2016全国3卷理科数学压轴题
2016年高考新课标全国卷理科数学模拟试卷压轴题汇编

2016年高考新课标全国卷理科数学模拟试卷压轴题汇编邯郸市第一中学2016届高三第十次研究性考试21.已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明:21.解:(1)因为,所以,此时,,由,得,所以在上单调递增,在上单调递减,故当时函数有极大值,也是最大值,所以的最大值为..........4分(2),所以.当时,因为,所以.所以在上是递增函数,当时,,令,得,所以当时,,当时,,因此函数在是增函数,在是减函数.综上,当时,函数的递增区间是,无递减区间;当时,函数的递增区间是,递减区间是............8分(3)当,.由,即,从而.令,则由得,.可知,在区间上单调递减,在区间上单调递增,所以,所以,因为,因此成立................................12分江西省南昌市十所省重点中学命制2016届高三第二次模拟突破冲刺(理)(五)21.已知函数.(1)当时,证明:;(2)当,且时,不等式成立,求实数的值.21.证明:(1)令.,则在上是增函数.故,即命题结论成立………………5分(2)当时,,;当时,,所以,原不等式可化为.令.令当时,有.令,则,故在上是减函数,即.因此在上是减函数,从而,所以,当时,对于,有当时,有.令,则,故在上是增函数,即.因此,在上是减函数,从而,.所以,当时,对于有综上,当时,在,且时,不等式成立.……12分江西省南昌市十所省重点中学命制2016届高三第二次模拟突破冲刺(理)21.(本小题满分12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若存在,使得(e是自然对数的底数),求实数的取值范围.21.解:(Ⅰ). ……… 1分因为当时,,在上是增函数,因为当时,,在上也是增函数,所以当或,总有在上是增函数, ………2分又,所以的解集为,的解集为,……… 3分故函数的单调增区间为,单调减区间为. ……… 4分(Ⅱ)因为存在,使得成立,而当时,,所以只要即可. ……… 5分又因为,,的变化情况如下表所示:减函数极小值增函数所以在上是减函数,在上是增函数,所以当时,的最小值,的最大值为和中的最大值.………7分因为,令,因为,所以在上是增函数.而,故当时,,即;当时,,即. ……… 9分所以,当时,,即,函数在上是增函数,解得; ………10分当时,,即,函数在上是减函数,解得. ………11分综上可知,所求的取值范围为. ………12分江西省赣州市十三县(市)2016届高三下学期期中联考(理)21. (本小题满分12分)已知函数 (R).(1)当时,求函数的单调区间;(2)若对任意实数,当时,函数的最大值为,求的取值范围.21. 解:(1)当时,,则,……………………………………1分令,得或;令,得,∴函数的单调递增区间为和,单调递减区间为. ………4分(2)由题意,(i)当时,函数在上单调递增,在上单调递减,此时,不存在实数,使得当时,函数的最大值为.……………6分(ii)当时,令,有,,①当时,函数在上单调递增,显然符合题意.……………7分②当即时,函数在和上单调递增,在上单调递减,在处取得极大值,且,要使对任意实数,当时,函数的最大值为,只需,解得,又,所以此时实数的取值范围是. ……………………………9分③当即时,函数在和上单调递增,在上单调递减,要存在实数,使得当时,函数的最大值为,需,代入化简得,①令,因为恒成立,故恒有,所以时,①式恒成立,综上,实数的取值范围是. …………………………………12分益阳市2016届高三4月调研考试21.(本小题满分12分)已知函数.(Ⅰ)若曲线在点(4,f ( 4 ))处的切线的斜率小于0,求的单调区间;(Ⅱ)对任意的,,恒有,求k的取值范围。
2016高考全国3卷理科数学解析版

0 0
(A) 各月的平均最低气温都在 0 C 以上 (C) 三月和十一月的平均最高气温基本相同 4.答案:D
4i z z 1
(B) -1 (C) i (D)-i
4i 4i i z z 1 (1 2i )(1 2i ) 1
评析:本题主要考查复数的基本概念和加减乘除基本运算. (3)已知向量 BA ( , ), BC ( (A)300 3.答案:A (B) 450
0
(B) 七月的平均温差比一月的平均温差大 (D)平均气温高于 20 C 的月份有 5 个
0
解析:由图可知平均气温高于 20 C 的月份至多有 3 个,故 D 不正确. 评析:本题考查学生识别统计图形,分析图形的能力. (5)若 tan (A)
0
3 2 ,则 cos 2 sin 2 4
4 3 2 3 2 5 1 3 2 3 2 3
(B) a b c
(C) b c a
(D) c a b
(A)3 7.答案:B
(B)4
(C)5
(D)6
解析:第一次循环,得 a 2, b 4, a 6, s 6, n 1; 第二次循环,得 a 2, b 6, a 4, s 10, n 2; 第三次循环,得 a 2, b 4, a 6, s 16, n 3; 第四次循环,得 a 2, b 6, a 4, s 20 16, n 4 ,退出循环,输出 n 4. 评析:本题主要考查了程序框图的基础知识. (8)在 △ABC 中, B = (A) 8.答案:C 解析:设 BC 边上的高线为 AD ,则 BC 3 AD ,将三角形三边都用 AD 表示,得
2016全国高考理科数学试题与答案-全国卷3

绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(2BA = ,31(),2BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )310 (B )10(C )10(D )310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+ (C )90 (D )81 (10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016年全国卷3理科数学理科综合试题及答案

2016年全国卷3理科数学理科综合试题及答案绝密★启用前2016年普通高等学校招生全国统一考试 全国卷3理科数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明1.设集合S={}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T= (A )[2,3] (B )(-∞ ,2]U [3,+∞)(C )[3,+∞) (D )(0,2]U [3,+∞) 【答案】D 【解析】试题分析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{|23}S x x x =≤≥或,所以{|023}S T x x x =<≤≥I 或,故选D .考点:1、不等式的解法;2、集合的交集运算.2.若12z i =+,则41i zz =-(A )1 (B ) -1 (C )i (D )-i 【答案】C 【解析】试题分析:44(12)(12)11i i i i i zz ==+---,故选C . 考点:1、复数的运算;2、共轭复数. 3.已知向量1(,22BA =uu v,1),22BC =uu u v 则∠ABC=(A )300 (B ) 450 (C )600 (D )1200 【答案】A 【解析】 试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⨯+⋅∠===⨯u u u r u u u r u u ur u u u r ,所以30ABC ∠=︒,故选A .考点:向量夹角公式.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A)各月的平均最低气温都在00C以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均气温高于200C的月份有5个【答案】D【解析】试题分析:由图可知0C︒均在虚线框内,所以各月的平均最低气温都在0℃以上,A正确;由图可在七月的平均温差大于7.5C︒,而一月的平均温差小于7.5C︒,所以七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都大约在5C︒,基本相同,C正确;由图可知平均最高气温高于20℃的月份有3个或2个,所以不正确.故选D.考点:1、平均数;2、统计图5.若3tan 4α= ,则2cos 2sin 2αα+= (A )6425 (B ) 4825(C )1 (D )1625 【答案】A 【解析】 试题分析:由3tan 4α=,得34sin ,cos 55αα==或34sin ,cos 55αα=-=-,所以2161264cos 2sin 24252525αα+=+⨯=,故选A .考点:1、同角三角函数间的基本关系;2、倍角公式.6.已知432a =,254b =,1325c =,则(A )b a c << (B )a b c << (C )b c a <<(D )c a b << 【答案】A 【解析】试题分析:因为422335244a b==>=,1223332554c a==>=,所以b a c <<,故选A .考点:幂函数的图象与性质.7.执行下图的程序框图,如果输入的46a b ==,,那么输出的n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】试题分析:第一次循环,得2,4,6,6,1=====;第a b a s n二次循环,得2,6,4,10n=;第三次循环,=-===,2a b a s得2,4,6,16,3=====;第四次循环,得a b a s nn=,故选2,6,4,2016,4=-===>=,退出循环,输出4a b a s nB.考点:程序框图.8.在ABC△中,π4B=,BC边上的高等于13BC,则cos A=(A)310(B)10(C)10-(D)310-【答案】C 【解析】试题分析:设BC 边上的高线为AD ,则3BC AD =,所以225AC AD DC AD=+=,2AB AD=.由余弦定理,知22222210cos 210225AB AC BC A AB AC AD AD+-===-⋅⨯⨯,故选C .考点:余弦定理.9.如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+ (B )545+ (C )90(D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+B .考点:空间几何体的三视图及表面积. 10.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是(A )4π (B )92π(C )6π (D )323π 【答案】B 【解析】试题分析:要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B .考点:1、三棱柱的内切球;2、球的体积. 11.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34【答案】A 【解析】试题分析:由题意设直线l 的方程为()y k x a =+,分别令x c=-与x =得点||()FM k a c =-,||OE ka=,由OBE CBM∆∆:,得1||||2||||OE OB FM BC =,即2(c)ka a k a a c=-+,整理,得13c a =,所以椭圆离心率为13e =,故选A . 考点:椭圆方程与几何性质.12.定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a L 中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个 【答案】C 【解析】试题分析:由题意,得必有1a =,81a=,则具体的排法列表如下:考点:计数原理的应用.第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)13.若,x y满足约束条件1020220x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩则z x y=+的最大值为_____________.【答案】32【解析】试题分析:作出不等式组满足的平面区域,如图所示,由图知,当目标函数z x y=+经过点1(1,)2A时取得最大值,即max13 122z=+=.考点:简单的线性规划问题.14.函数sin y x x=的图像可由函数sin y x x=+的图像至少向右平移_____________个单位长度得到. 【答案】32π 【解析】试题分析:因为sin 2sin()3y x x x π=+=+,sin 2sin()3y x x x π==-=2sin[()]33x π2π+-,所以函数sin y x x=-的图像可由函数sin y x x=的图像至少向右平移32π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角和与差的正弦函数.15.已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________。
2016年高考理科数学全国卷3(含答案解析)

绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学使用地区:广西、云南、贵州注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共6页.2. 答题前,考生务必在答题卡上用直径0.5毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚.再贴好条形码,请认真核准条形码上的准考证号、姓名和科目.3. 答第Ⅰ卷时,选出每题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在本试卷上无效.4. 答第Ⅱ卷时,请用直径0.5毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答.答在本试卷上无效.5. 第22、23、24小题为选考题,请按题目要求任选其中一题作答.要用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.6. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{|(2)(3)0}S x x x =--≥,{}0Tx x =>,则S T = ( )A. []2,3B. (,2][3,)-∞+∞C. [3,)+∞D. (0,2][3,)+∞2.若12i z =+,则4i1zz =- ( )A. 1B. 1-C. iD. i -3.已知向量1331()()2222BA BC ==,,,,则ABC ∠=( )A. 30°B. 45°C. 60°D. 120°4. 某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B 点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )----平均最低气温——平均最高气温A. 各月的平均最低气温都在0℃以上B. 七月的平均温差比一月的平均温差大C. 三月和十一月的平均最高气温基本相同D. 平均最高气温高于20℃的月份有5个5. 若3tan 4α=,则2cos 2sin 2αα+=( )A. 6425B.4825 C. 1D. 16256. 已知432a =,254b =,1325c =,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<7. 执行如图的程序框图,如果输入的4a =,6b =,那么输出的n =( )A. 3B. 4C. 5D. 68. 在ABC △中,4B π=,BC 边上的高等于13BC ,则cos A = ( )A. 10310B.1010C. 1010-D. 31010-9. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 8110. 在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球.若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A. 4πB.92π C. 6πD. 323π11. 已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左、右顶点,P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A. 13 B.12 C. 23D. 3412. 定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,123,,......k a a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( )A. 18个B. 16个--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无----------------效----------------姓名________________ 准考证号_____________C. 14个D. 12个第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13. 若x ,y 满足约束条件10,20,220,x y x y x y -+⎧⎪-⎨⎪+-⎩≥≤≤则z x y =+的最大值为______.14. 函数sin y x x =的图象可由函数sin y x x =的图象至少向右平移______个单位长度得到.15. 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程式是______. 16. 已知直线30l mx y m ++=:与圆2212x y +=交于,A B 两点,过,A B 分别作l的垂线与x 轴交于,C D两点,若||AB =,则||CD =______. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 前n 项和1n n S a λ=+,其中0λ≠. (Ⅰ)证明{}n a 是等比数列,并求其通项公式; (Ⅱ)若53132S =,求λ.18.(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1~7分别对应年份2008—2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化 处理量.附注:参考数据:719.32i i y ==∑,7140.17i i i t y ==∑0.552.646≈.参考公式:相关系数1()()nii i tt y y r =--=∑ 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为b =121()()()nii i nii tt y y tt ==---∑∑,a y bt =-.19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ∥,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (Ⅰ)证明:MN ∥平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.20.(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥; (Ⅱ)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.21.(本小题满分12分)设函数()cos2(1)(cos 1)f x x x αα=+-+,其中0α>,记|()|f x 的最大值为A . (Ⅰ)求()f x ';(Ⅱ)求A ; (Ⅲ)证明:()2f x A '≤.请考生在第22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4—1:几何证明选讲如图,O 中AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点. (Ⅰ)若2PFB PCD ∠=∠,求PCD ∠的大小;(Ⅱ)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG CD ⊥.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为,sin ,x y αα⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()4ρθπ+= (Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.24.(本小题满分10分)选修4—5:不等式选讲 已知函数()|2|f x x a a =-+. (Ⅰ)当2a=时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.2016年普通高等学校招生全国统一考试(全国新课标卷3)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】易得(][),23,S =-∞+∞,(][)0,23,S T ∴=+∞.【考点】解一元二次不等式,交集 2.【答案】C【解析】易知12i z =-,故14zz -=,4ii 1zz ∴=-. 【考点】共轭复数,复数运算 3.【答案】A【解析一】32cos 11BA BC ABC BA BC ∠===⨯,30ABC ∴∠=.【解析二】可以B 点为坐标原点建立如图所示直角坐标系,易知60ABx ∠=,30CBx ∠=,30ABC ∴∠=.【考点】向量夹角的坐标运算4.【答案】D【解析】从图像中可以看出平均最高气温高于20C 的月份有七月、八月,六月为20C 左右,故最多3个. 【考点】统计图的识别 5.【答案】A【解析】22222cos 4sin cos 14tan 64cos 2sin 2cos sin 1tan 25ααααααααα+++===++. 【考点】二倍角公式,弦切互化,同角三角函数公式6.【答案】A【解析】423324a ==,233b =,1233255c ==,故c a b >>. 【考点】指数运算,幂函数性质 7.【答案】B【考点】程序框图 8.【答案】C【解析】如图所示,可设1BD AD ==,则AB =2DC =,AC ∴=知,cos A =.【考点】解三角形9.【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362354⨯⨯+⨯⨯+⨯+. 【考点】三视图,多面体的表面积 10.【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,如图所示,则由切线长定理可知,内接圆的半径为2,又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为349ππ32R =. 【考点】内接球半径的求法11.【答案】A【解析】易得ON OB aMF BF a c==+,2MF MF AF a c OE ON AO a -===,12a a c a c a c a a c --∴==++,13c e a ∴==.【考点】椭圆的性质,相似12.【答案】C【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列,树状图第Ⅱ卷二、填空题 13.【答案】32【解析】三条直线的交点分别为(2,1)--,11,2⎛⎫⎪⎝⎭,(0,1),代入目标函数可得3-,32,1,故最大值为32. 【考点】线性规划14.【答案】2π3【解析】sin 2sin 3y x x x π⎛⎫==- ⎪⎝⎭,sin 2sin 3y x x x π⎛⎫=+=+ ⎪⎝⎭,故可前者的图像可由后者向右平移2π3个单位长度得到.【考点】三角恒等变换,图像平移15.【答案】210x y ++=【解析一】11()33f x x x-'=+=+-,(1)2f '∴-=,(1)2f '∴=-,故切线方程为210x y ++=.【解析二】当0x >时,()()ln 3f x f x x x =-=-,1()3f x x'∴=-,(1)2f '∴=-,故切线方程为210x y ++=.【考点】奇偶性,导数,切线方程 16.【答案】3【解析】如图所示,作AE BD ⊥于E ,作OF AB ⊥于F,AB =OA =,3OF ∴=,即3=,m ∴=,∴直线l 的倾斜角为30,3CD AE ∴===.【考点】直线和圆,弦长公式 三、解答题17.【答案】(Ⅰ)1n n S a λ=+,0λ≠,0n a ∴≠,当2n ≥时,11111n n n n n n n a S S a a a a λλλλ---=-=+--=-,即1(1)n n a a λλ--=,0λ≠,0n a ≠,10λ∴-≠,即1λ≠,即11n n a a λλ-=-,(2)n ≥,{}n a ∴是等比数列,公比1q λλ=-,当1n =时,1111S a a λ=+=,即111a λ=-,1111n n a λλλ-⎛⎫∴= ⎪--⎝⎭;(Ⅱ)若53132S =,则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-= ⎪-⎝⎭--,1λ∴=-. 【考点】等比数列的证明,由n S 求通项,等比数列的性质18.【答案】(Ⅰ)由题意得123456747t ++++++==,71 1.3317i i y y ==≈∑,7()()0.99nii i itt y y t ynt yr ---===≈∑∑,因为y与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系; (Ⅱ)121()()2.890.10328()nii i ni i tt y y b t t ==--==≈-∑∑, 1.330.10340.92a y bt =-=-⨯≈,所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+,将9t =代入回归方程可得, 1.82y =,预测2016年我国生活垃圾无害化处理量将约为1.82亿吨.【考点】相关性分析,线性回归 19.【答案】(Ⅰ)由已知得223AM AD ==,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN BC ∥,122TN BC ==,又AD BC ∥,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是MN AT ∥,因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB ;(Ⅱ)取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP 为z 轴建立空间直角坐标系,则(0,0,0)A 、(0,0,4)P 、C 、N ⎫⎪⎪⎝⎭()0,2,0M,52AN ⎛⎫∴= ⎪ ⎪⎝⎭,(0,2,4)PM =-,22PN N ⎛⎫=-⎪ ⎪⎝⎭,故平面PMN 的法向量(0,2,1)n =,4cos ,52AN n ∴<>==,∴直线AN 与平面PMN 所成角的正弦值为25.【考点】线面平行证明,线面角的计算20.【答案】(Ⅰ)由题设1,02F ⎛⎫⎪⎝⎭,设1:l y a =,2:l y b =,则0ab ≠,且2,2a A a ⎛⎫ ⎪⎝⎭,2,2b B b ⎛⎫ ⎪⎝⎭,1,2P a ⎛⎫- ⎪⎝⎭,1,2Q b ⎛⎫- ⎪⎝⎭,1,22a b R +⎛⎫- ⎪⎝⎭,记过A ,B 两点的直线为l ,则l 的方程为2()0x a b y ab -++=,由于F 在线段AB 上,故10ab +=,记AR 的斜率为1k ,FQ 的斜率为2k ,则122211a b a b abk b k a a ab a a---=====-=+-,所以AR FQ ∥; (Ⅱ)设l 与x 轴的交点为1(,0)D x ,则1111222ABF S b a FD b a x ∆=-=--,2PQF a bS ∆-=,由题设可得111222a b b a x ---=,所以10x =(舍去),11x =,设满足条件的AB 的中点为(,)E x y ,当AB 与x 轴不垂直时,由AB DE k k =可得2(1)1y x a b x =≠+-,而2a by +=,所以21(1)y x x =-≠,当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为21y x =-. 【考点】抛物线,轨迹方程21.【答案】(Ⅰ)()2sin 2(1)sin f x a x a x '=---;(Ⅱ)当1a ≥时,|()||cos2(1)(cos 1)|2(1)32(0)f x a x a x a a a f =+-+≤+-=-=,因此,32A a =-,当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--,令2()2(1)1g t at a t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a -=,(1)32g a =-,且当14a t a -=时,()g t 取得极小值,极小值为221(1)611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭,令1114a a --<<,解得13a <-(舍去),15a >. ①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-; ②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>; 又1(1)(17)|(1)|048a a a g g a a --+⎛⎫--=> ⎪⎝⎭,所以216148a a a A g a a -++⎛⎫==⎪⎝⎭, 综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩(Ⅲ)由(Ⅰ)得|()||2sin 2(1)sin |2|1|f x a x a x a a '=---≤+-,当105a <≤时,|()|1242(23)2f x a a a A '≤+≤-<-=,当115a <<时,131884a A a =++≥, 所以|()|12f x a A '≤+<,当1a ≥时,|()|31642f x a a A '≤-≤-=,所以|()|2f x A '≤. 【考点】导函数讨论单调性,不等式证明22.【答案】(Ⅰ)连结PB ,BC ,则BFD PBA BPD ∠=∠+∠,PCD PCB BCD ∠=∠+∠,因为AP BP =,所以PBA PCB ∠=∠,又BPD BCD ∠=∠,所以BFD PCD ∠=∠,又180PFD BFD ∠+∠=,2PFB PCD ∠=∠,所以3180PCD ∠=,因此60PCD ∠=;(Ⅱ)因为PCD BFD ∠=∠,所以180PCD EFD ∠+∠=,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上,因此OG CD ⊥. 【考点】几何证明23.【答案】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(Ⅱ)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C 的距离()d α的最小值,()sin()2|3d παα==+-,当且仅当π2π()6k k Z α=+∈时,()d α,此时P 的直角坐标为31,22⎛⎫⎪⎝⎭.【考点】坐标系与参数方程24.【答案】(Ⅰ)当2a =时,()|22|2f x x =-+,解不等式|22|26x -+≤,得13x -≤≤,因此,()6f x ≤的解集为{|13}x x -≤≤;(Ⅱ)当x R ∈时,()()|2||12||212||1|f x g x x a a x x a x a a a +=-++-≥-+-+=-+,当12x =时等号成立,所以当x R ∈时,()()3f x g x +≥等价于|1|3a a -+≥①. 当1a ≤时,①等价于13a a -+≥,无解;当1a >时,①等价于13a a -+≥,解得2a ≥; 所以a 的取值范围是[2,)+∞. 【考点】不等式。
2016年全国卷3理科数学试题及参考标准答案(WORD版)

AB
2 , DC 2 , AC
5 ,由余弦定理知, cos A
259 2 2 5
10 10
【考点】解三角形 (9)如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体的三视图, 则该多面体的表面积为
A. 18 36 5 B. 54 18 5 C. 90 D. 81 【答案】B 【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一 半,各个侧面平行四边形,故表面积为
2 3 3 2 3 6 2 3 9 36 54 18 5
【考点】三视图、多面体的表面积
(10)在封闭的直三棱柱 ABC-A1B1C1 内有一个体积为 V 的球.若 AB⊥BC,AB=6,BC=8,AA1=3,则 V 的最大
值是
A.
4π
B.
9π 2
C. 6π
D.
32π 3
10
【答案】B 6
(5)若
tan
3 4
,则 cos2
2sin 2
A.
64 25
B.
48 25
C. 1
16
D.
25
【答案】A
【解析】 cos2
2sin 2
cos2 4sin cos cos2 sin2
1 1
4 tan tan2
64 25
【考点】二倍角公式、弦切互化、同角三角函数公式
4
2
1
(6)已知 a 23 , b 33 , c 253 ,则
A. 各月的平均最低气温都在 0 C 以上 B. 七月的平均温差比一月的平均温差大 C. 三月和十一月的平均最高气温基本相同 D. 平均最高气温高于 20 C 的月份有5个 【答案】D 【解析】从图像中可以看出平均最高气温高于 20 C 的月份有七月、八
2016年全国卷3理科数学试题及参考答案(WORD版)

2016年全国卷3理科数学试题及参考答案(WORD版)绝密★启封并使用完毕前试题类型:新课标Ⅲ2016年普通高等学校招生全国统一考试理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破,不准使用涂改液、修正液、刮纸刀。
第I卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S T = A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞ D.(][)0,23,+∞【答案】D 【解析】易得(][),23,S =-∞+∞,(][)0,23,ST ∴=+∞,选D【考点】解一元二次不等式、交集(2)若12z i =+,则41izz =- A. 1 B. 1- C. i D. i -【答案】C【解析】易知12z i =-,故14zz -=,41ii zz ∴=-,选C 【考点】共轭复数、复数运算(3)已知向量13,2BA ⎛= ⎝⎭,BC 3,12),则ABC ∠ A. 30° B. 45° C. 60° D.120° 【答案】A 【解析】法一:332cos 11BA BC ABC BA BC ⋅∠===⨯⋅,30ABC ∴∠= 法二:可以B 点为坐标原点建立如图所示直角坐标系,易知60,30,30ABx CBx ABC ∠=∠=∴∠=【考点】向量夹角的坐标运算(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15C ,B 点表示四月的平xyCAB(6)已知4213332,3,25a b c ===,则A.b a c<< B. a b c<< C.b c a<< D.c a b<<【答案】A 【解析】422123333324,3,255a b c =====,故c a b >>【考点】指数运算、幂函数性质 (7)执行右面的程序框图,如果输入的a =4,b =6,那么输出的n = A. 3 B. 4 C. 5 D. 6 【答案】B【解析】列表如下 a 4 2 6 -2 4 2 6 -2 4 b 6 4 6 4 6 s 0 6 10 16 20n1 2 3 4【考点】程序框图 (8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = A.31010 B. 1010C.1010- D.31010-【答案】C【解析】如图所示,可设1BD AD ==,则2AB =,2DC =,5AC ∴=,DCAB由余弦定理知,25910cos 10225A +-==-⨯【考点】解三角形(9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. 18365+B. 54185+ C. 90 D.81【答案】B【解析】由三视图可知该几何体是一个平行六面体,上下底面为俯视图的一半,各个侧面平行四边形,故表面积为2332362393654185⨯⨯+⨯⨯+⨯⨯+=+【考点】三视图、多面体的表面积(10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 A. 4πB.9π2C.6πD.32π3【答案】B【解析】由题意知,当球为直三棱柱的内接球时,体积最大,选取过球心且平行于直三棱柱底面的截面,1086如图所示,则由切线长定理可知,内接圆的半径为2, 又1322AA =<⨯,所以内接球的半径为32,即V 的最大值为34932R ππ=【考点】内接球半径的求法(11)已知O 为坐标原点,F 是椭圆C :22221(0)xy a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E . 若直线BM 经过OE 的中点,则C 的离心率为 A. 13B.12C.23D. 34【答案】A【解析】易得,2ON OB a MF MF AF a cMF BF a c OE ON AO a -=====+12a a c a c a c a a c --∴=⋅=++ 13c e a ∴== 【考点】椭圆的性质、相似(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数,若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个xyO NBEMPAF【答案】C 【解析】011110111010111101001110011110110011101010111001111011001110101⎧⎧→⎧⎪⎪⎪→⎧⎪⎪⎪⎨⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪→⎪⎪⎩⎩⎩⎪⎪⎧→⎪⎨⎧⎪⎪⎪⎪→⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪→⎨⎩⎪⎩⎪⎨⎪→⎪⎧⎪⎪→⎨⎪⎪⎪→⎩⎩⎩⎪⎪⎧→⎧⎪⎪⎪→⎪⎧⎨⎪⎨⎪⎪⎪→→⎨⎩⎩⎪⎪⎪→⎧⎪⎪→⎨⎪→⎪⎩⎩⎩【考点】数列、树状图第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分 (13)设x ,y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则z x y =+的最大值为________. 【答案】32【解析】三条直线的交点分别为()()12,1,1,,0,12⎛⎫-- ⎪⎝⎭,代入目标函数可得33,,12-,故最小值为10-【考点】线性规划(14)函数sin 3cos y x x=的图像可由函数sin 3cos y x x=的图像至少向右平移______个单位长度得到. 【答案】23π 【解析】sin 32sin ,sin 32sin 33y x x x y x x x ππ⎛⎫⎛⎫==-=+=+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到 【考点】三角恒等变换、图像平移(15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处的切线方程是______【答案】210x y ++=【解析】法一:11'()33f x x x -=+=+-,()'12f ∴-=,()'12f ∴=-,故切线方程为210x y ++=法二:当0x >时,()()ln 3f x f x x x =-=-,()()1'3,'12f x f x ∴=-∴=-,故切线方程为210x y ++=【考点】奇偶性、导数、切线方程 (16)已知直线l :330mx y m ++与圆2212xy +=交于,A B 两点,过,A B分别作l 的垂线与x 轴交于,C D 两点,若23AB =||CD =__________. 【答案】3【解析】如图所示,作AE BD ⊥于E ,yFEDCBA作OF AB ⊥于F ,23,23,3AB OA OF ==∴=,即23331m m -=+,3m ∴=∴直线l 的倾斜角为30°3233CD AE ∴=== 【考点】直线和圆、弦长公式三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知数列{}na 的前n 项和S n =1+λa n ,其中λ≠0.(1) 证明{}na 是等比数列,并求其通项公式;(2) 若53132S =,求λ.【答案】(1) ;(2) 【解析】 解:(1) 1,0n n S a λλ=+≠0na ∴≠当2n ≥时,11111nn n n n n n a S S a a a a λλλλ---=-=+--=-即()11nn a a λλ--=,0,0,10,n a λλ≠≠∴-≠即1λ≠ 即()1,21nn an a λλ-=≥-,∴{}na 是等比数列,公比1q λλ=-, 当n =1时,1111S a a λ=+=,即111a λ=-1111n n a λλλ-⎛⎫∴=⋅ ⎪--⎝⎭(2)若53132S=则555111131113211S λλλλλλλ⎡⎤⎛⎫-⎢⎥ ⎪--⎝⎭⎢⎥⎛⎫⎣⎦==-=⎪-⎝⎭--1λ∴=-【考点】等比数列的证明、由nS 求通项、等比数列的性质(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:参考数据:719.32ii y ==∑,7140.17i ii t y ==∑721()0.55ii yy =-∑7参考公式:2211()()()(y y)nii nnii i i tt y y r tt ==--=--∑∑∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,a y bt=-【答案】(1)见解析;(2)0.920.10y t =+,1.82亿吨 【解析】 (1) 由题意得123456747t ++++++==,711.3317ii yy ==≈∑ 711777722221111()()0.99280.55()()()()nii i ii i i i i i i i i i tt y y t ynt yr t t y y t t y y ======---===≈⨯----∑∑∑∑∑∑因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归方程来拟合y 与t 的关系 (2)121()()2.890.10328()nii i nii tt y y b tt ==--==≈-∑∑1.330.10340.92a y bt =-=-⨯≈所以y 关于t 的线性回归方程为0.920.10y a bt t =+=+ 将9t =代入回归方程可得, 1.82y =预测2016年我国生活垃圾无害化处理量将约为1.82亿吨【考点】相关性分析、线性回归(19)(本小题满分12分)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 【答案】(1) 见解析;(2) 8525【解析】(1) 由已知得223AM AD ==,取BP 的中点T ,连接,AT TN ,由N 为PC 中点知//TN BC ,122TN BC ==. ......3分又//AD BC ,故TN 平行且等于AM ,四边形AMNT 为平行四边形, 于是//MN AT . 因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以//MN 平面PAB. ........6分(2) 取BC 中点E ,连接AE ,则易知AE AD ⊥,又PA ⊥面ABCD ,故可以A 为坐标原点,以AE 为x 轴,以AD 为y 轴,以AP为z 轴建立空间直角坐标系, 则()()()()50,0,00,0,45,2,0,1,20,2,02A P CN M ⎛⎫⎪ ⎪⎝⎭、、、、()55,1,2,0,2,4,1,222AN PM PN N ⎛⎫⎛⎫∴==-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故平面PMN 的法向量()0,2,1n =485cos ,552AN n ∴<>==∴直线AN 与平面PMN 8525【考点】线面平行证明、线面角的计算 (20)(本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ; (2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1) 见解析;(2) 21y x =-【解析】 (1)法一:由题设1(,0)2F .设12:,:l y a l y b ==,则0ab ≠,且 22111(,),(,),(,),(,),(,)222222a b a bA aB b P a Q b R +---.记过,A B两点的直线为l,则l的方程为2()0x a b y ab -++=. .....3分由于F 在线段AB 上,故10ab +=.记AR 的斜率为1k ,FQ 的斜率为2k ,则 122211a b a b ab k b k aa a a ab ---=====-=+-. 所以FQ AR ∥. ......5分 法二:证明:连接RF ,PF ,由AP =AF ,BQ =BF 及AP ∥BQ ,得∠AFP +∠BFQ =90°, ∴∠PFQ =90°, ∵R 是PQ 的中点, ∴RF =RP =RQ , ∴△PAR ≌△FAR ,∴∠PAR =∠FAR ,∠PRA =∠FRA ,∵∠BQF +∠BFQ =180°﹣∠QBF =∠PAF =2∠PAR , ∴∠FQB =∠PAR , ∴∠PRA =∠PQF , ∴AR ∥FQ .(2)设l 与x 轴的交点为1(,0)D x ,则1111,2222ABFPQF a b Sb a FD b a x S ∆∆-=-=--=.由题设可得111222a b b a x ---=,所以10x =(舍去),11x =. 设满足条件的AB 的中点为(,)E x y .当AB 与x 轴不垂直时,由ABDEk k =可得2(1)1yx a b x =≠+-.而2a by +=,所以21(1)yx x =-≠.当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为21y x =-. ....12分【考点】抛物线、轨迹方程 (21)(本小题满分12分)设函数()()()cos21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A . (1)求()'f x ; (2)求A ; (3)证明:()'2f x A ≤. 【答案】见解析 【解析】(1) ()()'2sin 21sin f x a x a x =---(2) 当1a ≥时,|()||cos 2(1)(cos 1)|f x a x a x =+-+2(1)a a ≤+-32a =-(0)f = 因此,32A a =-.当01a <<时,将()f x 变形为2()2cos (1)cos 1f x a x a x =+--.令2()2(1)1g t ata t =+--,则A 是|()|g t 在[1,1]-上的最大值,(1)g a-=,(1)32g a =-,且当14at a-=时,()g t 取得极小值, 极小值为221(1)61()1488a a a a g a a a--++=--=-.令1114a a --<<,解得13a <-(舍去),15a >.①当105a <≤时,()g t 在(1,1)-内无极值点,|(1)|g a -=,|(1)|23g a =-,|(1)||(1)|g g -<,所以23A a =-.②当115a <<时,由(1)(1)2(1)0g g a --=->,知1(1)(1)()4ag g g a-->>. 又1(1)(17)|()||(1)|048a a a g g a a--+--=>,所以2161|()|48a a a A g a a-++==.综上,2123,05611,18532,1a a a a A a a a a ⎧-<≤⎪⎪++⎪=<<⎨⎪-≥⎪⎪⎩.(3) 由(1)得'|()||2sin 2(1)sin |2|1|f x a x a x a a =---≤+-. 当105a <≤时,'|()|1242(23)2f x a a a A ≤+≤-<-=. 当115a <<时,131884a A a =++≥,所以'|()|12f x a A ≤+<. 当1a ≥时,'|()|31642f x a a A ≤-≤-=,所以'|()|2f x A ≤.【考点】导函数讨论单调性、不等式证明请考生在22、23、24题中任选一题作答,作答时用2B 铅笔在答题卡上把所选题目题号后的方框涂黑。
2016年全国高考理科数学试题与答案_全国卷3

(D)
(2)若 z=1+2i ,则 4i zz 1
(A)1
(B) -1
(C) i
(D)-i
( - ,2] U [3,+ ) ( 0, 2] U [3,+ )
uuv (3)已知向量 BA
1 (,
2) ,
uuuv BC
(
31 , ),
则
ABC=
22
22
(A)30 0
(B) 45
0
(C) 60
0
(D)120
(A)4π
( B) 9 2
x2 (11)已知 O 为坐标原点, F 是椭圆 C: a2
( C)6π
( D) 32 3
y2 b2 1(a b 0) 的左焦点, A, B 分别为 C
的左, 右顶点 . P为 C上一点, 且 PF⊥ x 轴. 过点 A的直线 l 与线段 PF交于点 M,与 y 轴交于
点 E. 若直线 BM经过 OE的中点,则 C的离心率为
理量。
(19)(本小题满分 12 分) 如图,四棱锥 P-ABCD中, PA⊥地面 ABCD,AD∥BC,AB=AD=A=C3, PA=BC=4, M为线段 AD上 一点, AM=2MD, N为 PC的中点 . (I )证明 MN∥平面 PAB; (II )求直线 AN与平面 PMN所成角的正弦值 .
绝密★启封并使用完毕前
试题类型:
2016 年普通高等学校招生全国统一考试
理科数学
注意事项:
1. 本试卷分第Ⅰ卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分 . 第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至
5 页.
2. 答题前,考生务必将自己的、准考证号填写在本试题相应的位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016全国3卷理科数学压轴题
全国3卷的适用地区是广西、贵州、云南.
本题作为3卷的压轴题,前两问难度适中,都可以得分.所以大家对于压轴题也不要完全放弃,前面2问都可以尝试着做.
第2问有点意思.
按照求最值先求极值的思路去解此问,困难会比较大.
但是,我们仔细观察函数解析式的特点,发现我们能够把这个复杂的函数化为关于余弦的二次函数.
这是化归思想的体现,即把一个陌生的问题转化为熟悉的问题.
下面研究二次函数在闭区间上的最值问题.
首先,我们把这三个函数值算出来.
接下来,要根据对称轴与定义域的关系,研究最值出现的位置.
下面,按照二者可能的大小关系分类讨论.
继续讨论.
为确定哪个为最大值,需要把三个可能的最大值进行比较.
比较大小的最常用方法就是作差法,本题稍显麻烦,因为有三个值需要比较,而且其中一个还有绝对值.
为直观地表示它们的大小,我们采用画函数图象的方法,并辅助一定的运算使得图象精确.
由上图,我们得到如下结论.
综上所述,A的取值如下:
第3问是证明不等式.
观察不等式的两边,都是关于a的表达式,但是左边式子含有x,于是需要用到绝对值不等式和三角函数的有界性.
不等式的证明是需要摸索的,如果放缩的幅度过大,要随时调整.
比较大小时,我们多次用到作差法,这是通法.
还有最后一步讨论.
综上所述,原不等式得证.
体会:借助二次函数、绝对值函数深入地考察了分类讨论思想.我开通了分答,想向我提问且有支付能力的朋友可以使用.。