电磁场微波技术论文
电磁场与微波技术

通过调整主电路,在主电容为3kV时,得到的电流脉冲峰值为8.5kA、脉宽为2.5μs、电流上升率为7.2kA/μs。
结果表明,RSD是一种开通快、通流能力强、电流上升率高的大功率半导体开关器件。
图5表1参11TN7822007031097螺旋脉冲形成线实验研究/曹绍云,谭杰,范植开,胡克松,吴勇,侯玺群(中国工程物理研究院应用电子学研究所)//强激光与粒子束.―2006,18(6).―1046~1048.设计了一种用于长脉冲功率源研究的Blumlein型螺旋脉冲形成线。
该形成线主要是将铜带绕在绝缘衬筒上形成螺旋形结构,以蓖麻油为介质,匝数为3.5匝每m,充电时间为1μs,负载为电子束二极管。
给出了形成线参数的理论计算公式以及实验研究结果。
在300kV脉冲功率源上得到的脉冲延迟为200ns,特征阻抗约100Ω,形成的脉冲半高宽为180ns,前沿15ns,平顶宽度150ns。
实验证明该螺旋脉冲形成线结构能够有效地延长形成脉冲的宽度。
最后分析了开关电感、充电时间以及螺旋形结构对形成线输出脉冲前沿及平顶畸变的影响。
结果表明:较小的主开关电感是形成较陡的脉冲前沿的关键,获得好的脉冲波形应选择适当的充电周期,螺旋形结构容易导致色散产生,需要选取适当的螺旋角。
图3表1参7TN7822007031098 4M V同轴-三平板型水介质自击穿开关设计/夏明鹤,王勐,王玉娟,计策,李洪涛,关永超,杨自祥,谢卫平,丰树平(中国工程物理研究院流体物理研究所)//强激光与粒子束.―2006,18(3).―496~500.在1MV水介质自击穿开关降压实验的基础上,设计了用于脉冲功率装置的水介质输出开关,设计的最高运行电压为4MV,放电电流600kA.4MW 水介质自击穿开关为同轴-三平板结构,由输入输出电极、预脉冲屏蔽板和连接部件组成。
在结构设计中拟使用电流线圈测量每个通道的放电电流,用开关前后传输线上靠近开关端的D-dot测量开关的输入输出电压。
电磁场与电磁波论文

电磁场与电磁波在实际中的应用对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。
对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。
电磁场理论的发展经历了很长时间,从发现到证实,从现象到理论,这一过程需要几代物理学家的努力付出。
电磁场理论在现代科技中有着广泛的应用。
现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从假期,工业自动化到地质勘测,从电力、交通等工业、农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。
不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。
从科学的角度来说,电磁波是能量的一种,凡是能够释出能量的物体,都会释出电磁波。
正像人们一直生活在空气中而眼睛却看不见空气一样,人们也看不见无处不在的电磁波。
电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.应用:(1)无线电波用于通信等(2)微波用于微波炉(3)红外线用于遥控、热成像仪、红外制导导弹等(4)可见光是所有生物用来观察事物的基础(5)紫外线用于医用消毒,验证假钞,测量距离,工程上的探伤等(6)X射线用于CT照相(7)伽玛射线用于治疗,使原子发生跃迁从而产生新的射线等.(8)无线电波。
无线电广播与电视都是利用电磁波来进行的。
恒定电场在电磁场课程中所占比例较小,但其应用却很广泛。
直流电路的应用实质上就是恒定电流场的应用,只是把场限制在特定的线路中。
现代大型铝电解槽,其工作电流达100kA。
由于巨大电流所带来的电磁力作用于铝液问题,已成为国内外研究的重要课题。
使电流场的应用理论又进一步丰富。
实际电工设备如电缆头、高压套管、绝缘子、电机和变压器等的似稳电场与一些非电工程中的物理量的模拟都运用了恒定电场的理论。
电磁场与微波技术 信息与信号处理

电磁场与微波技术信息与信号处理电磁场与微波技术是现代通信领域中非常重要的两个方面,它们的应用涵盖了信息与信号处理的各个方面。
电磁场是由电荷所产生的电场和由电流所产生的磁场组成的物理现象,而微波技术是指将电磁波频率范围在300MHz至300GHz之间的技术。
在这篇文章中,我们将探讨电磁场与微波技术在信息与信号处理中的应用。
我们来讨论电磁场在信息与信号处理中的应用。
电磁场可以传输和处理各种类型的信息和信号。
在通信系统中,电磁场被用来传输声音、图像和数据等信息。
通过调制和解调技术,信息信号可以被转换成电磁波,并通过电磁场传输到远处的接收器。
在接收端,接收器会将电磁波转换回原始的信息信号。
电磁场在通信系统中的应用使得人们可以通过电话、无线电、卫星和互联网等方式进行远距离的信息交流。
电磁场还可以通过传感器来检测和处理环境中的信息。
传感器是一种能够将环境信息转换成电信号的装置。
通过测量电磁场的强度、频率或相位等参数,传感器可以获取各种类型的环境信息,如温度、湿度、压力和光照等。
这些信息可以被用于科学研究、工业生产和环境监测等领域。
电磁场在传感器中的应用使得人们可以更好地理解和控制周围的环境。
接下来,我们来讨论微波技术在信息与信号处理中的应用。
微波技术在通信系统中扮演着重要的角色。
微波信号可以通过天线进行传输和接收。
在移动通信系统中,微波技术被用于无线电波的传输,使得人们可以通过手机进行语音通话和数据传输。
此外,微波技术还被用于雷达系统,用于探测和跟踪空中目标。
微波雷达可以通过测量微波信号的反射时间和相位差等参数,来确定目标的位置、速度和形状等信息。
除了通信系统,微波技术还被广泛应用于医学领域。
微波成像技术可以用于检测和诊断人体内部的疾病。
通过向人体内部发射微波信号,并测量其在组织中的传播和反射情况,可以获得关于组织结构和疾病情况的信息。
微波成像技术在乳腺癌检测、脑部损伤诊断和皮肤病诊断等方面具有很大的潜力。
《电磁场与微波技术实验》校园内无线信号场强特性的研究

校园内无线信号场强特性的研究实验报告学院:信息与通信工程学院一.实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。
二.实验原理1. 电波传播方式无线通信系统是由发射机、发射天线、无线信道、接收机,接收天线所组成,对于接收者,只有处在发射信号的覆盖区内,才能保证接收机正常接收信号,此时,电波场强大于接收机的灵敏度。
因此,基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率、馈线及接头损耗、天线增益、天线架设高度、路径损耗、衰落、接收机高度、人体效应、接收机灵敏度、建筑群的穿透损耗、同播、同频干扰。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
2. 电磁波的损耗电磁波在空间传播是不可避免地会受到各种因素的影响而产生损耗,这些损耗主要分为:建筑物穿透损耗,阴影损耗,路径损耗等。
在本实验中,我们小组做的是宿舍区的室外测量,借以研究信号的阴影损耗特点,并和其他小组实验结果对比以得出信号的建筑物穿透损耗特点。
下面主要对电磁波的阴影损耗加以讨论:信号在传播的过程中受到较大建筑物或较高的地形单位的阻挡,这样信号会产生衰落,不同时间或接受方位的遮挡情况不同,接收功率也不同,由于这种原因造成的衰落叫“阴影效应”或“阴影衰落”。
在阴影衰落的情况下,移动台与信号源的直达路径被建筑物所遮挡,它收到的信号是各种绕射、反射、散射波的合成。
电磁场与微波技术

电磁场与微波技术电磁场是指存在于空间中的电荷或电流所产生的物理场。
它是一个基本的物理概念,在生活中随处可见。
电磁场与微波技术的研究和应用,已经在科学和工业领域取得了重要的进展。
这篇文章将介绍电磁场和微波技术的基本概念、应用和未来发展趋势。
一、电磁场的基本概念电磁场最基本的特征是电场和磁场。
电场是指电荷对周围带电或未带电粒子所产生的力的作用。
与之相对的是磁场,它是由电荷所产生的电流产生的力所形成的,用特定的单位表示为韦伯(Wb)。
电磁场的强度和方向是由电荷密度和电流决定的。
电荷密度是指在某一区域单位体积内的电荷数量,通常用库仑/立方米(C/m³)表示。
电流是指单位时间内通过一个导体横截面的电量,通常用安培(A)表示。
电磁场还有一个重要的特征是其频率和波长。
频率是指电磁波每秒钟震荡的次数,用赫兹(Hz)表示。
波长是指电磁波一个震荡周期所覆盖的距离,用米(m)表示。
二、微波技术的基本概念微波技术是指运用微波频段(300MHz-300GHz)的电磁波进行信息传输、测量、加热等方面的技术。
微波技术具有传输速度高、信号质量好、噪声小等优点,因此在通信、雷达、天文学、生命科学等领域得到了广泛应用。
微波技术主要是由微波器件和微波传输系统构成的。
微波器件包括发射器、接收器、功率放大器、射频滤波器、振荡器等。
微波传输系统包括微波波导、微波传输线和微波天线等。
微波技术通过这些器件和传输系统实现了微波信号的调制、放大、传输和接收等功能。
三、电磁场和微波技术的应用1. 通信通信是电磁场和微波技术的重要应用领域之一。
无线通信的基本原理就是利用电磁波进行信息传输。
无线通信技术已经在移动通信、卫星通信、广播电视等方面得到了广泛应用。
2. 雷达雷达是指利用电磁波进行物体探测和测量的技术。
它广泛应用于军事、民用、科学研究等领域。
雷达技术已经变得越来越先进,可以探测到更小的物体,监测更广泛的区域,因此在海上、空中、陆地各种环境下都有广泛的应用。
电磁场与微波技术

电磁场与微波技术电磁场与微波技术引言电磁场和微波技术是现代科学与技术领域中重要的研究方向。
电磁场是由电磁波构成的物理现象,其在无线通信、电磁隔离、能量传输等方面具有广泛应用。
微波技术作为电磁波的一种,其频率范围在0.3 GHz到300 GHz之间,被广泛应用于通信、雷达、医疗、材料处理等领域。
本文将探讨电磁场的基本概念、特性以及微波技术在不同领域中的应用。
第一部分电磁场的基本概念与特性1. 电磁场的概念电磁场,顾名思义,是由电场和磁场组成的物理现象。
电场是由电荷引起的一种物理现象,磁场则是由电流引起的物理现象。
当电流变化时,会产生磁场。
电磁场可以通过电磁波的方式传播,包括无线电波、微波、可见光等。
2. 电磁场的特性电磁场具有许多特性,包括电磁波的强度、频率、相位等。
电磁波的强度代表了电磁辐射的能量大小,频率代表了电磁波的振动次数,相位则表示了电磁波在空间中的相对位置。
此外,电磁波还具有传导性、辐射性以及相对论效应等特性。
第二部分微波技术的应用领域1. 通信领域微波技术在通信领域中有着重要应用,尤其是无线通信和卫星通信。
无线通信利用微波进行信号传输,实现了人与人之间的远程通信,比如手机通话、无线网络等。
卫星通信则利用微波将信号从地面传输到卫星,再由卫星传输到其他地方,实现了全球通信的覆盖。
2. 医疗领域微波技术在医疗领域中也有广泛应用。
微波能够穿透物体,因此可以用于医学影像学中的透视、断层扫描等技术。
此外,微波技术还可以用于治疗,比如微波物理疗法、微波治疗仪等,可以用于疼痛治疗、肿瘤治疗等。
3. 雷达技术雷达技术是微波技术的重要应用之一。
雷达是利用微波进行距离测量和目标探测的装置。
它通过向目标发射微波信号,并接收其反射信号来实现目标的探测和定位。
雷达在军事、民航、气象等领域中起着重要作用,比如飞机导航、天气预报等。
4. 材料处理微波技术还可以用于材料处理,包括物体加热、干燥、焙烧等。
微波加热可以快速、均匀地加热物体,用于食品加热、橡胶硫化等。
电磁场与微波技术的研究进展

电磁场与微波技术的研究进展引言:电磁场与微波技术是现代科学与技术的重要领域之一,它们在通信、医疗、材料科学等众多领域都有着广泛的应用。
随着科技的不断进步,电磁场与微波技术的研究也在不断深入,取得了许多重要的成果。
本文将从电磁场与微波技术的基础理论、应用领域以及未来发展方向三个方面来探讨其研究进展。
一、电磁场与微波技术的基础理论研究电磁场与微波技术的基础理论研究是其发展的重要基石。
在电磁场理论方面,麦克斯韦方程组的提出为电磁场的研究奠定了基础。
通过对麦克斯韦方程组的深入研究,人们对电磁场的本质有了更深入的认识,为电磁场的应用提供了理论依据。
在微波技术方面,人们对微波的传输、辐射和吸收等现象进行了广泛研究,建立了微波工程学的理论体系。
这些理论的建立和发展为电磁场与微波技术的应用提供了坚实的基础。
二、电磁场与微波技术的应用领域研究电磁场与微波技术在通信领域有着广泛的应用。
随着移动通信的快速发展,人们对无线通信的需求越来越高。
电磁场与微波技术的应用使得无线通信成为可能,人们可以通过手机、无线网络等方式进行远距离的通信。
此外,电磁场与微波技术还在雷达、卫星通信等领域发挥着重要作用。
在医疗领域,电磁场与微波技术也有着广泛的应用。
例如,磁共振成像技术利用了电磁场的特性,可以对人体进行高清晰度的成像,为医生提供准确的诊断信息。
微波治疗技术则利用微波的加热效应,对肿瘤等疾病进行治疗,取得了良好的疗效。
在材料科学领域,电磁场与微波技术也得到了广泛的应用。
例如,微波辅助化学合成技术可以提高反应速率和产率,促进新材料的合成。
电磁场在材料表面改性、材料性能测试等方面也有着重要的应用。
三、电磁场与微波技术的未来发展方向电磁场与微波技术在未来的发展中仍有许多挑战和机遇。
一方面,随着通信技术的快速发展,人们对更高速、更稳定的通信需求不断增加,电磁场与微波技术需要不断创新,提供更好的解决方案。
另一方面,随着人工智能、物联网等技术的兴起,电磁场与微波技术也需要与之结合,为其提供支持和保障。
电磁场与微波技术及其应用研究

电磁场与微波技术及其应用研究摘要:早在上个世纪,微波技术已在多种民用和军用场景中得到了广泛的应用。
近年来,随着对微波理论的进一步探究,微波在电力系统中的应用引起了广泛的关注。
为了推动新型微波应用的发展,文章首先介绍了经典的民用和军用微波应用,并详细介绍了贯穿这些应用中的技术原理。
在此基础上,论文详细介绍了新兴微波应用,即微波技术在电力系统中的应用。
论文主要阐述了微波继电保护和微波无线充电应用和相关技术,并分析了这些应用相较于传统电力系统的优点。
最后,论文对新兴微波应用所面临的挑战进行了展望。
关键词:微波微波通道微波无线电能传输一.研究背景微波是指波长范围在0.1mm-1m之间的电磁波。
根据光速和波长范围,可以计算出微波的频率范围在300MHz-3000GHz之间[1]。
随着微波硬件产品的发展,微波成功从理论向应用转型,衍生出了民用、军用等多种微波应用。
近几年,随着对微波理论的进一步探究,微波在电力系统中的应用,诸如微波继电保护以及微波无线输能等,引起了人们的广泛关注。
为了推动微波应用的发展,首先需要对微波应用及贯穿其中的技术原理有全面且清晰的认识。
然而,现有文献在对微波应用进行探究时,缺乏对新兴微波应用的阐述。
因此,全面认识经典微波应用和新型微波应用,并了解不同微波应用下技术原理具有重要的意义。
二.经典微波应用在本节中,我们首先对经典微波应用及其中的技术原理进行简单介绍。
经典微波应用分为民用微波应用和军用微波应用。
其中,民用微波应用主要包括微波加热以及微波杀菌,而军用微波应用包括微波武器。
2.1 民用场景2.1.1 微波加热微波加热的核心思想是利用微波对材料内部分子进行极化,进而将微波的电磁能转化为热能。
微波加热的材料必须为易吸收微波的极性介质材料。
当该类材料放置在微波电磁场中时,由于微波电磁场高频交变的特性,材料内部极性分子将进行高频剧烈转动,进而将电磁能转化为热能。
大部分食品中蕴含的水分子是一种极性非常强且能够很好吸收微波的材料,因此这些食品均能够实现微波加热[1,2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场微波技术论文电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。
店铺整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!电磁场微波技术论文篇一“电磁场与微波技术”课程的改革与实践摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。
关键词:电磁场与微波技术;工程实际;考核制度作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。
(河南郑州450063)中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2012)17-0054-02随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。
因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。
[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。
为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。
一、“教”“学”中的主要问题该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。
目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。
对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。
该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。
对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。
二、改革方法和措施1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。
增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。
[4]2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。
这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。
具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。
3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究(1)以应用为本,确定理论教学的研究方法。
在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。
(2)注重对学生进行思维能力与应用能力的训练。
改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。
(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。
对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。
(4)注重案例教学。
例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。
(5)开设“第二课堂”教学法。
针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。
充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。
4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。
传统的终结性考核以理论知识、标准答案、闭卷形式为主。
改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。
另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。
三、改革实践的效果课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。
改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。
具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。
四、结束语该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。
参考文献:[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.。