1,(1))f --正视图 侧视图3 / 11A .B .C .D .012.已知函数22()()(ln 2)f x x m x m =-+-,当()f x 取最小值时,则m = A .12 B .1ln 22-- C .12ln 2105- D .2ln2-二、填空题:本大题共4个小题,每小题5分.13.已知点,若,则实数等于 14.在ABC ∆中,a b c 、、分别为内角A B C 、、的对边,若2sin sin sin ,B A C =+3cos 5B =且4ABC S ∆=,则b 的值为 ; 15.已知三棱锥A BCD -中,BC ⊥面ABD,3,1,4AB AD BD BC ====,则三棱锥A BCD -外接球的体积为 ;16.已知过抛物线22(0)y px p =>的焦点F 的直线与抛物线交于A ,B 两点,且3AF FB =,抛物线的准线l 与x 轴交于点C ,1AA l ⊥于点1A ,若四边形1AA CF的面积为p 的值为 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17.(12分)已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若4120S =,且43a 是6a ,5a -的等差中项.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足321log n n b a +=,且{}n b 的前n 项和为n T ,求12111nT T T +++.2log 52log 5-2-(2,),(1,1)a m b ==||a b a b ⋅=-m4 / 1118.(12分)《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:(1)请利用所给数据求违章人数y 与月份x 之间的回归直线方程ˆˆybx a =+; (2)预测该路口 7月份的不“礼让斑马线”违章驾驶员人数;(3)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让参考公式:1122211()()ˆˆˆ,()n ni iiii i nniii i x y nx y x x y y bay bx xnxx x ====---===---∑∑∑∑. 22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++)19. (12分)如图,在四棱锥中,底面,底面是直角梯形,,.是PD 上一点.(1)若平面,求的值; P ABCD -PD ⊥ABCD ABCD //,AB DC AB AD ⊥3,2,5AB CD PD AD ====E //PB ACE PEED5 / 11(2)若E 是PD 中点,过点E 作平面平面PBC ,平面与棱PA 交于F ,求三棱锥的体积20.(12分)在平面直角坐标系中,点1F 、2F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,双曲线C 的离心率为2,点3(1,)2在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形12PFQF 的周长为2(1)求动点P 的轨迹方程;(2)已知动直线:l y kx m =+与轨迹P 交于不同的两点M N 、, 且与圆223:2W x y +=交于不同的两点G 、H ,当m 变化时,||||MN GH 恒为定值,求常数k 的值.21.(12分)已知函数,)(a x ae x f x--= 2.71828e =⋅⋅⋅是自然对数的底数.(1)讨论函数)(x f 的单调性;(2)若)(x f 恰有2个零点,求实数a 的取值范围.//ααP CEF -6 / 11(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题记分.22.选修44-:坐标系与参数方程(10分)以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,并在两种坐标系中取相同的长度单位,曲线1C 的极坐标方程为2sin 4cos 0ρθθ-=,曲线2C 的参数方程是12cos 2sin x y ϕϕ=-+⎧⎨=⎩(ϕ为参数). (1)求曲线1C 的直角坐标方程及2C 的普通方程;(2)已知点1(,0)2P ,直线l的参数方程为1222x t y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),设直线l 与曲线1C相交于,M N 两点,求11||||PM PN +的值.23.选修45-:不等式选讲(10分) 已知函数()|1||2|f x x x =++-. (1)求函数()f x 的最小值k ;(2)在(1)的结论下,若正实数,a b满足11a b +=,求证:22122a b+≥.2018年高考模拟检测数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C A C D C B D A D A B C二、填空题:本大题共4小题,每小题5分,共20分.7 / 1113. 1415.1256π 16.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求解答. (一)必考题:共60分.17. (本小题满分12分) 解:(1)43a 是6a ,5a -的等差中项,4656a a a ∴=-,设数列{}n a 的公比为q ,则3541116a q a q a q =-260q q ∴--=,解得3q =或2q =-(舍);…………………………………………3分4141(1)401201a q S a q -∴===-,13a ∴=所以3nn a =…………………………………………………………………………………6分(2)由已知得213log 321n n b n +==+; 所以3521(2)n T n n n =++⋅⋅⋅⋅⋅⋅++=+,………………………………………………8分11111()(2)22n T n n n n ==-++ 1231111n T T T T +++⋅⋅⋅+1111111[()()()2132435=-+-+-1111()()]112n n n n ⋅⋅⋅+-+--++ 1231111n T T T T ∴+++⋅⋅⋅+1311()2212n n =--++………………………………………12分 18.(本小题满分12分)解:(1)由表中数据知,3,100x y ==,…………………………………………………1分∴1221ni ii ni i x y nx yb x nx==-=-∑∑141515008.55545-==--,……………………………………………4分ˆ125.5ay bx =-=, ∴所求回归直线方程为ˆ8.5125.5yx =-+ ………………………………………………6分 13-8 / 11(2)由(1)知,令7x =,则ˆ8.57125.566y=-⨯+=人. …………………………8分 (3)由表中数据得2250(221288)50302030209K ⨯⨯-⨯==⨯⨯⨯,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.………………12分19. 【解析】(1)连接BD 交AC 于O ,连接OE ,OD OBED PE OE PB OEPBD ACE PBD PB ACE PB =∴=⊂,平面平面平面平面//,,// 23,~==∴∆∆CD AB OD OB COD AOB 又 23=∴ED PE (2)过E 作EM//PC 交CD 于M ,过M 作MN//BC 交AB 于N ,过N 作NF//PB 交PA 于F ,连接EF则平面EFNM 为平面α121==∴∴CD CM CD M PD E 的中点,为的中点,为23,1==∴==∴AB BN PA PE CM NB ’DCD PD PCD CD PCD PD CD AD AD PD ABCD AD ABCD PD =⊂⊂⊥⊥∴⊂⊥ ,,,,,,平面平面又平面平面1825h 31353125,,5,=⋅∆==∴==∴=∴⊥==⊥∴--PCE S V V AD h PCE F PA AD PD AD PD PCD AD PCE F CEF P 的距离到平面平面【考查方向】本题主要考查了线面平行的性质,棱锥的体积计算。

2018年高考文科数学模拟试题及答案

2018年高考文科数学模拟试题及答案

2018年高考文科数学模拟试题注意事项:1.本试卷分第1卷(选择题)和第II 卷(非选择题)两部分。

答题前,考生务必用黑 色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准 条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码。

2.回答第1卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第II 卷时,将答案写在答题卡上,写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第1卷一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的)(1)已知i 为虚数单位,复数i z +=21,i z 212-=,则=+21z z ( ) (A)i +1 (B) i -2 (C) i -3 (D) i -(2)设平面向量3(=,)2,x (=,)4-,如果与平行,那么x 等于( ) (A) 6 (B) 3 (C) 3- (D) 6-(3)设n S 是等差数列}{n a 的前n 项和,若2:1:21=a a ,则=21:S S ( ) (A)3:1 (B) 4:1 (C) 5:1 (D) 6:1 (4)设3log 31=a ,31log 21=b , 2)31(=c ,则下列正确的是 ( )(A)c b a << (B)b c a << (C)c a b << (D)a c b <<(5)某商场在今年春节假期的促销活动中,对大年初一9时至14时的销售金额进行统计,并将销售金额按9时至10时、10时至11时、11时至12时、12时至13时、13时至14 时进行分组,绘制成下图所示的频率分布直方图,已知大年初一9时至10时的销售金额为3万元,则大年初-11时至12时的销售金额为 ( ) (A)4万元 (B)8万元 (C) 10万元 (D) 12万元(6)下图是一个空间几何体的三视图(注:正视图也称主视图,侧视图也称左视图),其中 正视图与侧视图都是边长为6的正三角形,俯视图是直径等于6的圆,则这个空间几何体的 表面积为 ( ) (A) π180.400.35 0.30 0.250.200.15 0.100.05(B) π27(C) 382π(D) 383π(7)已知函数x x x x f cos sin cos 3)(2+=,R 是实数集,若R x ∈∃1,R x ∈∃2,R x ∈∀,)()()(21x f x f x f ≤≤,则12x x -的最小值为 ( )(A)π (B)2π (C) 3π (D) 4π(8)在三棱锥ABC P -中,PA 、PB 、PC 两两互相垂直,3=PA ,5=PB ,2=PC ,若三棱锥ABC P -的顶点都在球O 的球面上,则球0的体积等于 ( ) (A) π36 (B) π25 (C) π16 (D)π34 (9)如图所示的程序框图的功能是 ( )(A)求数列}1{n 的前10项和(B)求数列}1{n 的前11项和(C)求数列}21{n 的前10项和(D)求数列}21{n的前11项和(10)下表提供了某工厂节能降耗技术改造后,一种产品的产量x (单位:吨)与相应的生根据上表提供的数据,求得y 关于x 的线性回归方程为35.07.0ˆ+=x y那么表 格中t 的值为 ( )(A) 5.3 (B) 25.3 (C) 15.3 (D) 3(11)已知0>a ,0>b ,双曲线S :12222=-bx a y 的离心率为3,k 是双曲线S 的一条俯视图渐近线的斜率,如果0>k ,那么b ak+的最小值为 ( ) (A) 2 (B) 23 (C) 24 (D) 6(12)已知23)(x x f y +=的图象关于原点对称,若3)2(=f ,函数x x f x g 3)()(-=, 则)2(-g 的值是 ( )(A) 12 (B) -12 C) -21 (D) -27第Ⅱ卷本卷包括必考题和选考题两部分。

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(四)数学(文科)试卷(精编含解析)

黑龙江省2018年普通高等学校招生全国统一考试仿真模拟(四)数学(文科)试卷(精编含解析)

普通高等学校招生全国统一考试仿真模拟(四)文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合,,则()A. B. C. D.【答案】A【解析】【分析】化简集合A、B,再求A∩B即可.【详解】∵集合={x|x<0或x>3}=(﹣∞,0)∪(3,+∞),={x|﹣2<x<2}=(﹣2,2),∴A∩B=(﹣2,0).故选:A.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 已知复数,(为虚数单位,),若,则()A. B. C. D.【答案】C【解析】【分析】利用复数代数形式的乘法运算化简,再由虚部等于0求得a值.【详解】∵z1=2﹣i,z2=a+2i,∴z1z2=(2﹣i)(a+2i)=2a+2+(4﹣a)i,又z1z2∈R,∴4﹣a=0,即a=4.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3. 若向量,满足:,,,则()A. B. C. D.【答案】B【解析】【分析】利用向量垂直的性质直接求解.【详解】∵向量,满足:,,,∴,解得=.故选:B.【点睛】本题考查向量的模的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.4. 在中,,,为的中点,的面积为,则等于()A. B. C. D.【答案】B【解析】【分析】在△BCD中,由面积公式可得BC,再由余弦定理可得结果.【详解】由题意可知在△BCD中,B=,AD=1,∴△BCD的面积S=×BC×BD×sinB=×BC×=,解得BC=3,在△ABC中由余弦定理可得:AC2=AB2+BC2﹣2AB•BCcosB=22+32﹣2•2•3•=7,∴AC=,故选:B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5. 已知,且,则的概率为()A. B. C. D.【答案】B【解析】【分析】先列举出所有的基本事件,再找到满足条件的基本事件,根据古典概型概率公式计算即可.【详解】由题基本事件空间中的元素有:(1,6),(2,5),(3,4),(4,3),(5,2)(6,1),满足题意的有(1,6),(2,5),(3,4),(4,3),故则的概率为=故选:B.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6. 如图,网格纸上正方形小格的边长为(单位:),图中粗线画出的是某种零件的三视图,则该零件的体积(单位:)为()A. B. C. D.【答案】B【解析】【分析】由三视图知该该零件是一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.【详解】根据三视图可知该零件是:一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,且长方体的长、宽、高分别为:8、6、5,圆柱底面圆的半径为1,母线长是8,∴该零件的体积V=8×6×5﹣=240﹣12π(cm3),故选:B.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7. 阅读如图所示的程序框图,运行相应的程序,若输出的为,则判断框中填写的内容可以是()A. B. C. D.【答案】C【解析】试题分析:,判断是,,判断是,,判断是,,判断否,输出,故填.考点:算法与程序框图.视频8. 函数在点处的切线斜率为()A. B. C. D.【答案】C【解析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.9. 若,满足,且的最小值为,则的值为()A. B. C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【详解】由z=y﹣x得y=x+z,要使z=y﹣x的最小值为﹣12,即y=x﹣12,则不等式对应的区域在y=x﹣12的上方,先作出对应的图象,由得,即C(12,0),同时C(12,0)也在直线kx﹣y+3=0上,则12k+3=0,得k=﹣,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.10. 设抛物线的焦点为,过且斜率为的直线交抛物线于,两点.若线段的垂直平分线与轴交于点,则()A. B. C. D.【答案】D【解析】【分析】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.【详解】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),,整理得:3x2﹣5px+=0,由韦达定理可知:x1+x2=,由中点坐标公式可知:x0=,则y0=,由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),解得:p=6,故选:C.【点睛】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,弦长公式及垂直平分线的性质,考查计算能力,属于中档题.11. 四面体的一条棱长为,其余棱长为,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为()A. B. C. D.【答案】D【解析】【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积.【详解】底面积不变,高最大时体积最大,所以,面ACD与面ABD垂直时体积最大,由于四面体的一条棱长为c,其余棱长均为3,所以球心在两个正三角形的重心的垂线的交点,半径R==;经过这个四面体所有顶点的球的表面积为:S==15π;故选:D.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设是函数的导函数,且,(为自然对数的底数),则不等式的解集为()A. B. C. D.【答案】B【解析】【分析】构造函数F(x)=,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F(),运用单调性,可得lnx<,运用对数不等式的解法,即可得到所求解集.【详解】可构造函数F(x)=,F′(x)==,由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.不等式f(lnx)<x2即为<1,(x>0),即<1,x>0.即有F()==1,即为F(lnx)<F(),由F(x)在R上递增,可得lnx<,解得0<x<.故不等式的解集为(0,),故选:B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 函数的单调递增区间是__________.【答案】【解析】化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],又由x∈[0,]可取交集得x∈[0,],故答案为:[0,].14. 已知命题:在平面直角坐标系中,椭圆,的顶点在椭圆上,顶点,分别为椭圆的左、右焦点,椭圆的离心率为,则,现将该命题类比到双曲线中,的顶点在双曲线上,顶点、分别为双曲线的左、右焦点,设双曲线的方程为.双曲线的离心率为,则有__________.【答案】【解析】【分析】根据椭圆的离心率的说法可以写出推理的前提,对于双曲线的离心率可以通过定义表示出来,根据正弦定理把三角形的边长表示成角的正弦,从而求得结果.【详解】将该命题类比到双曲线中,因为的顶点B在双曲线上,顶点A、C分别是双曲线的左右焦点,所以有,所以,由正弦定理可得,所以,故答案为.【点睛】该题考查的是有关类比的问题,涉及到的知识点有椭圆的离心率的定义,双曲线的离心率的定义,正弦定理,正确应用相关的公式是解题的关键.15. 在一幢高的房屋顶测得对面一塔顶的仰角为,塔基的俯角为,假定房屋与塔建在同一水平地面上,则塔的高度为__________.【答案】40【解析】【分析】作出图示,利用30°角的性质和勾股定理依次求出BC,CE,AC,AE,则AB=AE+BE.【详解】如图所示,过房屋顶C作塔AB的垂线CE,垂足为E,则CD=10,∠ACE=60°,∠BCE=30°,∴BE=CD=10,BC=2CD=20,EC=BD=.∵∠ACE=60°,∠AEC=90°,∴AC=2CE=20,∴AE==30.∴AB=AE+BE=30+10=40.故答案为:40.【点睛】解决测量角度问题的注意事项(1)明确仰角、俯角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.16. 设函数在上为增函数,,且为偶函数,则不等式的解集为__________.【答案】【解析】【分析】根据函数的平移关系得到函数g(x)的单调递增区间,根据函数的单调性解不等式即可得到结论.【详解】∵f(x)在[1,+∞)上为增函数,∴f(x)向左平移1个单位得到f(x+1),则f(x+1)在[0,+∞)上为增函数,即g(x)在[0,+∞)上为增函数,且g(2)=f(2+1)=0,∵g(x)=f(x+1)为偶函数∴不等式g(2﹣2x)<0等价为g(2﹣2x)<g(2),即g(|2﹣2x|)<g(2),则|2﹣2x|<2,则﹣2<2x﹣2<2,即0<2x<4,则0<x<2,即不等式的解集为(0,2),故答案为:(0,2).【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)由知:,利用等比数列的通项公式即可得出;(2)b n=|11﹣2n|,设数列{11﹣2n}的前n项和为T n,则.当n≤5时,S n=T n;当n≥6时,S n=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18. 四棱锥中,,,,平面平面,点为的中点.(1)求证:平面;(2)若,求四棱锥的体积.【答案】(1)见解析;(2)1【解析】【分析】(1)取AE中点G,连接GF,GB,则,故四边形是平行四边形,于是,得出,证得结果;(2)由得出,又,故平面,于是,由面面垂直的性质得出平面,从而求得棱锥的高,利用体积公式求得结果.【详解】(1)证明:如图,取的中点,连接,.∵点为的中点,∴,且,又,,∴,且,∴四边形为平行四边形,则,而平面,平面,∴平面.(2)∵,∴,而,∴平面,∴,又平面平面,平面平面,∴平面,∴.【点睛】该题考查的是有关立体几何的问题,在解题的过程中,涉及到的知识点有线面平行的判定,线面垂直的判定,线面垂直的性质,棱锥的体积的求法,熟练掌握基础知识是解题的关键.19. 有位歌手(至号)参加一场歌唱比赛,由名大众评委现场投票决定歌手名次,根据年龄将大众评委分为组,各组的人数如下:(1)为了调查大众评委对位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从组中抽取了人.请将其余各组抽取的人数填入下表.(2)在(1)中,若,两组被抽到的评委中各有人支持号歌手,现从这两组被抽到的评委中分别任选人,求这人都支持号歌手的概率.【答案】(1)见解析;(2)【解析】试题分析:本题主要考查分层抽样、古典概型等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,在分层抽样中,利用样本容量÷总容量,计算表中的值;第二问,先求出每组中支持1号歌手的概率,最后将两个概率值乘在一起即可.试题解析:(Ⅰ)(Ⅱ)A组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为. C组抽取的12人中有2人支持1号歌手,则从12人中任选2人,支持支持1号歌手的概率为.现从抽样评委A组3人,C组12人中各自任选一人,则这2人都支持1号歌手的概率.∴从A,C两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为.考点:本题主要考查:1.分层抽样;2.古典概型.20. 已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.【答案】(1);(2)【解析】【分析】(1)由抛物线的定义可知E的轨迹为以D为焦点,以x=﹣1为准线的抛物线,(2)设l1,l2的方程,联立方程组消元解出A,B的坐标,代入斜率公式计算k AB.【详解】(1)由已知,动点到定点的距离等于到直线的距离,由抛物线的定义知点的轨迹是以为焦点,以为准线的抛物线,故曲线的方程为.(2)由题意可知直线,的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零.设,,直线的方程为,.直线的方程为,由得,已知此方程一个根为,∴,即,同理,∴,,∴,∴,所以,直线的斜率为定值.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 设,函数,函数.(1)当时,求函数的零点个数;(2)若函数与函数的图象分别位于直线的两侧,求的取值集合;(3)对于,,求的最小值.【答案】(1)见解析;(2);(3)【解析】【分析】(1)当n=1时,f(x)=,f′(x)=(x>0),确定函数的单调性,即可求函数y=f(x)的零点个数;(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,∀n∈N*,函数f(x)有最大值f()=<1,即f(x)在直线l:y=1的上方,可得g(n)=>1求n的取值集合A;(3)∀x1,x2∈(0,+∞),|f(x1)﹣g(x2)|的最小值等价于,发布网球场相应的函数值,比较大小,即可求|f(x1)﹣g(x2)|的最小值.【详解】(1)当时,,.由得;由得.所以函数在上单调递增,在上单调递减,因为,,所以函数在上存在一个零点;当时,恒成立,所以函数在上不存在零点.综上得函数在上存在唯一一个零点.(2)由函数求导,得,由,得;由,得,所以函数在上单调递增,在上单调递减,则当时,函数有最大值;由函数求导,得,由得;由得.所以函数在上单调递减,在上单调递增,则当时,函数有最小值;因为,函数的最大值,即函数在直线的下方,故函数在直线:的上方,所以,解得.所以的取值集合为.(3)对,的最小值等价于,当时,;当时,;因为,所以的最小值为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22. 已知直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)若直线的斜率为,判断直线与曲线的位置关系;(2)求与交点的极坐标(,).【答案】(1)相交;(2)【解析】【分析】(1)利用加减消元法和平方消元法消去参数t,可把直线l与曲线C1的参数方程化为普通方程,结合直线与圆的位置关系,可得结论;(2)将曲线C2的极坐标方程化为直角坐标方程,求出交点的坐标,进而可化为极坐标.【详解】(1)斜率为时,直线的普通方程为,即.①将消去参数,化为普通方程得,②则曲线是以为圆心,为半径的圆,圆心到直线的距离,故直线与曲线(圆)相交.(2)的直角坐标方程为,由,解得,所以与的交点的极坐标为.【点睛】本题考查的知识点是参数方程与极坐标,直线与圆的位置关系,圆的交点,难度中档.23. 已知函数在上的最小值为,函数.(1)求实数的值;(2)求函数的最小值.【答案】(1)5;(2)4【解析】【分析】(1)由f(x)=+ax=a[(x﹣1)++1],运用基本不等式可得最小值,解方程可得a的值;(2)运用|x+5|+|x+1|≥|(x+5)﹣(x+1)|=4,即可得到所求的最小值.【详解】(1)∵,,,∴,即有,解得.(2)由于,当且仅当时等号成立,∴的最小值为.【点睛】本题考查函数的最值的求法,注意运用基本不等式和绝对值不等式的性质,考查运算能力,属于中档题.。

(完整word版)2018年高考数学模拟试卷(文科)

(完整word版)2018年高考数学模拟试卷(文科)

2018年高考数学模拟试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5 分)已知集合A={X|X2W 1} , B={x|0v x v 1},则A H B=()A. [ - 1, 1)B・(0, 1) C. [ - 1, 1] D. (- 1,1)2. (5分)若i为虚数单位,则复数z= _在复平面上对应的点位于()丄*A.第一象限B.第二象限C第三象限D.第四象限3. (5分)已知等差数列{a n}前3项的和为6, a5=8,则a20=()A. 40B. 39 C 38 D . 374 . (5分)若向量的夹角为一,且|打|=4, |.・|=1,则「41-|=()A . 2B . 3 C. 4 D . 52 25. (5分)已知双曲线C: ———(a>0, b>0)的渐近线与圆(X+4)2+y2=8a2b2无交点,则双曲线离心率的取值范围是()A. (1,二)B. (一,1■'■')C. (1, 2)D. (2, +x)6. (5分)已知实数x,y满足约束条件\ i-2y+4>0,则z=x+2y的最大值为A . 6B . 7 C. 8 D . 97. (5分)函数y=log 〔(X2-4X+3)的单调递增区间为()TA. (3, +x)B. (-X, 1)C. (-X, 1)U(3, +x) D . (0, +x)8. (5分)宜宾市组织歌颂党,歌颂祖国”的歌咏比赛,有甲、乙、丙、丁四个单位进入决赛,只评一个特等奖,在评奖揭晓前,四位评委A, B, C, D对比赛预测如下:A说:是甲或乙获得特等奖”B说:丁作品获得特等奖”C说:丙、乙未获得特等奖”D说:是甲获得特等奖”比赛结果公布时,发现这四位评委有三位的话是对的,则获得特等奖的是()A .甲 B.乙 C.丙 D . 丁9. (5分)某几何组合体的三视图如图所示,则该几何组合体的体积为(A . 4 B. 5 C. 6 D . 711. (5分)分别从写标有1, 2, 3, 4, 5, 6, 7的7个小球中随机摸取两个小 球,则摸得的两个小球上的数字之和能被 3整除的概率为()A•寻B 寻C 骨D.寺10.(5分)若输入S=12 A=4, B=16, n=1,执行如图所示的程序框图,则输出的结果为(12. (5分)已知函数f(x)是定义在R上的奇函数,当x v0时,f(x)=e x(x+1), 给出下列命题:①当x>0 时,f (x)=e x(x+1);②? X I, X2€ R,都有| f (X1)— f (X2)| V2;③f (x)> 0 的解集为(—1, 0)u, (1, +x);④方程2[f (x) ]2-f (x) =0有3个根.其中正确命题的序号是( )A.①③ B •②③C•②④ D •③④二、填空题:本大题共4个小题,每小题5分,共20分.13. (5分)在等比数列{a n}中,若a2+a4丄,a3丄,且公比q V1,则该数列的通项公式a n= ______ .14. (5 分)已知y=f (x)是偶函数,且f (x) =g (x)- 2x, g (3) =3,则g (3) = ______ .15. (5分)三棱锥P- ABC中,底面△ ABC是边长为.二的等边三角形,PA=PB=PC PB丄平面PAC则三棱锥P- ABC外接球的表面积为_______ .16. (5 分)在厶ABC中,D 为AC上一点,若AB=AC AD*D, BD=4 ,则厶ABCu-n面积的最大值为_______ .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤•第17〜21题为必考题,每个试题考生都必须答•第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.17. (12分)在厶ABC中,a, b, c分别为A, B, C的对边,且sinA=2sinB(1)若C^—, △ ABC的面积为「,求a的值;4 4(2)求亟竽■—沁迥嗚的值.SLED 218. (12分)每年4月15至21日是全国肿瘤防治宣传周,全国每天有超1万人确诊为癌症,其中肺癌位列发病首位,吸烟人群是不吸烟人群患肺癌的10倍•某 调查小组为了调查中学生吸烟与家庭中有无成人吸烟的关系,发放了 500份不记名调查表,据统计中学生吸烟的频率是0.08,家庭中成人吸烟人数的频率分布条 形图如图.(1) 根据题意,求出a 并完善以下2X 2列联表;家中有成人吸烟家中无成人吸烟合计学生吸烟人数 28学生不吸烟人数合计(2) 能否据此判断有97.5%的把握认为中学生吸烟与家庭中有成人吸烟有关? 附表及公式: P (K 2>k 0)0.100 0.050 0.025 0.010 0.005 k 02.7063.8415.0246.6357.879Q=Ca+b) (c+d) Ca-Fc) (b+d)'19. ( 12分)如图,四棱锥P -ABCD 的底面ABCD 是直角梯形,AD // BC, / ADC=90 ,n=a+b+c+d平面PAD丄平面ABCDQ是AD的中点,M是棱PC上的点,PA=PD=2AD=2BC=2CD=:(1)求证:平面BMQ丄平面PAD;(2)当M是PC的中点时,过B,M,Q的平面去截四棱锥P-ABCD求这个截面的面积.20. (12分)已知抛物线C的焦点在x轴上,顶点在原点且过点p (2,1),过点(2,0)的直线I交抛物线C于A,B两点,M是线段AB的中点,过点M作y 轴的垂线交C于点N.(1)求抛物线C的方程;(2)是否存在直线I,使得以AB为直径的圆M经过点N?若存在,求出直线I 的方程;若不存在,说明理由.21. (12 分)已知函数f (x) =e x+x- 2, g (x) =alnx+x.(1)函数y=g (x)有两个零点,求a的取值范围;(2)当a=1 时,证明:f (x)> g (x).(二)选做题:共10分•请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. (10分)在直角坐标系xOy中,圆C的参数方程为—,(参数©[y=2sin$€ R).以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,(I)求圆C的极坐标方程;(II)直线I,射线OM的极坐标方程分别是旦)二还,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高考模拟试卷04
文科数学
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至4页。

考试结束后,将本草纲目试卷和答题卡一并交回。

注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无交通工效............。

3.第I 卷共12小题,第小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

第I 卷
一、选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.)
1. 已知集合{}1,0,1M =-和{}0,1,2,3N =的关系的韦恩(Venn )图如图1所示,则阴影部
分所示的集合是( ) A .{}0
B .{}0,1
C .{}1,2,3-
D .{}1,0,1,2,3-
2. 命题“存在实数x ,使2280x x +-=”的否定是( )
A .对任意实数x , 都有2280x x +-=
B .不存在实数x ,使2280x x +-≠
C .对任意实数x , 都有2280x x +-≠
D .存在实数x ,使2280x x +-≠
3. 若复数
1i 1
2i 2
b +=+(i 是虚数单位,b 是实数),则b =( ) A .2- B .1
2
- C .12
D .2
4. 已知平面向量(1,2)AB =,(2,)AC y =,且0AB AC ⋅=,则23AB AC +=( )
A .(8,1)
B .(8,7)
C .()8,8-
D .()16,8
图1
5. 已知()f x 是定义在R 上的奇函数,且0x ≥时()f x 的图像
如图2所示,则()2f -=( ) A .3- B .2- C .1-
D .2
6. 已知变量x ,y 满足约束条件20,2,0,x y y x y +-≥⎧⎪
≤⎨⎪-≤⎩
则2z x y =+的最大值为( )
A .2
B .3
C .4
D .6
7. 如图所示的程序框图,若输入n 的值为6,则输出s 的值为( )
A. 105
B. 16
C. 15
D. 1
8. 设函数()3x
f x e x =-,则( )
A .3
x e
=
为()f x 的极大值点
B .3
x e
=
为()f x 的极小值点 C .ln 3x =为()f x 的极大值点
D .ln 3x =为()f x 的极小值点
9. 已知直线0Ax y C ++=,其中,,4A C 成等比数列,且直线经过抛物线28y x =的焦点,则
A C +=( )
A .1-
B .0
C .1
D .4
1 3 2
x
y
O 图2
10. 如图所示,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等腰梯形,等腰直角三角形和长方形,则该几何体体积为( )
A .
53 B
.3
C .73
D .103
11. 对于任意两个复数1z a bi =+,2z c di
=+(,,,a b c d ∈R ),定义运算“⊗”为:12z z ac bd ⊗=+.则下列结论错误的是( )
A .()()1i i -⊗-=
B .()1i i i ⊗⊗=
C .()122i i ⊗+=
D .()()112i i -⊗+=
12.已知函数f(x)=ax 3
-3x 2
+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )
A .(2,+∞) B.(1,+∞) C .(-∞,-2) D .(-∞,-1)
第II 卷
二、填空题:(本大题共5小题,考生作答4小题,每小题5分,满分20分)。

13..
函数()lg(1)f x x =
-的定义域是________. 14.某公司为了了解员工们的健康状况,随机抽取了部分员工作为样本,测量他们的体重(单位:公斤),体重的分组
区间为[50,55),[55,60),[60,65),[65,70),[70,75],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,估计该公司员工体重的众数是_________;从这部分员工中随机抽取1位员工,则该员工的体重在[65,75]的概率是_________.
正视图
俯视图
侧视图
图3
图4
15.已知ABC ∆中,A ∠,B ∠,C ∠的对边分别为a ,b ,c ,若1a =,b =2B A =,则A =_________.
三、解答题:(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤)。

17.(本小题满分12分)
设等差数列{}n a 的前n 项和为n S ,且12a =,36a =. (1)求数列{}n a 的通项公式; (2)若110k S =,求k 的值;
(3)设数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和为n T ,求2013T 的值.
18.(本小题12分)
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过
...2分钟的概率.(将频率视为概率)
19.(本小题满分12分)
将棱长为a 正方体截去一半(如图7所示)得到如图8所示的几何体,点E ,F 分别是BC ,
DC 的中点.
(1)证明:1AF ED ⊥; (2)求三棱锥1E AFD -的体积.
A 1
B 1
C 1
D 1
A
B
C
D
图7
D 1
D
C
B
A 1
A
E F
图8
20.(本小题满分12分)
在直角坐标系xOy中,已知中心在原点,离心率为1
2
的椭圆E的一个焦点为圆C:x2+y2-4x+2=0
的圆心.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积为1
2
的直线l1,l2.当直线l1,l2都与圆C相
切时,求P的坐标.
21.(本小题12分)
已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;
(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的单调区间;
(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.
23. (本小题满分10分)选修4—4:坐标系与参数方程选讲.
在直角坐标系xOy 中,曲线C 1的参数方程为⎩
⎨⎧==x y a
x sin cos 3(a 为参数),以原点O 为极点,以x 轴正半轴
为极轴,建立极坐标系,曲线C 2的极坐标方程为24)4
sin(=+
π
θρ
(1) 求曲线C 1的普通方程与曲线C 2的直角坐标方程.
(2) 设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 坐标.。

相关文档
最新文档