反应谱设计抗震

合集下载

核设施抗震设计中的设计地震反应谱

核设施抗震设计中的设计地震反应谱

1 国 际 原 子 能机 构 推 荐 的 用 于 其 他 核 设
施 设 计 的 设 计 地 震 反 应 谱
1 1 其他 核 设 施 的特 点 . 除核 电厂 以外 其他 核 设 施具 有 以下 特点 :
( ) 与核 电厂 相 比 ,其 项 目投 资 相 对 有 1 限 ,用 于厂 址 勘察 的费用 也 不 像 核 电 厂那 么充 裕 ,因 此 厂 址 调 查 的 范 围不 可 能 像 核 电 厂 那 么大 ; ( ) 与 常 规 设 施 相 比 ,其 他 核 设 施 中包 2
摘 要 :对 于除核 电厂 以外 的其 他 核设 施 , 国际原 子 能机 构 的技 术 文件 中推 荐使 用

组 适 用 于不 同场 地 情 况 的 标 准设 计 反 应 谱 。通 过 研 究 分析 其 特 点 ,并 将 G 5 0 B0 l 1—
21 0 0规 范 中推 荐 的 设计 反 应 谱 与 其 他 核 设 施 反 应 谱 相 对 比 ,为核 设 施 设 计 中适 当 选择 设 计反 应 谱提 供 参 考 。 关键 词 :其他 核 设 施 ;设 计 地震 反 应谱 ;外 部 事件 分 类
随着 现 代工 业 的发 展 和 人们 生 活 水 平 的 不 断 提 高 , 日常 的生产 生 活 对 于 电 力 的需 求 日益 增 长 。从 发 展清 洁 能源 的角 度 出发 ,我 国正 在 规 划建 设 更 多 的核 电站 以及 与之 配 套 的其 他 核
设 施 。 由于 核 电厂 和其 他 核设 施 中包 含 有 放 射 性 物 质 ,对 社 会 和 环 境 具 有 潜 在 的 安 全 影 响 。
施 的抗 震设 计 ,从而 使设 计 达 到 经 济 性 与 安 全

抗震设计中反应谱的应用

抗震设计中反应谱的应用

抗震设计中反应谱的应用一.什么就是反应谱理论在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。

它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。

用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。

地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。

β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。

二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。

一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。

实践也证明此方法更适合工程技术人员采用。

由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。

midas抗震设计-反应谱分析

midas抗震设计-反应谱分析

北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。

例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。

桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。

下面是桥梁的一些基本数据。

跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。

文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。

工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。

模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。

地震动位移反应谱分析及抗震设计谱

地震动位移反应谱分析及抗震设计谱

03
抗震设计谱基础
抗震设计谱定义
地震动位移反应谱是一种描述结构在地震动作用下,各个方 向和各个频率地震动加速度、速度和位移反应的曲线。
抗震设计谱是基于地震动位移反应谱,针对特定结构和场地 条件,进行结构抗震设计和分析的工具。
抗震设计谱特性
地震动峰值和频谱形状:这些特性可以根据场地条件和 地震危险性评估来确定。
非线性特性是由于地震动强度与结构 位移反应之间的非线性关系所导致的 。在地震动强度较小的情况下,结构 位移反应与地震动强度呈线性关系; 而在地震动强度较大的情况下,结构 位移反应的增长速度会逐渐放缓。
随机性特性是由于地震动的随机性所 导致的。地震动是一种复杂的自然现 象,其运动规律难以精确预测,因此 地震动位移反应谱也是随机的。
结构阻尼矩阵:结构阻尼矩阵可以包括质量阻尼矩阵和 刚度阻尼矩阵,用于描述结构在地震动作用下的振动特
性。
抗震设计谱通常具有以下特性
结构自振频率和阻尼比:这些特性可以根据结构类型和 尺寸来确定。
抗震设计谱编制方法
基于地震动位移反应谱的抗震设计谱编 制方法通常包括以下步骤
根据位移反应谱,进行结构抗震设计和 分析,得到结构的抗震性能指标和设计 参数。
地震动位移反应谱分析及抗 震设计谱
2023-11-08
目录
• 引言 • 地震动位移反应谱基础 • 抗震设计谱基础 • 地震动位移反应谱与抗震设计谱的关系 • 应用案例分析 • 结论与展望
01
引言
研究背景与意义
地震是一种严重的自然灾害,给人类社会带来了巨大的损失。因此,对地震动位 移反应谱进行分析,对抗震设计谱进行研究,对于减轻地震灾害具有重要意义。
抗震设计谱编制
根据地震动位移反应谱,结合建筑物的抗震 设防要求,编制出适用于该地区行分析,评估其合理性和有 效性,确保其能够充分考虑地震动的特性和 规律,为建筑物的抗震设计提供科学依据。

抗震设计中反应谱的应用讲课教案

抗震设计中反应谱的应用讲课教案

抗震设计中反应谱的应用抗震设计中反应谱的应用一.什么是反应谱理论在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。

它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。

用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。

地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。

β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。

二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。

一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。

实践也证明此方法更适合工程技术人员采用。

由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线

【2017年整理】地震反应谱、设计反应谱与地震影响系数谱曲线地震反应谱、设计反应谱与地震影响系数谱曲线一直对反应谱这个东西,进来在听完一些免费结构讲座之后,自己总结了一下,梳理了一下几个概念,当然理解这些概念还需要对地震动的一些基本概念有一定理解,下次有机会再将地震动的东西总结一下,希望对初学者有点作用,文中所用图均来自网上。

1. 地震反应谱可理解为一个确定的地面运动,通过一组阻尼比相同但自振周期各不相同的单自由度体系,所引起的各体系最大反应与相应体系自振周期间的关系曲线。

但是, 不同场地类别和震中距对反应谱有影响,因而不能直接用于抗震设计,需专门研究可供结构抗震设计用的反应谱,称为设计反应谱。

由结构动力学789地震系数,该参数可将地震动幅值对地震反应谱的影响分离出来。

与基本烈度的关系基本烈度地震系数k0.050.10(0.15)0.20(0.30)0.40(另:本人对其结果很是不解,由后文可知,地震影响系数最大值等于的地震系数,而《抗震规范》2010表5.1.4-1除以2.25后应该为基本烈度地震系数kJt-/ J w *购)地震系数 2.25 倍0.0170.0355(0.0533)0.071(0.106)0.142欢迎大家讨论〜)a 八=动力系数,是体系最大绝对加速度的放大系数特点:a.是一种规则化的地震反应谱,且动力系数不受地震动振幅的影响。

b.与地震反应谱具有相同的性质,受到体系阻尼比,以及地震动频谱(场地条件和震中距)的影响。

调整:1、为了消除阻尼比的影响由于大多数实际建筑结构的阻尼比在0.05左右,取确定的阻尼比然后不同建筑物根据公式相应调整。

2、按场地震中距将地震动记录分类,消除地震动频谱对地震动的影响。

3、计算每一类地震动记录动力系数的平均值考虑类别相同的不同地震动记录动力系数的变异性。

经过上述三条措施后,再将计算得到的P (T)平滑化后,可得到抗震设计采用的动力系数谱曲线。

工e说讣来fl的站力•罠丁厂lit动耕盘阀期.蚣墙豪捋叽酿尼《鳖卓《”联】』3.地震影响系数谱曲线吏汇:反应谱的局限性:不能反映地震的持续时间(加速度幅值)不能考虑多点激励的影响(刚性地基)不能反映建筑物质量和刚度分布的不均匀不能反映多个阻尼的情况不能反映场地条件和卓越周期的影响不能反映低周疲劳的影响不能反映结构周期不确定性的影响1,万,1,千地质测量质量要求表(吉林参考)11,万1,5千1,2千1,千1,万草测1,2千草沉1对地层划分到组或阶,如范围大应进一步二分或三分,确定1.在1,万分成的基础上,按岩层、岩性特一般地段的研究程含矿层或地积其时代,测定其厚度及产状点进一步详细划分岩层,研究岩石的物质成度可低于1,万或成矿有利质岩2.对标志层、成矿有利的岩层在图上的宽度大于1毫米者应扩分、结构、构造特征,胶结物性质,结核体与之相似。

浅析关于桥梁抗震设计规范反应谱若干问题

浅析关于桥梁抗震设计规范反应谱若干问题

市政桥梁154 2015年20期浅析关于桥梁抗震设计规范反应谱若干问题张秋生齐齐哈尔博恩公路勘察设计有限责任公司,黑龙江齐齐哈尔 161000摘要:反应谱法在桥梁抗震设计中是有一定应用价值的,虽然目前大多数抗震设计规程都指出对大跨度桥梁进行抗震设计应采用动态时程分析法,但是有必要研究反应谱法的优点及不足,以确保桥梁工程在地震过程中有足够的抗震能力和合理的结构安全度。

关键词:桥梁;抗震设计规范;反应谱;修正系数中图分类号:tion wa 文献标识码:A 文章编号:1671-5810(2015)20-0154-021 反应谱法基本概念人类在与地震的斗争中发展了各种抗震分析方法,分为确定性方法和概率性方法两大类。

静力法、反应谱法和时程分析法均属于确定性方法,随机振动、虚拟激励法属于概率性方法。

通常所说的结构地震反应分析,就是建立结构地震振动方程,然后通过求解振动方程得到结构地震反应(位移、内力等的过程。

在结构抗震理论发展中,静力法、反应谱法和动力时程分析法三个阶段的形成和发展是人类对自然规律认识的不断深入与完善的过程。

反应谱理论考虑了结构物的动力特性,而且简单正确地反映了地震动的特性,因此得到了广泛认可和应用。

2 中国建筑抗震设计规范中国的《建筑抗震设计规范(GB50011-2001 )》(中国人民共和国建设部等,2001)以地震影响系数a的形式给出设计谱,地震影响系数由设计基本地震加速度、设计地震分组、场地类别以及阻尼比确定。

设计反应谱曲线包括4段:直线上升段、平台段、曲线下降段和直线下降段。

特征周期Tg 根据场地类别和设计地震分组查表确定。

阻尼比的影响通过参数η1、γ、η2考虑。

由于大多数工程中阻尼比都取为0.05,所以在下面的反应谱比较中,阻尼比均取为0.05。

2.1 上升段:2.2 水平段:2.3 曲线下降段:2.4 直线下降段:与上一版抗震设计规范GB711-89相比,GB50011-2001反应谱周期范围由3s扩展到了6s,增加了直线下降段。

自由度弹性体系的水平地震作用与抗震设计反应谱

自由度弹性体系的水平地震作用与抗震设计反应谱
响应特性
自由度弹性体系在水平地震作用下的响应特性包括位移、速度和加速度,这些响应与体系的自振频率、阻尼比和 刚度有关。
自由度弹性体系的地震损伤机理与破坏模式
损伤机理
水平地震作用下,自由度弹性体系的损伤机理主要包括构件的弯曲、剪切和拉伸,以及 节点或连接处的断裂。
破坏模式
常见的破坏模式包括整体倾覆、结构失稳、节点或连接处断裂等,这些破坏模式与地震 强度、结构设计和材料性能有关。
自由度弹性体系是指由多个弹性体组成的体系,其中每个弹 性体都可以在一定范围内自由振动。根据体系中弹性体的数 量和性质,可以分为单自由度、多自由度和无限自由度等类 型。
自由度弹性体系广泛应用于工程结构分析中,如桥梁、建筑 和机械系统等。通过建立数学模型,可以描述体系的运动行 为和受力状态。
自由度弹性体系的运动方程
自由度弹性体系的水平地震作用与 抗震设计反应谱
目 录
• 引言 • 自由度弹性体系的基本理论 • 水平地震作用的计算方法 • 抗震设计反应谱的建立 • 自由度弹性体系在地震作用下的反应分析 • 结论与展望
01 引言
背景介绍
01
地震是一种常见的自然灾害,对人类生命财产安全造成巨大威 胁。
02
地震作用下,建筑物等结构的抗震性能是关注的重点。
未来研究可以结合实际工程案例,对自由度弹性体系的抗震性能进行更为细致的分 析和评估,为工程实践提供更为可靠的依据。
此外,可以考虑将自由度弹性体系的地震反应谱研究与其他领域的研究相结合,如 结构健康监测、地震预警等,以实现更为全面和深入的研究。
THANKS FOR WATCHING
感谢您的观看
反应谱的应用范围与限制
应用范围
适用于单自由度弹性体系的地震作用分析和抗震设计。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、结构抗震
结构抗震理论的发展,大体上可以划分为静力、反应谱和动力三个阶段。

(一)静力理论阶段
该理论认为,结构物所受的地震作用,可以简化为作用于结构的等效水平静力F,其大小等于结构重力荷载G乘以地震系数k,即
F = kG
k为地震系数,其数值与结构动力特性无关,是根据多次地震灾害分析得出的,k≈1/10。

(二)反应谱理论阶段
反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。

地震时结构所受的最大水平基底剪力,即总水平地震作用为:
FEK = kβ(T)G
式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。

β(T)=Sa(T)/a
二、反应谱局限性:
1. 反应谱理论尽管考虑了结构的动力特性,然而在结构设计中,它仍然把地震惯性力作为静力来对待,所以它只能称为准动力理论。

2. 表征地震动的三要素是振幅、频谱和持时。

在制作反应谱过程中虽然考虑了其中的前两个要素,但始终未能反映地震动持续时间对结构破坏程度的重要影响。

3. 反应谱是根据弹性结构地震反应绘制的,引用反映结构延性的结构影响系数后,也只能笼统地给出结构进入弹塑性状态的结构整体最大地震反应,不能给出结构地震反应的全过程,更不能给出地震过程中各构件进入弹塑性变形阶段的内力和变形状态,因而也就无法找出结构的薄弱环节。

三、反应谱设计抗震的局限性
1.反应谱方法是一种拟静力方法,虽然能同时考虑结构各频段整栋的振幅最大值和频谱两个主要因数,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受了严重的破坏。

2.反应谱方法忽略了的地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特征的改变,而导致结构中的内力重新分布这一现象。

3.反应谱方法假设结构所有支座处的震动完全相同,忽略其基础与上层间的互相作用。

相关文档
最新文档