设计反应谱与抗规解释
设计反应谱

设计反应谱
反应谱是一种用于评估结构地震反应能力的工具。
设计反应谱是指在给定的设计地震动下,结构所需的最大响应值与相应地震动加速度之比的函数关系。
以下是设计反应谱的一般步骤:
1.确定设计地震动参数,包括地震震级、地震频谱和设计地震动的持续时间等。
2.确定结构的特征振型,即结构在地震激励下的主要振动模式。
3.选择设计反应谱的计算方法,例如模态叠加法或时程分析法。
4.计算每个特征振型的响应谱,即根据地震动参数和结构特征振型,计算出结构的最大响
应值与相应地震动加速度之比的函数关系。
5.将每个特征振型的响应谱合成为总体反应谱,即根据结构的特征振型和其在地震激励下
的激励程度,将每个特征振型的响应谱加权合成为整体反应谱。
6.根据设计要求,调整总体反应谱的放大系数,以保证结构的安全性和可靠性。
7.最后,根据设计反应谱和结构的性能要求,确定结构的设计参数,例如刚度、阻尼、材
料强度等。
设计反应谱的计算方法和步骤可以根据不同的设计要求和结构类型进行调整和改进。
反应谱法的概念

反应谱法的概念
反应谱法是结构工程学中一种用于地震工程分析和设计的方法。
它是基于地震反应谱的特性来评估结构物在地震荷载下的响应。
在地震工程中,地震的震动会导致结构物产生振动,这可能会导致结构的损坏或崩塌。
为了确保结构物的安全性,工程师需要了解结构在地震中的响应情况,并相应地进行设计和加固。
反应谱法通过将地震加速度、速度或位移与结构的响应之间的关系表达为一个函数图谱,称为地震反应谱。
这个谱可以表示在不同地震频率下结构的响应情况。
反应谱的横坐标通常是地震激励的频率,纵坐标表示结构的响应,可以是加速度、速度或位移。
利用反应谱法,工程师可以:
1. 确定结构的设计响应谱:根据预期的地震强度,工程师可以选择适当的地震反应谱作为结构设计的依据,以确保结构在地震中有足够的抗震能力。
2. 进行结构响应预测:通过将结构的振动特性和选定的地震反应谱进行卷积计算,可以预测结构在地震中的响应。
3. 进行结构性能评估:可以通过比较结构的设计响应谱与实际地震反应谱,来评估结构的抗震性能,并确定是否需要加固或维护。
反应谱法的优点在于它提供了一种简便的分析方法,能够在不同频率下评估结构的响应情况。
然而,需要注意的是,反应谱法是一种线性方法,可能无法完全考虑结构的非线性行为,因此在一些情况下,可能需要使用更复杂的非线性分析方法。
反应谱设计抗震

一、结构抗震结构抗震理论的发展,大体上可以划分为静力、反应谱和动力三个阶段。
(一)静力理论阶段该理论认为,结构物所受的地震作用,可以简化为作用于结构的等效水平静力F,其大小等于结构重力荷载G乘以地震系数k,即F = kGk为地震系数,其数值与结构动力特性无关,是根据多次地震灾害分析得出的,k≈1/10。
(二)反应谱理论阶段反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。
地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。
β(T)=Sa(T)/a二、反应谱局限性:1. 反应谱理论尽管考虑了结构的动力特性,然而在结构设计中,它仍然把地震惯性力作为静力来对待,所以它只能称为准动力理论。
2. 表征地震动的三要素是振幅、频谱和持时。
在制作反应谱过程中虽然考虑了其中的前两个要素,但始终未能反映地震动持续时间对结构破坏程度的重要影响。
3. 反应谱是根据弹性结构地震反应绘制的,引用反映结构延性的结构影响系数后,也只能笼统地给出结构进入弹塑性状态的结构整体最大地震反应,不能给出结构地震反应的全过程,更不能给出地震过程中各构件进入弹塑性变形阶段的内力和变形状态,因而也就无法找出结构的薄弱环节。
三、反应谱设计抗震的局限性1.反应谱方法是一种拟静力方法,虽然能同时考虑结构各频段整栋的振幅最大值和频谱两个主要因数,但对于持时这一要素未能得到体现,震害调查表明,有些按反应谱理论设计的结构,在未超过设防烈度的地震中,也遭受了严重的破坏。
2.反应谱方法忽略了的地震作用的随机性,不能考虑结构在罕遇地震下逐步进入塑性时,因其周期、阻尼、振型等动力特征的改变,而导致结构中的内力重新分布这一现象。
抗震设计中反应谱的应用

抗震设计中反应谱的应用一.什么就是反应谱理论在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。
它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。
用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。
地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。
β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。
二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。
一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。
实践也证明此方法更适合工程技术人员采用。
由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。
反应谱法的概念

反应谱法的概念反应谱法(Response Spectrum Method)是结构工程中常用的一种分析方法,通过建立结构的加速度-频率响应函数,来对结构在地震作用下的反应进行评估。
它是一种时程分析方法,通过输入合适的地震动输入,模拟结构在地震中的动力响应,并获得结构的最大位移、加速度、剪力等重要指标,以评估结构的抗震性能和结构的安全性。
反应谱法最早由美国地震工程师Nathan M. Newmark在20世纪50年代初提出,是基于结构动力学理论发展而来的一种计算方法。
它是一种简化的分析方法,相比于详细的时程分析,反应谱法考虑了地震波的周期特性和结构的固有特性,能更快速、有效地评估结构在地震中的反应。
反应谱法的核心思想是将地震动输入与结构的动力特性分离开来进行分析。
它假设结构的响应与地震输入的频率有关,而与具体的振幅无关。
在反应谱法中,定义结构的反应谱为在不同频率下结构的峰值加速度、速度或位移(或其他重要参数)。
通常,反应谱法的步骤如下:1.选择一组不同频率下的地震波输入。
2.通过动力分析方法(如有限元分析)计算每个地震波输入下结构的动力响应。
3.对每个地震波输入下的结构响应进行峰值提取,并与对应的频率进行对比。
4.根据一系列提取的峰值与频率点,绘制出结构的反应谱曲线。
反应谱曲线可以用于评估结构的抗震性能,并作为结构设计、修正因素以及抗震评估的依据。
反应谱法可以直观地展示不同频率下结构的响应情况,使得工程师能够更好地理解结构的动力性能和瓶颈,并针对性地进行抗震设计和优化。
反应谱法的优点之一是有效地考虑了结构的非线性特性。
由于结构在地震中会发生非线性变形和破坏,传统的弹性分析方法无法准确地预测这些情况。
而反应谱法可以通过选择不同的地震波输入,模拟结构在不同强度和频率的地震下的响应,更好地预测结构的非线性行为。
此外,反应谱法的应用范围广泛。
它可以用于设计新建筑物的抗震性能评估,也可以用于现有建筑物的抗震加固优化。
抗震设计中反应谱的应用讲课教案

抗震设计中反应谱的应用抗震设计中反应谱的应用一.什么是反应谱理论在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。
它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。
用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。
地震时结构所受的最大水平基底剪力,即总水平地震作用为:FEK = kβ(T)G式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。
β(T)=Sa(T)/a反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。
二.实际房屋抗震设计中的应用为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。
一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。
实践也证明此方法更适合工程技术人员采用。
由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。
7-反应谱概念与设计反应谱

)d
max
最大相对速度
Sv
x(t) max
t 0
xg
( )e
(t )
sin (t
)d
max
最大加速度
Sa x(t) xg max
t 0
xg ( )e
(t )
sin (t
)d
max
最大反应之间的关系 Sa Sv 2Sd
二、地震反应谱:
最大相对位移
Sd
x(t) max
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
3.对于速度反应谱,当结构周 期小于某个值时幅值随周期增 大,随后趋于常数。
4.对于位移反应谱,幅值随周期 增大。
绝对加速度反应谱 相对速度反应谱
相对位移反应谱
地震反应谱的特点:
5.土质条件对反应谱的形状和 很大的影响,土质越松软,加 速度反应谱峰值对应的结构周 期也就越长。
max
3.曲线下降段,自特征周期至5倍特征周期区段: 0.9
4.直线下降段,自5倍特征周期至6s区段:1 0.02
*阻尼对地震影响系数的影响
当结构阻尼比不等于0.05时,其形状参数作如下调整 :
1.曲线下降段衰减指数的调整
2 2 2
d
t 0
xg
(
)e
(t
)
sin
d
(t
)d
2
d
t 0
xg
(
)e
(t
)
s
in
d
(t
)d
质点相对于地面的最大加速度反应为:
Sa x(t) xg max
t 0
xg ( )e (t )
反应谱基本概念

反应谱基本概念反应谱基本概念反应谱是指结构物在地震作用下的最大响应结果。
它描述了地震波在结构物上产生的一系列振动,是结构地震反应特征的全面指标。
反应谱是工程地震学领域中非常重要的一个参数,由多个分量组成,包括加速度、速度、位移和各种响应指标。
1. 加速度反应谱加速度反应谱是指某一结构元件在地震作用下所达到的最大加速度值和所对应的振周期之间的关系曲线,通常用于结构d阶振型、峰值加速度等的计算。
加速度反应谱可以通过谱加法或时程分析法计算得到结构的反应谱曲线。
2. 速度反应谱速度反应谱即某一结构元件在地震作用下所达到的最大速度值和所对应的振周期之间的关系曲线。
速度反应谱通常用于计算结构物的阻尼比、频率和峰值地震反应等参数。
3. 位移反应谱位移反应谱是指某一结构元件在地震作用下所达到的最大位移值和所对应的振周期之间的关系曲线。
位移反应谱通常用于计算最大位移响应、峰值地震反应等参数,是结构抗震设计和分析的重要参考依据。
4. 能量反应谱能量反应谱是指结构物在地震作用下消耗的总能量与频率之间的关系曲线。
能量反应谱通常用于计算能源吸收容量等参数,是结构抗震设计中非常重要的参考依据。
5. 谱加法谱加法是反应谱分析中一种常用的计算方法,它将结构物受多种输入地震加速度地震波作用所产生的反应加和,得出结构整体的反应谱曲线。
谱加法被广泛应用于建筑、桥梁等领域的抗震设计和分析中。
总之,反应谱是地震工程领域关键的性能指标之一,在结构物的抗震设计、强震动下的地震响应分析、地震灾害预防和抵御等方面具有重要意义。
通过对反应谱及其分量的深入研究和计算,可以在抗震设计和抗震分析中提供可靠的理论和技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-2)设计反应谱的形状 要反映反应谱一般的变化规律 要简单,便于使用
(T )
max
min
T1
Tg
Tmax
6
2-2)设计反应谱的形状 要反映反应谱一般的变化规律 要简单,便于使用 (T=0时,反应谱值?)
(T )
max
min
T1
Tg
Tmax
7
2-3)设计反应谱的参数 五个参数:T0
0
max
Tg
Tm
(T )
max
(T ) (
Tg T
)
min
T0 Tg
9 Tmax
2-4)设计反应谱的参数如何确定 五个参数:
T0 :随场地(土层结构略有变化,但大 致在0.ls附近,就固定取0.1s;
max :随地震动而有变化,在2.0—3.0之
间,取值受经济实力影响,我国2.25,美国 取2.5;
:按照实际记录统计(1-0.9)
11
我国抗震设计规范对设计地震动的规定
• 我国和世界上大多数国家和地区的抗震设计规范 都采用反应谱理论。将加速度反应谱归一化,给 出无量纲的动力放大系数谱:
(T ) Sa(T ) / a
Sa(T ) • 式中 (T ) 为动力放大系数,亦称标准反应谱; 为地震动加速度反应谱; a为地震动峰值加速度。
设计地震动 y 地震动输入 (t )
(t ) ) y 设计地震动(也称地震动输入
为结构抗震设计提供的地震输入
设计地震动参数的三种形式:
1)设计地震动峰值参数:a、v、d 2)设计反应谱 3)地震动时程 设计地震动是工程地震学研究的主要成果
2
确定设计地震动要考虑的因素
• 可接受的破坏后果和抗震设防标准
烈度
50年地震烈度的概率密度函数
超越概率
峰值加速度
63.5%
A/3
10%
A
3%
2A
• 经过统计平均和平滑化处理,得到比较规则变化 的简单曲线,便于结构抗震设计使用。
12
我国1964年抗震设计规范的设计反应谱
13
我国建筑抗震设计规范的规定(GB50011-2010)
1)地震影响系数 是设计反应谱的另一种表现形式,放大倍 数就是设计反应谱。设计习惯用重量,引入 地震系数(惯性力是重量的比例)改写公式:
max
Tg
Tm
1.0 ( max 1.0) T T0 T max Tg max T
0.0<T ≤ T0 T0<T ≤ Tg Tg<T ≤ Tm
8
2-3)设计反应谱的参数 五个参数: T
• 抗震设计方法 (静力理论-反应谱理论-动力理论)
根据抗震设计方法选择设计地震动参数,如表示地震动强度的加速 度;表征结构对地震动反应的反应谱等。
3
2-1)设计反应谱的来历 2-2)设计反应谱的形状 2-3)设计反应谱的参数 2-4)设计反应谱参数如何确定
1.0 ( max 1.0) T T0 T max T g max T 0.0<T ≤ T0 T0<T ≤ Tg Tg<T ≤ Tm
Tm :视该规范的结构对象而定,一般建 筑:3s,现在经济发展,有高层,扩大到6s, 10 对于大型桥梁等,是不够的。
2-4)设计反应谱的参数如何确定 五个参数:
Tg :称为特征周期,根据实际归纳的; 物理意义:反映场地对长周期地震动的放 大作用,土层越软,越厚(卓越周期越大), 长周期地震动放大越多,特征周期就越长, 所以与场地类别密切相关。 同时考虑经济实力,因为特征周期越长, 反应谱平台就越宽,进入最大放大倍数的结 构就越多。
a F m a m g kW g a 再代入 由反应谱可求结构加速度
s
as a g F ma mg (T )W k (T )W W g g
14
我国现行《建筑抗震设计规范(GB50011-2010)》 对设计地震动的规定
• 图为我国《建筑抗震设计规范(GB50011-2010)》给出的 设计反应谱,用地震影响系数曲线表示。地震影响系数定义 如下: (T ) (T ) • 式中 k a / g 称为地震系数;a为地震动峰值加速度,g为重 力加速度, (T ) 为标准反应谱,即动力放大倍数谱。
min
(T )
max
(b)
T/s
T1 Tg
Tmax
4
2-1)设计反应谱的来历 每条地震动(每条记录)都可以计算反应 谱,形状各异,以哪条为准? 对同一个结构(相同的单自由度体系的固有 周期),不同反应谱之间数值变化大,不好遵 循; 各记录反应谱的绝对值也相差很大; 处理方法:标准化(归一化)得到放大倍数 简化曲线,平滑化 目的:便于使用 5
2 max
地震影响系数
Tg 2 max T
0.45 max
[2 0.2 1 (T 5Tg )] max
0.1 Tg
5Tg
6.0
15
周期/sec
小震(多遇烈度)函数
f(I)
极值Ⅲ型 63.5% 10% 3% I-1.55 I I+1
由于结构不可能建造到能抗御任何强烈地震,地震又是小概率事 件,也无必要无限加大抗震强度。一般考虑结构在经常遇到的中小地 震作用下不产生影响使用的破坏,在不常遇到的大震作用下允许破坏, 但不至于伤人。
• 工程场地可能遭遇的地震动大小
由地震区划、地震小区划、地震危险性分析确定。
• 经济发展水平
各国的经济发展程度不同,对抗震设防的投入有差别,还要考虑社会 可以接受的损失水平,综合考虑决定抗震设防水平。