数学辅助线常用做法(八年级学生适用)

合集下载

初中数学常见辅助线的做法

初中数学常见辅助线的做法

初中数学常见辅助线的做法
初中数学常见辅助线的做法
在初中数学中,辅助线是解题过程中常用的工具。

通过适当地引入辅助线,可以使问题更加清晰明了,从而更容易解决。

本文将介绍几种常见的辅助线做法。

1.平移法
平移法是一种常用的辅助线做法。

它的基本思想是将图形沿某个方向平移,使得问题更加清晰。

例如,在解决一个三角形的问题时,我们可以平移其中的一条边,使得三角形更加规则,从而更容易解决问题。

2.垂线法
垂线法也是一种常用的辅助线做法。

它的基本思想是引入垂线,将原问题转化为更简单的问题。

例如,在解决一个三角
形的问题时,我们可以引入垂线,将三角形分成两个直角三角形,从而更容易解决问题。

3.对称法
对称法是一种常用的辅助线做法。

它的基本思想是通过引入对称轴,将原问题转化为更简单的问题。

例如,在解决一个图形的问题时,我们可以引入对称轴,将图形分成对称的两部分,从而更容易解决问题。

4.相似法
相似法是一种常用的辅助线做法。

它的基本思想是通过找到相似的图形,将原问题转化为更简单的问题。

例如,在解决一个三角形的问题时,我们可以找到一个相似的三角形,从而更容易解决问题。

总之,辅助线是解决初中数学问题的常用工具。

通过灵活运用各种辅助线做法,我们可以更加轻松地解决各种数学问题。

八年级上-常见全等辅助线

八年级上-常见全等辅助线

常见全等辅助线知识集结知识元倍长中线型知识讲解倍长中线型辅助线一般跟中点相关,在初中阶段与中点相关的辅助线大体分成三大类:倍长中线(这里的中线指的是过中点的任意线段)、直角三角形斜边中线、中位线.其中后两种辅助线会在初二下学期的四边形章节中讲到,在此不做过多讲解,本节所讲的中点相关的辅助线主要是倍长中线型辅助线(这里的中线指的是过中点的任意线段),此种模型的本质都是构造“8字型”全等,主要分成三类处理方法:(1)倍长中线型——这里的中线指的是标准的三角形的中线,具体模型如下:已知:点D为AC边的中点作法:延长BD至E,使得DE=BD,连结AE.2.倍长过中点的任意线段型——这里只需要出现中点即可构造,具体模型如下:已知:点D为AC边的中点作法:延长FD至E,使得DE=DF,连结AE.3.平行线构造“8字型”——中点不是三角形的边的中点,具体模型如下:已知:点E为DF的中点作法:过点D作DM//AF,交AC于点M.另外,平行线构造“8字型”的模型还可以有以下两种类型:例题精讲倍长中线型例1.已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.例2.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'例3.'【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.'倍长过中点的任意线段型知识讲解当题目中出现中点,而没有合适的中线可以倍长时,也可以考虑倍长过中点的任意一条线段,构造“8字型”全等.例题精讲倍长过中点的任意线段型例1.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'例2.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'平行线构造“8字型”知识讲解当题目中出现中点,但此中点不是三角形的某条边的中点,只是与三角形某条边有交点时,则可以考虑利用作平行线的方法构造“8字型”的全等.例题精讲平行线构造“8字型”例1.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'例2.'如图,AC∥BD,E为CD的中点,AE⊥BE(1)求证:AE平分∠BAC,BE平分∠ABD;(2)线段AB、AC、BD有怎样的数量关系?请写出你的结论并证明.'例3.'阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.'截长法添加辅助线知识讲解在已知条件中、证明的结论中出现某三条线段,甚至是四条线段的关系时(或者猜想某三条线段的关系时),优先考虑的就是方法就是截长、补短法.截长和补短是两种方法:截长是把长线段截成两条短线段;补短是把两条短线段之一补成一条长线段,两种方法有时候可以通用,但是由于证明方法和已知条件的局限性,有时候会需要学生辨别一下具体使用截长还是补短,所以分析已知条件非常重要.举例说明:1.当三线关系出现在已知条件中,如:已知AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:已知条件“AC=AB+BD”就变成了“AM=AB和CM=BD”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:已知条件“AC=AB+BD”就变成了“AN=AC和BN=BD”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.2.当三线关系出现在待证明的结论中,如:证明AC=AB+BD,则(1)截长法具体操作:在线段AC上截取AM=AB条件转化:待证明的结论“AC=AB+BD”就变成了“CM=BD”,而多出了一个已知条件“AM=AB”【注】当然也可以在线段AC上截取AM=BD,具体截取的方法选择,由题中的其他已知条件决定.(2)补短法具体操作:延长AB至N,使得AN=AC条件转化:待证明的结论“AC=AB+BD”就变成了“BN=BD”,而多出了一个已知条件“AN=AC”【注】当然也可以延长BA、BD、DB,具体延长哪条线段、向哪个方向延长,由题中的其他已知条件决定.例题精讲截长法添加辅助线例1.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'例2.'如图,△ABC中,∠B=60°,∠BAC,∠ACB的平分线AD,CE交于点O,说明AE+CD=AC的理由.'例3.'如图1,△ABC中,∠BAC=90°,∠ABC=45°,点P为△ABC三条平分线的交点,连PA,PB,PC.(1)求证:BC=AB+AP;(2)如图2,若将“∠ABC=45°”变为“∠ABC=60°”,其余条件不变,求证:AC=AB+BP.'补短法添加辅助线知识讲解当题目中出现两条以上的线段的关系时,常会优先考虑截长补短法,其补短法是将某一条短线段补成长线段,再分别证明线段相等.例题精讲补短法添加辅助线例1.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'例2.'(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.求证:EF=BE+FD;(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.'当堂练习填空题已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是.解答题练习1.'如图,△ABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.'练习2.'如图:在△ABC中,点D在AB边上,点E在AC边的延长线上,CE=BD,DG=GE.求证:AB=AC.'如图,AD为△ABC的角平分线,M为BC的中点,ME∥AD交BA的延长线于E,交AC于F.求证:BE=CF.'练习4.'如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,求证:BQ+AQ=AB+BP.'练习5.'如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF.'练习6.'如图,在△ABC中,AB>AC,E为BC边的中点,AD为∠BAC的平分线,过E作AD的平行线,交AB于F,交CA的延长线于G.求证:BF=AC+AF.'练习7.'如图,△ABC中,AB=AC,D在AB上,F在AC的延长线上,且BD=CF,连接DE交BC于E.求证:DE=EF.'练习8.'如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.'练习9.'如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.'练习10.'ABCD是正方形,P为BC上任意一点,∠PAD的平分线交CD于Q,求证:DQ=AP-BP.'练习11.'如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.'练习12.'已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明.'。

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

八年级数学上册第12章三角形中常见辅助线的作法(人教版)

三角形中常见辅助线的作法
1、延长中线构造全等三角形
例1 如图1,已知△ABC中,AD是△ABC的中线,AB=8,AC=6,求AD 的取值范围.
提示:延长AD至A',使A'D=AD,连结BA'.根据“SAS”易证△A'BD≌△ACD,得AC=A'B.这样将AC转移到△A'BA中,根据三角形三边关系定理可解.
2、引平行线构造全等三角形
例2 如图2,已知△ABC中,AB=AC,D在AB上,E是AC延长线上一点,且BD=CE,DE与BC交于点F.
求证:DF=EF.
提示:此题辅助线作法较多,如:
①作DG∥AE交BC于G;
②作EH∥BA交BC的延长线于H;
再通过证三角形全等得DF=EF.
3、作连线构造等腰三角形
例3 如图3,已知RT△ACB中,∠C=90°,AC=BC,AD=AC,DE⊥AB,垂足为D,交BC于E.
求证:BD=DE=CE.
提示:连结DC,证△ECD是等腰三角形.
4、利用翻折,构造全等三角形.
例4 如图4,已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D.求证:AC=AB+BD.
提示:将△ADB沿AD翻折,使B点落在AC上点B'处,再证BD=B'D =B'C,易得△ADB≌△ADB',△B'DC是等腰三角形,于是结论可证.
5、作三角形的中位线
例5 如图5,已知四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线交EF的延长线于点M、N.求证:∠BME=∠CNE.提示:连结AC并取中点O,再连结OE、OF.则OE∥AB,OF∥CD,故∠1=∠BME,∠2=∠CNE.且OE=OF,故∠1=∠2,可得证.。

初二数学辅助线常用做法及例题(含答案)

初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

八年级数学常用辅助线添加方法 ~ 截长补短法.doc

八年级数学常用辅助线添加方法 ~ 截长补短法.doc

八年级数学常用辅助线添加方法 ~ 截长补短法一、截长补短法:题目中出现线段之间的和差倍分时,考虑截长补短;截长补短的目的是把几条线段之间的数量关系转换为两条线段的等量关系。

二、典型例题:例题1、如图,在△ABC 中,∠1 = ∠2 ,∠B = 2∠C ,求证:AC = AB + BD图1证明:(截长法)如图,在线段AC 上截取AE = AB ,连接DE图2∵AB = AE , ∠1 = ∠2 ,AD = AD∴△ABD ≌△AED∴BD = ED , ∠B = ∠AED , AB = AE∵∠B = 2∠C ∴∠AED = 2∠C = ∠EDC + ∠C∴∠EDC = ∠C ∴ED = EC (等角对等边)∵AC = AE + EC∴AC = AB + BD (等量代换)例题2、如图,在正方形ABCD 中,E , F 分别为DC ,BC 边上的点,且∠EAF = 45°,连接EF 。

求证:EF = BF + DE 。

图3证明:(补短法)如图,将DE 补在FB 的延长线上,使BG = DE , 连接AG图4∵在正方形ABCD 中有AD = AB , ∠D = ∠ABG = 90°,DE = BG∴△ADE ≌△ABG ∴∠1 = ∠2 ,AE = AG∵∠EAF = 45°∠1 + ∠3 + ∠EAF = ∠DAB = 90°∴∠1 + ∠3 = ∠2 + ∠3 = ∠GAF = 45° = ∠EAF∵AE = AG , ∠EAF = ∠GAF ,AF = AF∴△EAF ≌△GAF ∴EF = GF∵GF = BF + BG = BF + DE∴EF = BF + DE例题3、如图,在△ABC 中,∠A = 90°,AB = AC ,BD 平分∠ABC ,CE⊥BD 交BD 的延长线于点E 。

求证:CE = 1/2 BD 。

图5证明:如图,延长CE 交BA 的延长线于点F图6∵CE⊥BE ∴∠BEC = ∠BEF = 90°∵BD 平分∠ABC ∴∠1 = ∠2∴△BEC ≌△BEF ∴EC = EF∵∠1 + ∠ADB = ∠3 + ∠EDC ,∠ADB = ∠EDC (对顶角相等)∴∠1 = ∠3∵AB = AC , ∠BAD = ∠CAF = 90°,∠1 = ∠3∴△ABD ≌△ACF ∴BD = CF = 2 CE即CE = 1/2 BD三、拓展提高(作业题)例题4、如图,在△ABC 中,AM 是BC 边上的中线。

【强烈推荐】八年级数学三角形辅助线大全(精简、全面) (1)

【强烈推荐】八年级数学三角形辅助线大全(精简、全面) (1)

三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。

北师大版八年级下册数学:等腰三角形常见辅助线作法总结(超详细,经典!!!)

北师大版八年级下册数学:等腰三角形常见辅助线作法总结(超详细,经典!!!)

等腰三角形常见辅助线做法总结一、常见辅助线添加方法Ⅰ利用等腰三角形“底边上的高、底边上的中线、顶角的平分线”相互重合解题.1.有底边中点时常连接底边上的中线⑴如图,△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.⑵如图,△ABC中,AB=AC,D是BC的中点,过A的直线EF∥BC,且AE=AF.求证:DE=DF.⑶如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BD=CF,BE=CD,G是EF的中点,求证:DG⊥EF.2.遇到等腰常作高⑷如图,△ABC中,2AB=AC,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.⑸如图,点D、E分别在BA、AC的延长线上,且AB=AC、AD=AE,求证:DE⊥BC.Ⅱ利用平行线构造等腰三角形3.遇到等腰常平移腰构造等腰三角形⑹如图,△ABC中,AB=AC,D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF.4.遇到等腰常平移底构造等腰三角形⑺如图,△ABC中,AB=AC,E在AC上,点D在BA的延长线上,且AD=AE,连DE,求证:DE⊥BC.5.利用“角平分线+平行线”构造等腰三角形⑻如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F,求证:AB=EF.Ⅲ折半加倍方法处理二倍角问题6.作二倍角的平分线构造筀等腰三角形7.将小角加倍成和大角相等构造等腰三角形8.构造等腰三角形,使二倍角是这个等腰三角形顶角的外角(9) 如图,在△ABC中,∠ACB=2∠ABC,求证:2AC>AB.(10)如图,在△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC (用两方法).Ⅳ线段的截长补短法9.当已知或求证中有一条线段大于另一条线段时可考虑截长补短法(11) 如图,在△ABC中,AB>AC,求证:∠ACB>∠B.10.当已知线段或求证中涉及线段的和(差)问题时可考虑截长补短法(12) 如图,△ABC是等边三角形,D是△ABC外一点,且∠BDA=∠ADC=60°,求证:BD+CD=AD.(13) 如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠D AB的度数.(用两种方法)(14) 如图在△ABC中,∠BAC=108°,AB=AC,BD平分∠ABC,交AC于D,求证:BC=CD+AB.(用两种方法)二、等腰三角形综合训练1.如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,则∠CBD= 度.2.如图,已知等边△ABC,D在BC延长线上,CE平分∠ACD,且CE=BD,求证:△ADE是等边三角形.3.如图,已知AD 平分∠BAC ,CE ⊥AD 交AB 于D , EF ∥BC 交AC 于F ,求证:EC 平分∠DEF .4.如图,∠AOB =30°,OC 平分∠AOB ,P 为OC 上任一点,PD ∥OA 交OB 于D ,PE ⊥OA 于E ,OD =6,求PE 的长.5.如图,AB =AC ,AB 的垂直平分线交AC 于D 点,若AD =BC ,(1)求∠A BC ;(2)若点E 在BC 的延长线上,且CE=CD ,连AE ,求∠CAE .6.如图,已知等边△ABC ,D 在AC ,延长BC 至E ,使CE =CD ,若 DE =BD ,给出下列结论:①BD 平分∠ABC ;②AB AD 21=;③BC CE 21=;④∠A =2∠E .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个7.已知,AB =BC ,BD =BE ,∠ABC =∠DBE =α,M 、N 分别是AD 、CE 的中点.(1)如图①,若α=60°,求∠BMN ;(2)如图②,若α=90°,求∠BMN= ;(3)将图②的绕B 点逆时针旋转一锐角,在图③中完成作图,则∠BMN= .。

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)

人教版八年级数学全等三角形中的常见辅助线(举一反三)(含解析)本文介绍了全等三角形中的常见辅助线,包括角分线上点向角两边作垂线和截取法构全等两种方法。

第一种方法是过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

举例来说,已知BP平分∠ABC,PD⊥BC于D,BF+BE=2BD,要求证∠BFP+∠BEP=180°。

另外,还有一些变式题,例如已知∠AOB=90°,OM是∠AOB的平分线,将三角板的直角顶点P在射线OM上滑动,两直角边分别与OA、OB交于C、D,要求解出PC和PD之间的数量关系。

第二种方法是利用对称性,在角的两边截取相等的线段,构造全等三角形。

例如,在四边形ABCD中,BC>BA,∠A+∠C=180°,且∠C=60°,BD平分∠ABC,要求证BC=AB+DC。

还有一些变式题,例如已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,要求判断BE,CD,BC的数量关系。

本文还提到了一些其他问题,例如在△ABC中,∠XXX是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,要求判断FE与FD之间的数量关系。

此外,还有一些类似的变式题,需要读者自行思考和解答。

需要注意的是,本文中有一些格式错误和明显有问题的段落需要删除,同时每段话也需要进行小幅度的改写,以使其更加准确、清晰和易于理解。

在△ABC中,通过截取AE=AC的方式,连接DE,得到△ADE≌△ADC。

因此,我们可以证明XXX。

对于图②,我们知道AD是△ABC的外角∠CAE的平分线,交BC的延长线于点D,且∠D=25°。

我们需要求解∠B的度数。

对于△XXX,我们可以通过以下方式求解∠B的度数:∠B+∠C+∠A=180°。

因为∠C=2∠B,所以∠A=180°-3∠B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

规律1.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.例:如图,以下三种情况请同学们自己证明.规律2. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 =∠4,求证:BE +CF >EF规律3. 在三角形中有中线时,常等倍延长中线构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD规律4. 当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用截长补智短法: ①a>b ②a±b = c ③a±b = c±d截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法. 例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PCMABC D E F12345 12E DC B AP12NCBAA B21PH G FE D B C A H GFE D B C A H GFE D BC AE F D C B A 练习:1.已知,在△ABC 中,∠B = 60o,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD 2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4.求证:BC = AB +CD规律5.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个角相等.例:已知,如图Rt △ABC 中,AB = AC ,∠BAC = 90o,过A 作任一条直线AN ,作BD ⊥AN 于D ,CE ⊥AN 于E ,求证:DE = BD -CE规律6.连接四边形的对角线,把四边形问题转化成三角形来解决问题. 例:已知,如图,AB ∥CD ,AD ∥BC 求证:AB = CD练习:已知,如图,AB = DC ,AD = BC ,DE = BF ,求证:BE = DF规律7.有和角平分线垂直的线段时,通常把这条线段延长。

可归结为“角分垂等腰归”.例:已知,如图,在Rt △ABC 中,AB = AC ,∠BAC = 90o,∠1 = ∠2 ,CE ⊥BD 的延长线于E求证:BD = 2CE321NED C B A4321D CB A 1EFDA 4321EDCB A已知,如图,∠ACB = 3∠B ,∠1 =∠2,CD ⊥AD 于D ,求证:AB -AC = 2CD规律33.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题.例:已知,如图,∠1 = ∠2 ,P 为BN 上一点,且PD ⊥BC 于D ,AB +BC = 2BD ,求证:∠BAP +∠BCP = 180oo练习:1.已知,如图,PA 、PC 分别是△ABC 外角∠MAC 与∠NCA 的平分线,它们交于P ,PD ⊥BM 于M ,PF ⊥BN 于F ,求证:BP 为∠MBN 的平分线2. 已知,如图,在△ABC 中,∠ABC =100o ,∠ACB = 20o,CE 是∠ACB 的平分线,D 是AC 上一点,若∠CBD = 20o,求∠CED 的度数。

规律34.有等腰三角形时常用的辅助线 ⑴作顶角的平分线,底边中线,底边高线 例:已知,如图,AB = AC ,BD ⊥AC 于D ,求证:∠BAC = 2∠DBC⑵有底边中点时,常作底边中线F M NP BADCE DC B A 21DA21DCB A N PE D C BA 21例:已知,如图,△ABC 中,AB = AC ,D 为BC 中点,DE ⊥AB 于E ,DF ⊥AC 于F ,求证:DE = DF规律39.当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题.例:已知,如图,在△ABC 中,∠A = 90o,DE 为BC 的垂直平分线求证:BE 2-AE 2 = AC 2EDCBA练习:已知,如图,在△ABC 中,∠BAC = 90o,AB = AC ,P 为BC 上一点 求证:PB 2+PC 2= 2PA 2规律40.条件中出现特殊角时常作高把特殊角放在直角三角形中.例:已知,如图,在△ABC 中,∠B = 45o,∠C = 30o,AB =2,求AC 的长.规律41.平行四边形的两邻边之和等于平行四边形周长的一半.例:已知,□ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△BOC的周长多8cm ,求这个四边形各边长.FE DC B ADCB APCBA规律42.平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.(例题如上)规律43.有平行线时常作平行线构造平行四边形例:已知,如图,Rt △ABC ,∠ACB = 90o,CD ⊥AB 于D ,AE 平分∠CAB 交CD 于F ,过F作FH ∥AB 交BC 于H 求证:CE = BH练习:已知,如图,AB ∥EF ∥GH ,BE = GC 求证:AB = EF +GH规律44.有以平行四边形一边中点为端点的线段时常延长此线段. 例:已知,如图,在□ABCD 中,AB = 2BC ,M 为AB 中点求证:CM ⊥DM规律45.平行四边形对角线的交点到一组对边距离相等. 如图:OE = OF规律46.平行四边形一边(或这边所在的直线)上的任意一点与对边的两个端点的连线54321PHF E D CB AG HFE B A C321NM B A D CF E O D CB A所构成的三角形的面积等于平行四边形面积的一半.如图:S △BEC =12S □ABCD规律47.平行四边形内任意一点与四个顶点的连线所构成的四个三角形中,不相邻的两个三角形的面积之和等于平行四边形面积的一半. 如图:S △AOB + S △DOC = S △BOC +S △AOD =12S □ABCD规律48.任意一点与同一平面内的矩形各点的连线中,不相邻的两条线段的平方和相等.如图:AO 2+OC 2 = BO 2+DO 2规律49.平行四边形四个内角平分线所围成的四边形为矩形. 如图:四边形GHMN 是矩形规律50.有垂直时可作垂线构造矩形或平行线. 例:已知,如图,E 为矩形ABCD 的边AD 上一点,且BE = ED ,P 为对角线BD 上一点,PF ⊥BE 于F ,PG ⊥AD 于G 求证:PF +PG = AB规律51.直角三角形常用辅助线方法:⑴ 斜边上的高例:已知,如图,若从矩形ABCD 的顶点C 作对角线BD 的垂线与∠BAD 的平分线交于点NP H G FE D C B A EDCBAODC BANMHGD CBA A DC B O O B CD AE 求证:AC = CE⑵ 斜边中线,有斜边中点时常作斜边中线:例:已知,如图,AD 、BE 是△ABC 的高, F 是DE 的中点,G 是AB 的中点 求证:GF ⊥DE规律52.正方形一条对角线上一点到另一条对角线上的两端距离相等.例:已知,如图,过正方形ABCD 对角线BD 上一点P ,作PE ⊥BC 于E ,作PF ⊥CD 于F求证:AP = EF规律53.有正方形一边中点时常取另一边中点. 例:已知,如图,正方形ABCD 中,M 为AB 的中点,MN ⊥MD ,BN 平分∠CBE 并交MN 于N求证:MD = MN注意:把M 改为AB 上任一点,其它条件不变,结论仍然成立。

练习:已知,Q 为正方形ABCD 的CD 边的中点,P 为CQ 上一点,且AP = PC +BC 求证:∠BAP = 2∠QAD GOF ED CBAGFE D C B AP F ED CB A21P N M ED CB A Q P DC BA规律54.利用正方形进行旋转变换旋转变换就是当图形具有邻边相等这一特征时,可以把图形的某部分绕相等邻边的公共端点旋转到另一位置的引辅助线方法.旋转变换主要用途是把分散元素通过旋转集中起来,从而为证题创造必要的条件.旋转变换经常用于等腰三角形、等边三角形及正方形中.例:已知,如图,在△ABC 中,AB = AC ,∠BAC = 90o,D 为BC 边上任一点求证:2AD 2 = BD 2+CD 2证明:把△ABD 绕点A 逆时针旋转90o得△ACE∴BD = CE ∠B = ∠ACE∵∠BAC = 90o∴∠DAE = 90o∴DE 2 = AD 2+AE 2 = 2AD 2∵∠B +∠ACB = 90o∴∠DCE = 90o∴CD 2+CE 2= DE 2∴2AD 2 = BD 2+CD 2注意:把△ADC 绕点A 顺时针旋转90o也可,方法同上。

练习:已知,如图,在正方形ABCD 中,E 为AD 上一点,BF 平分∠CBE 交CD 于F求证:BE = CF +AE规律55.有以正方形一边中点为端点的线段时,常把这条线段延长,构造全等三角形. 例:如图,在正方形ABCD 中,E 、F 分别是CD 、DA 的中点,BE 与CF 交于P 点求证:AP = ABE DC B AF E D C B A21K P F E D C B A练习:如图,在正方形ABCD中,Q在CD上,且DQ = QC,P在BC上,且AP = CD+CP 求证:AQ平分∠DAP规律63.任意四边形的对角线互相垂直时,它们的面积都等于对角线乘积的一半. 例:已知,如图,梯形ABCD中,AD∥BC,AC与BD交于O,且AC⊥BD,AC = 4,BD = 3.4, 求梯形ABCD的面积.ODCBA规律72.等腰梯形的对角线互相垂直时,梯形的高等于两底和的一半(或中位线的长). 以上各规律请同学们自己证明.规律73.等腰梯形的对角线与底构成的两个三角形为等腰三角形.例:已知,如图,等腰梯形ABCD中,AB∥CD,AB>CD,AD = BC,对角线AC、BD相交于O,∠AOB = 60o,且E、F、M分别为OD、OA、BC的中点求证:△MEF是等边三角形规律74.如果矩形对角线相交所成的钝角为120o,则矩形较短边是对角线长的一半. 例:已知,四边形ABCD为矩形,对角线AC、BD相交于点O,∠AOB = 120O.求证:AB =12 BD(证明略)QPDCBAMOFED CBAODCBA规律75.梯形的面积等于一腰的中点到另一腰的距离与另一腰的乘积. 例:已知,如图,梯形ABCD 中,AD ∥BC ,E 为CD 中点,EF ⊥AB 于F求证:S 梯形ABCD = EF ·AB规律76.若菱形有一内角为120o ,则菱形的周长是较短对角线长的4倍.例:已知,四边形ABCD 是菱形,∠ABC=120O.求证:AB = BD(证明略)模型2、角平分线+平行=等腰三角形如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,当∠A 的位置及大小变化时,线段EF 和BE+CF 的大小关系( B ).(A )EF>BE+CF (B )EF=BE+CF (C )EF<BE+CF (D )不能确定 模型8三个非负量初中阶段学过三个非负量:平方数,绝对值,算术平方根。

相关文档
最新文档