分式通分练习题及答案

合集下载

分式通分测试题及答案

分式通分测试题及答案

分式通分测试题及答案一、选择题1. 下列哪个选项是正确的通分结果?A. \(\frac{1}{2} = \frac{3}{6}\)B. \(\frac{1}{3} = \frac{2}{6}\)C. \(\frac{1}{4} = \frac{3}{12}\)D. \(\frac{1}{5} = \frac{2}{10})2. 如果要将 \(\frac{2}{5}\) 和 \(\frac{3}{7}\) 通分,正确的通分母应该是多少?A. 35B. 15C. 70D. 10二、填空题1. 将 \(\frac{1}{6}\) 和 \(\frac{2}{9}\) 通分后,它们的通分母是 ________。

2. 通分后,\(\frac{1}{3}\) 和 \(\frac{1}{4}\) 的分子分别是________ 和 ________。

三、计算题1. 计算并简化以下表达式:\(\frac{2}{3} + \frac{1}{6}\)2. 将 \(\frac{5}{8}\) 和 \(\frac{7}{12}\) 通分后,求它们的和。

四、解答题1. 解释什么是通分,并给出一个例子。

2. 如果你有两个分数,它们的分母是互质的,通分时需要注意什么?答案:一、选择题1. C2. A二、填空题1. 182. 4, 3三、计算题1. \(\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}\)2. \(\frac{5}{8} = \frac{15}{24}\), \(\frac{7}{12} =\frac{14}{24}\), 通分后和为 \(\frac{15}{24} + \frac{14}{24} = \frac{29}{24}\)四、解答题1. 通分是将两个或多个分数转换为具有相同分母的过程,这样便于进行加减运算。

例如,\(\frac{1}{2}\) 和 \(\frac{1}{3}\) 通分后可以变为 \(\frac{3}{6}\) 和 \(\frac{2}{6}\)。

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练题一、单选题1.下列分式中,不论$x$取何值,一定有意义的是()frac{x-1}{x-1}\cdot\frac{x+1}{x-1}$A。

$\frac{x+1}{x}$B。

$x$C。

$\frac{x^2-1}{x}$D。

$\frac{x^2+1}{x}$2.下列代数式中,是分式的为()A。

$\frac{1}{2}$B。

$\frac{x}{3}$C。

$\frac{x}{2}-y$D。

$\frac{5}{x^3}$3.下列各式中,是分式的是()A。

$\frac{2x+1}{x(x-3)}$B。

$2$C。

$\frac{x}{\pi-2}$D。

$\frac{1}{3x^2}$4.当分式$\frac{x}{2x-1}$无意义时,$x$的值是()A。

$2$B。

$-\frac{1}{2}$C。

$0$D。

$1$5.下列各式正确的是()A。

$\frac{b+xa}{b+x}=\frac{a}{b+1}$B。

$\frac{y^2n}{n-ax}=\frac{y}{x^2}$C。

$\frac{n}{ma}=\frac{1}{a}$($a\neq 0$)D。

$m=m-a$6.下列三个分式$\frac{1}{2x^2}$,$\frac{4(m-n)}{3x}$,$\frac{2x+4x^2y}{x^2-1}$,的最简公分母是()A。

$4(m-n)x$B。

$2(m-n)x^2$C。

$\frac{1}{4}x^2(m-n)$D。

$4(m-n)x^2$7.计算$\frac{(x+y)^2-(x-y)^2}{4xy}$的结果为()A。

$1$B。

$\frac{1}{2}$C。

$\frac{1}{4}$D。

$0$8.下列分式:$\frac{3x}{-x^2}$,$\frac{x-y}{x^2+y^2}$,$\frac{x+y}{xy+x}$,$\frac{2x+4x^2y}{x^2-1}$,其中是最简分式的有()A。

精选)分式的通分专项练习题

精选)分式的通分专项练习题

精选)分式的通分专项练习题分式的通分专项练(正)一、填空:1、$\frac{x+1}{5x-2}$;$\frac{-2}{2}$的最简公分母是$\boxed{10}$;2、$\frac{x+y}{x-1};\frac{2x-y}{x-y+1}$的最简公分母是$\boxed{(x-1)(x-y+1)}$;3、$\frac{4x^3+2x^2y+3xy^2}{3x}$的最简公分母是$\boxed{3x^2y}$;4、$\frac{4x^3+2x^2y+3xy^2}{3x}$中的$x$和$y$的值都扩大5倍,那么分式的值为$\boxed{\frac{20x^3+50x^2y+75xy^2}{15x}}$。

2、如果把分式$\frac{a}{b}$扩大5倍;缩小5倍;不改变;扩大25倍,分式变成$\boxed{\frac{5a}{5b}}$、$\boxed{\frac{a}{5b}}$、$\boxed{\frac{a}{b}}$、$\boxed{\frac{25a}{25b}}$。

5、将$\frac{5a}{23}$和$\frac{6a}{2b}$通分后最简公分母是$\boxed{46b}$,分别变为$\boxed{\frac{10ab}{46b}}$和$\boxed{\frac{69a}{46b}}$。

二、通分1、$\frac{x}{11}+\frac{14a}{3c};\frac{4x-1}{2x-1}+\frac{x+5}{x}$;2、$\frac{2}{3x}+\frac{4}{x+2};\frac{3}{x-1}+\frac{1}{2x+1}$;3、$\frac{2}{x+1}-\frac{1}{x-1};\frac{x}{x-3}-\frac{2}{x+2}$;4、$\frac{5}{2x-3}+\frac{5}{3x+5};\frac{2}{x-1}-\frac{3}{x}$;5、$\frac{1}{x+y}-\frac{1}{x-y};\frac{a(x-y)}{2x+y}-\frac{b(y-x)}{2x+y}$;6、$\frac{x-y}{2x+ya}-\frac{x+y}{2x-ya};\frac{a}{x-1}-\frac{b}{a^2-b^2}$;7、$\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1};\frac{2}{x}+\frac{ 3}{y}+\frac{5}{z}$;8、$\frac{1}{(x-1)^2}+\frac{1}{(x-1)(x+1)};\frac{1}{x-1}-\frac{1}{x+1}$;9、$\frac{1}{x-y}+\frac{1}{x+y};\frac{1}{x-1}-\frac{b}{a^2-b^2}$;10、$\frac{1}{a+b}+\frac{1}{a-b};\frac{x}{x-1}-\frac{y}{a^2-b^2}$;11、$\frac{1}{x^2}+\frac{1}{x(x+2)}+\frac{1}{(x+2)^2};\frac{1}{x-2}-\frac{1}{x+2}$;12、$\frac{x}{x-1}-\frac{x-2}{x+1}+\frac{2}{x^2-1};\frac{1}{x-2}+\frac{1}{x+2}-\frac{2}{x^2-4}$;13、$\frac{1}{(x-1)(x+1)}+\frac{1}{(x+1)(x+3)}+\frac{1}{(x+3)(x-1)};\frac{x}{x-1}-\frac{x}{x+1}+\frac{2}{x^2-1}$;14、$\frac{2x-4}{2x^2-2x}+\frac{3x-5}{2x^2-3x+1};\frac{2}{x}-\frac{1}{x-2}+\frac{3}{x^2-x}$;15、$\frac{a}{a^2-1}+\frac{a}{a^2-4}+\frac{a}{a^2-9};\frac{1}{a-1}+\frac{1}{a+1}+\frac{2}{a-3}$;16、$\frac{x^2-4x+3}{(x-1)^2}+\frac{x^2-1}{(x-1)(x+1)}+\frac{x^2+2x+1}{(x+1)^2};\frac{1}{x-1}+\frac{1}{x+1}$。

通分的练习题带答案

通分的练习题带答案

通分的练习题带答案通分是数学中的一个基本概念,它在分数的加减乘除以及方程的解等计算中起着重要的作用。

今天我们来练习一些通分的题目,并附上答案。

1. 计算下列各题:a) $ \frac{3}{4} + \frac{5}{6} $b) $ \frac{2}{3} - \frac{1}{5} $c) $ \frac{5}{8} \times \frac{3}{5} $d) $ \frac{7}{9} \div \frac{4}{5} $2. 解答下列问题:a) 一块长方形巧克力被分成了2/3和1/4两部分,先吃掉2/3部分后,再吃掉1/4部分,还剩下多少?b) 阿明在1/2小时内跑了3/4英里的路程,他以这个速度跑1小时可以跑多少英里?c) 小明有5/6千克苹果,他把它平均分成6份,每份有多少千克?答案:1.a) 通分得 $ \frac{9}{12} + \frac{10}{12} = \frac{19}{12} $b) 通分得 $ \frac{10}{15} - \frac{3}{15} = \frac{7}{15} $c) 通分得 $ \frac{15}{40} \times \frac{24}{40} = \frac{360}{1600} = \frac{9}{40} $d) 翻转除数,得 $ \frac{7}{9} \times \frac{5}{4} = \frac{35}{36} $2.a) 通分得 $ \frac{2}{3} + \frac{1}{4} = \frac{8}{12} + \frac{3}{12} = \frac{11}{12} $,剩下的部分为 $ 1 - \frac{11}{12} = \frac{1}{12} $。

b) 将1/2小时转化成30分钟,运用单位比例关系,得 $ \frac{3}{4} \times \frac{2}{1} = \frac{6}{4} = \frac{3}{2} $ 英里/小时。

通分练习题50以及答案

通分练习题50以及答案

通分练习题50以及答案朔州市怀仁县吴家窑寄宿制学校教师王存祥一、填一填。

1、把的分数分别化成和原来分数的的分数叫通分。

、3和5的最小公倍数是;6和9的最小公倍数是。

3、2/5=/10=/15=/20=10/4、通分的一般方法是:先求原来几个分母的的最小公倍数,然后把各分数分别化成用这个最小公倍数作的分数。

5、带分数在通分时,只通分部分,部分仍然作新分数的部分。

二、判断题。

1、约分时,每个分数越约越小。

2、通分时,分子、分母都变大了,因此分数值也变大了。

3、通分时,要先求几个分数的最小公倍数。

4、通分和约分的根据是分数的基本性质。

5、通分时最好选这两个分数的最大公因数作它们的公分母。

=>四、写出每组分数的公分母。

= >7135351 和和和和 10346896五、把下面各组分数通分。

12337215337和和和、和和和 16478810346521285728和、和 9133926六、在O里填上“>”、“<”或“=”。

41711223275751○ ○○ ○○○728142853431683737913○○ 1061624七、解决问题。

1、把一堆萝卜平均分给小兔子。

不论分给8只小兔子,还是分给12只小兔子都正好分完。

这堆萝卜至少有多少个?332、如果a,b只有公因数1和通分。

ab13、张叔叔和王叔叔参加了工厂的技能比赛。

张叔叔加工完所有零件的时,王叔叔加工24了所有零件的 ,在这段时间里,谁的成绩更好一些?574234、一块?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说兀渲?种西红柿,种黄瓜,种茄子,哪种菜的占地面积最多?01560125、修一条路,甲工程队用了2小时,乙工程队用了1 小时,哪个工程队干得快一些?316小时,3113王师傅用了小时,小时,把他们三人完工所用时间按从长到短的顺序依次3010排列起来。

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)

初中数学分式的约分通分综合练习题(附答案)初中数学分式的约分通分综合练习题一、单选题1.下列分式中,不论x 取何值,一定有意义的是( ) A.11x x -+ B.1x x - C.211x x +- D.211x x -+2.下列代数式中,是分式的为() A.12 B. 3x C. 2xy - D.5x3.下列各式中,是分式的是( ) A.213x x +- B.2x C.π2x- D.213x4.当分式21xx -无意义时,x 的值是( ) A.12 B.12- C.0 D.15.下列各式正确的是( ) A.11b x ab x b ++=++ B.22y y x x = C.(0)n naa m ma =≠ D.n n am m a -=-6.下列三个分式21513,,24()x x m n x --,的最简公分母是( )A.()4m n x -B.()22m n x -C.()214x m n - D.()24m n x -7.计算()()224x y x y xy +--的结果为( ) A.1 B.12 C.14 D.08.下列分式:22226,,,3xy y x x y x x y x y --+-+2221,2421xy xx x x y x x +-+++,其中是最简分式的有( )A.1个B.2个C.3个D.4个9.分式11x --可变形为( ) A.11x - B.11x + C.11x -+ D.11x --10.将分式2x yx y +中,x y 的值同时扩大为原来的3倍,则分式的值( )A.扩大3倍B.缩小为原来的19C.缩小为原来的13D.不变 11.下列约分正确的是() A.632a a a = B. a x a b x b +=+ C. 22a b a b++ D. 1x y x y --=-+ 12.在下面的分式变形时,不正确的是()A. a a b b -=- B.a a b b -=-- C. a a b b =-- D. a a b b--= 13.下列分式是最简分式的是( ) A.24xy x B.426x - C.33x + D.22x y x y -- 14.在下列分式:①223a a ++②22a b a b --③412()a a b -④12x -中,最简分式的个数为( ) A.1B.2C.3D.4 15.分式223a a b-的分母经过通分后变成()()22a b a b -+那么分子应变为( ) A.()()26a a b a b -+ B.()2a b -C.()6a a b -D..()6a a b + 16.如果把分式2y x y+中x 和y 都扩大2倍,那么分式的值() A.不变 B.缩小12C.扩大2倍D.扩大4倍 17.下列各式变形正确的是( ) A.2121a a=++ B.21111a a a +=++ C.x y x y x y y x-++=-- D.2111a a a -=-+ 18.计算22()()4x y x y xy+--的结果为()A.1B. 12C. 14D.0 19.下列各式从左到右的变形一定正确的是( ) A.22222439x x y y= B.2233c c a b a b=-++ C.x y y x x y y x--=++ D.2x x y xy y y y y ?==? 20.若,x y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( ) A.2x x y +- B.22y x C.3223y x D.222()y x y - 二、解答题21.先化简,在求值:22344(2)x xy y x y -+-其中2,3x y =-= 三、计算题22.已知分式2321x x --,求: (1)当x 为何值时,此分式有意义;(2)当x 为何值时,此分式无意义.23.先约分,再求值:32322444a ab a a b ab --+,其中12,2a b ==-. 四、填空题24.分式31x a x +-中,当x a =-时,下列结论正确的是 .(填序号) ①分式的值为零;②分式无意义;③若13a ≠-,分式的值为零;④若13a ≠分式的值为零. 25.在式子231235,,,π46xy abc a x +10,,978x y x y++中,分式有个. 26.化简:22211x x x x x x+++-=+ . 27.将分式,32b ab a c-通分,依次为 .28.化简:22x y y x -=- . 29.分式322312,,,32x a m n x x a b m n x ++-+-中,最简分式的个数是 . 30.不改变分式的值,把分式0.10.20.3x y y ++的分子、分母各项系数都化为整数为 . 31.分式2213,,ab a b abc的最简分母是 . 32.分式22,b a b a ab a ab ---+的最简公分母是 . 33.对分式2333123,,234a bc ab a bc进行通分,它们的最简公分母为 . 参考答案1.答案:D解析:选项A ,当1x =-时,11x x -+没有意义选项B ,当0x =时,1x x-没有意义选项C ,当1x =±时,211x x +-没有意义选项D ,分母21x +恒大于0. 2.答案:D 解析:选项A 中,12是单项式,属于整式;选项B 中,3x 是单项式,属于整式;选项C 中,2x y -分母中不含字母,是整式;选项D 中,5x 分母中含有字母,是分式 3.答案:A 解析:212π23x x x -,,的分母中均不含有字母,因此它们是整式,而不是分式;213 x x +-的分母中含有字母,因此是分式.故选A.4.答案:A 解析:分式21x x -无意义,210x ∴-=,解得12x =.故选A 5.答案:C解析:根据分式的基本性质来判别,只有选项C 是正确的故选C.6.答案:D 解析:分式21513,,24()x x m n x--的分母分别是()224,x m x n -,,故最简公分母是()24m n x -.故选D.7.答案:A解析:原式()()4x y x y x y x y xy ++-+-+=2214x y xy==. 8.答案:A 解析:623xy y x-=-,22y x x y x y -=---,212424xy x y x x y xy ++=++,2211211x x x x x --=+++,都不是最简分式;22x y x y++是最简分式,故选A. 9.答案:A 解析:1111x x -=--.故选A 10.答案:B 解析:把分式2x y x y +中,x y 的值同时扩大为原来的3倍为()2233933x y x y x y x y ++=?219x y x y +=?,则分式的值缩小为原来的19.故选B. 11.答案:D解析:选项A 中,原式4a =,故本选项错误;选项B 中,不能化简,故本选项错误;选项C 中,不能化简,故本选项错误;选项D 中,()1x y x y x y x y---+=-++,故本选项正确. 12.答案:B解析:选项A 中,a ab b-=-,变形正确,不合题意;选项B 中,a a b b-=--,变形错误,符合题意;选项C 中,a a b b=--,变形正确,不合题意;选项D 中,a a b b--=,变形正确,不合题意; 13.答案:C 解析:A 选项,244xy y x x =,不是最简分式;B 选项,42263x x =--,不是最简分式;C 选项,33x +是最简分式;D 选项,()()22x y x y x y x y x y --=-+-1x y=+,不是最简分式.故选C. 14.答案:B解析:①④中分子分母没有公因式,是最简分式.②中22()()a b a b a b a b a b --=-+-,有公因式()a b -,③中4412()43()a aa b a b =-?-,有公约数4,所以②③不是最简分式故选B15.答案:C 解析:222332()6()()()2()2()()a a ab a a b a b a b a b a b a b a b --==-+---+故选C 16.答案:A解析:分别用2,2x y 去代换原分式中的,x y 得2242222()y y y x y x y x y ?==+++,可见新分式与原分式相等.17.答案:D解析:选项A 中,2121a a ≠++,此选项错误;选项B 中,21111a a a +≠++,此选项错误;选项C 中,x y x y x y y x -++=--,此选项错误;选项D 中,()()211111a a a a a +--=++1a =-,此选项正确. 18.答案:A 解析:原式()()22144x y x y x y x y x y xy xy++-+-+?=== 19.答案:D 解析:选项A 中,22222639x x y y =,错误;选项B 中,2233c c a b b a=-+-,错误;选项C 中,x y x y x y y x --=++,错误;选项D 中,2x x y xy y y y y ?==?,正确.故选D. 20.答案:D解析:将,x y 的值均扩大为原来的3倍,A 选项,23233x x x y x y ++≠--,错误;B 选项,22629y y x x≠,错误;C 选项3322542273y y x x≠,错误;D 选项22221829()()y y x y x y =--,正确;故选D. 21.答案:2223344(2)1(2)(2)2x xy y x y x y x y x y-+-==--- 把2,3x y =-=代入,得11122238x y ==----? 解析:22.答案:(1)当分母210x -≠,即1x ≠且1x ≠-时,分式2321x x --有意义. (2)当分母210x -=,且1x =或1x =-时,分式2321x x --无意义. 解析: 23.答案:原式2222(4)(44)a a b a a ab b -=-+2(2)(2)(2)a b a b a b +-=-22a b a b+=-. 当12,2a b ==-时,原式122()121322()2+?-==-?-. 解析:24.答案:③解析:由310x -≠,得13x ≠,故把x a =-代入分式31x a x +-中,当x a =-且13a -≠,即13a ≠-时,分式的值为零.25.答案:3 解析:式子1510,,96x a x y++的分母中含有字母,是分式.其他的式子分母中不含字母,不是分式.26.答案:0 解析:27.答案:26bc ac和236a b ac - 解析:两个分式分母分别为3,2a c ,未知数系数的最小公倍数为326?=,,a c 的最高次数为1,∴最简公分母为6ac ,将,32b ab a c -通分依次为26bc ac和236a b ac -. 28.答案:1x y-+ 解析: 221()()x y x y y x x y x y x y--==---+-+ 29.答案:2解析:321x x x =,221m n m n m n +=--,∴最简分式是312,32a x a b x+-+. 30.答案:2310x y y++ 解析:要想将分式0.10.20.3x y y++的分子、分母各项系数都化为整数,可将分子、分母同乘10,即原式()()100.10.22100.3310x y x y y y++==?++. 31.答案:2a bc解析:最简公分母2,,ab a b abc 的最高次幂的积,即为2a bc . 32.答案:()()a a b a b +-解析:分式22,b a b a ab a ab---+的分母分别是22(),()a ab a a b a ab a a b -=-+=+,故最简公分母是()()a a b a b +-33.答案:33312a b c解析:分母23332,3,4a bc ab a bc 中,未知数系数2,3,4的最小公倍数为12,字母,,a b c 的最高次幂均为3,所以它们的最简公分母为33312a b c .。

分式通分练习题

分式通分练习题

分式通分练习题一、练习题1. 将以下分式通分:a) $\frac{1}{6}$,$\frac{2}{3}$b) $\frac{3}{4}$,$\frac{1}{8}$c) $\frac{5}{12}$,$\frac{1}{6}$,$\frac{3}{8}$2. 将以下分式通分并化简:a) $\frac{3}{5} + \frac{4}{7}$b) $\frac{2}{3} - \frac{1}{4}$c) $\frac{1}{2} + \frac{3}{8} - \frac{1}{4}$3. 同分母分式求和:a) $\frac{3}{8} + \frac{4}{8}$b) $\frac{2}{5} + \frac{1}{5} + \frac{3}{5}$c) $\frac{7}{9} - \frac{5}{9}$4. 通分后的分式比较大小:a) $\frac{2}{5}$,$\frac{1}{3}$b) $\frac{7}{12}$,$\frac{3}{4}$c) $\frac{1}{8}$,$\frac{3}{16}$,$\frac{1}{4}$二、解答1. a) $\frac{1}{6}$,$\frac{2}{3}$对于这组分式,我们可以考虑将分母都设置为最小公倍数的倍数,最小公倍数是6。

因此,通分后的分式为:$\frac{1}{6} = \frac{1 \times 1}{6 \times 1} = \frac{1}{6}$$\frac{2}{3} = \frac{2 \times 2}{3 \times 2} = \frac{4}{6}$b) $\frac{3}{4}$,$\frac{1}{8}$最小公倍数是8,因此通分后的分式为:$\frac{3}{4} = \frac{3 \times 2}{4 \times 2} = \frac{6}{8}$$\frac{1}{8} = \frac{1 \times 1}{8 \times 1} = \frac{1}{8}$c) $\frac{5}{12}$,$\frac{1}{6}$,$\frac{3}{8}$最小公倍数是24,所以通分后的分式为:$\frac{5}{12} = \frac{5 \times 2}{12 \times 2} = \frac{10}{24}$$\frac{1}{6} = \frac{1 \times 4}{6 \times 4} = \frac{4}{24}$$\frac{3}{8} = \frac{3 \times 3}{8 \times 3} = \frac{9}{24}$2. a) $\frac{3}{5} + \frac{4}{7}$首先,我们需要找到两个分式的最小公倍数。

分式通分练习题

分式通分练习题

分式通分练习题分式通分是数学中的一个重要概念,也是解决分式运算问题的基本方法之一。

通过通分,我们可以将分式的分母相同,从而方便进行加减乘除等运算。

下面,我将为大家提供一些分式通分的练习题,希望能够帮助大家更好地掌握这个知识点。

1. 通分练习题(1)将分式$\frac{2}{3}$和$\frac{5}{6}$通分。

解析:首先,我们需要找到这两个分式的最小公倍数,即3和6的最小公倍数。

显然,3和6的最小公倍数是6。

所以,我们可以将分式$\frac{2}{3}$和$\frac{5}{6}$分别乘以$\frac{2}{2}$和$\frac{1}{1}$,得到通分后的分式$\frac{4}{6}$和$\frac{5}{6}$。

(2)将分式$\frac{7}{8}$和$\frac{3}{4}$通分。

解析:同样地,我们需要找到这两个分式的最小公倍数,即8和4的最小公倍数。

显然,8和4的最小公倍数是8。

所以,我们可以将分式$\frac{7}{8}$和$\frac{3}{4}$分别乘以$\frac{1}{1}$和$\frac{2}{2}$,得到通分后的分式$\frac{7}{8}$和$\frac{6}{8}$。

2. 通分的意义通过上述练习题,我们可以看到,分式通分的目的是将分式的分母相同,从而方便进行加减乘除等运算。

通分后的分式具有相同的分母,这样我们就可以直接对分子进行运算,而无需再考虑分母的问题。

这大大简化了分式运算的过程,提高了计算的效率。

3. 通分的方法通分的方法主要有两种:一种是找到两个分式的最小公倍数,然后将分式分别乘以适当的数,使得它们的分母相同;另一种是将分式的分母进行因式分解,然后根据因式分解的结果进行通分。

4. 通分的应用分式通分在日常生活中有着广泛的应用。

例如,在烹饪中,我们常常需要根据不同的食材比例来调整配料的用量。

这时,我们就需要运用分式通分的知识,将不同的食材比例通分为相同的分母,以便更好地计算配料的用量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式通分练习题及答案【篇一:分式的约分、通分专项练习题】t>1.不改变下列分式的值,使分式的分子、分母首相字母都不含负号。

4.约分6x2y?2xy2(a?b)2?c216a4b2c52b?ab①2 ②③④ 22342①?y?x②??x?yx?2y③?x?y?x?y约分练习:1.根据分数的约分,把下列分式化为最简分式:826?a?b?2a212a =_____;125a2bc326a?b45ab2c=_______13a?b=__________13a2?b2=________ 2、约分⑴3a3b3c12ac2⑵ ?x?y?yxy2 ⑶ x2?xyx2?y2x?y2 ⑷x?y23、约分:;?2?252321?.xx2?5x?2?.a?4a?3a2?a?6(3) ?32abc24a2b3d?15(a?b)2a2?abx2(4) ?25(a?b) (5) a?b; (6) ?x?24?x2;a?2a⑤2a?2b4a2?4b25.约分x2?6x?9x2?92?4x?3x2?x?6x2y?xy22xy1a?b?c⑥m3?2m2?mm2?1 a2?9a2?6a?9 2?7xx2 49?2m?2m?11?m9x?y12abc2y(2y?x)415mn2 ⑦6x(x?2y)3 ⑧?10m2n5mn ?x?y??a?b?3x2?3x?18x?y2a?b x2?9212a3?y?x?27ax?y1?x2x2?3x?26.约分:2.通分:(1)(1);(2);(3);(4).x12x12x,(2); ,,,22222(2x?4)6x?3xx?4x?1x?3x?2(1);(2); (1);(2).7.先化简,再求值:4x3y?12x2y2?9xy34x3?9xy2,其中x=1,y=1通分练习: 1. 通分:(1)y2x,x13y2,4xy;3);(4)3.通分:(1)x?y;2y2x3x?y (2)x?1;?x2?x?1 (3)1b4a2,2ac(4)29?3a,a?1a2?9(5)111(a?b)(b?c),(b?c)(c?a),(a?c)(a?b)4.通分:(1)y2x,z3y,3x4z;(2)3bc2a1254a3,6ab?3b2c;(3)?8x4y,3x2y3z,6xz2。

(2)4a3c5b5b2c,10a2b,?2ac2。

(4)ya(x?2),xb(x?2);(5)1x(y?x),12x?2y;(6)52(x?2),43(2?x)2;2(【篇二:八年级数学上册分式通分与约分练习题】:一、选择题:1、下列式子:22x1am?n,,,1?,, 3x3a?ba?b?中是分式的有()个a、5b、4c、3d、22、下列等式从左到右的变形正确的是()bb?1a、? aa?1 bb2b、?2aa c、aba?b2b d、bbm?aam3、下列分式中是最简分式的是()4a、 2a m2?1b、 m?1 c、2 2m?1 d、m?1 1?m5、计算(3m22n3)?()的结果是() ?2n3mnn2n2na、 b、?c、 d、? 3m3m3m3m6、计算xy?的结果是( x?yx?y)d、x?y x?ya、1 b、0 c、xy x?ym27、化简m?n?的结果是( m?nma、n) d、?nm m2b、? m?n ?n2c、 m?n二、当x取何值时,下列分式的值为零? 2x?3① 3x?5 x2?4 ②x?2③x2 ?2x?3x?1三、约分: 8abc⑴24a2b2c3324abc?x?y??a?b? ⑵x?ya?b ⑶ab322?4abc?32a3b2c4 ⑹23⑷⑸ 16abc24abd四、通分 23?4x?3?x?6x22111,x?2,22 x?2x?1x?3x?2【篇三:史上最全分式练习题(各题型,含答案)】.1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 三、课堂引入1.让学生填写p4[思考],学生自己依次填出:10,s,200,v.7a33s2.学生看p3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程. 设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为100小时,逆流航行60千米所用时间60小时,所以20?v100=60. 20?v20?v20?v3. 以上的式子100,60,s,v,有什么共同点?它们与分数有什么相同点和不同点?20?v20?vas五、例题讲解p5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0? 2(1m?1(2)m?1m?3mm?2m?11分母不能为零;○2分子为零,这样求出的m的[分析] 分式的值为0时,必须同时满足两个条件:○..解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2(3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4,8y?3,1x205y2x?5x?92. 当x取何值时,下列分式有意义?(1)(2)(3)x2?43?2xx?23. 当x为何值时,分式的值为0?32x?5x2?1x?77x(1)(2)x2?x5x21?3x七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式? (1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时. (3)x与y的差于4的商是 .x2?12.当x取何值时,分式无意义?3x?2x?1的值为0? 3. 当x为何值时,分式x?x八、答案:六、1.整式:9x+4,9?y, m?4 分式: 7 , 8y?3,1xx?9205y280七、1.1s,x?y; 整式:8x, a+b, x?y;xa?b443分式:80, sxa?b22. 3. x=-13课后反思:16.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 三、例、习题的意图分析1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入15313与9与相等吗?为什么?4202482.说出与之间变形的过程,并说出变形依据? 4与202483.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解p7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变. p11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.p11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.?6b, ?x?5a3y31593, ?2m, ??7m, ??3x。

?n6n?4y[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变. 解:?6b?5a?=6b5a,?x3y=?x3y,?2m?n=2mn,?7m7m?3x3x= , ?=。

6n6n?4y4y六、随堂练习1.填空:??2x26a3b23a3(1) 2= (2) = 3x?3x?3x8b??b?1x2?y2x?y(3) = (4) = 2a?can?cnx?y2.约分:8m2n3a2b2(x?y)3?4x2yz3(1)(2)(3)(4)2mn26ab2cy?x16xyz53.通分:(1)(3)12ba和(2)和32222ab5abc2xy3x3ca11?和(4)和2ab28bc2y?1y?14.不改变分式的值,使下列分式的分子和分母都不含“-”号.?5a?x3y?a3?(a?b)2(1) ?(2) ? (3) (4)m?13x23ab2?17b2七、课后练习1.判断下列约分是否正确:(1)a?ca1x?y= (2)2= 2b?cbx?yx?ym?n=0 m?n12x?1x?1和(2)和 3ab27a2bx2?xx2?x?2a?b?x?2y(2)??a?b3x?y(3)2.通分:(1)3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号. (1)八、答案:六、1.(1)2x (2) 4b (3) bn+n (4)x+y2.(1)a4mx2(2)(3)?(4)-2(x-y) 2bcn4z23.通分:15ac4b2= ,=5a2b2c10a2b3c2ab310a2b3cba3ax2by(2)= 2, 2= 23x2xy6xy6xy(1)3caab12c3?(3)= =2ab28ab2c28bc28ab2c21y?11y?1(4)==y?1(y?1)(y?1)y?1(y?1)(y?1)x3ya35a(a?b)24.(1) (2) ? (3) (4) ?m3ab217b213x2课后反思:16.2分式的运算16.2.1分式的乘除(一)一、教学目标:理解分式乘除法的法则,会进行分式乘除运算. 二、重点、难点1.重点:会用分式乘除的法则进行运算. 2.难点:灵活运用分式乘除的法则进行运算 . 三、例、习题的意图分析1.p13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是vm?ab??,大拖拉机的工作效率是小拖拉机的工作效率的???abn?mn?倍.引出了分式的乘除法的实际存在的意义,进一步引出p14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.p14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.p14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分. 4.p14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义出师表两汉:诸葛亮先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。

相关文档
最新文档