电炉温度控制系统
温度控制系统

器
电信号Βιβλιοθήκη 非电信号二次仪表可处理信号
显示调节仪表
电信号
显 示 滤波、放大、 调 非线性校正 节 仪 表
温度
电压
流量
位移
在自动化控制系统中,二次仪表经常处于核心地位,因此对其进行认 真比较和精心选择,在安全上是必须的,在经济上是划算的。
执行器部分
为了能够对工业对象的参数进行自动控制(或报警),就必须由中间继电器、 可控硅、电磁阀等执行器执行对负载的调控。 执行器一般都工作于高电压、大电流、多动作的恶劣工作条件下,因此, 正确选择产品和降额使用是理所当然和十分经济的。
值时作出报警动作,而无论是上限、上上限、下限、下下限报警。 默认
的报警动作是报警输出继电器的常开触点闭合。
4.安装与接线
5.仪表面板布置和功能
6.使用指南
① 使用软件锁 ② 设置“控制”值 ③ 设置“误差修正”值 ④ 设置“报警”值 ⑤ 自整定功能 ⑥ 比例偏置功能 ⑦ 仪表若显示“ HH”,请检查传感器是否断线或输入超过了量程上
8.3 温度控制器的调节原理
8.3.1 二位式调节原理
二位式调节又称通断式控制,其工作原理是将测量值与设定值相比较,差值经 放大处理后,对执行器进行开(通)或关(断)的控制,主要由温度传感器、 温度控制器、执行器和电阻丝组成。
滞后时间:由于电炉炉体为保 温隔热材料制成的密闭箱体, 刚开始加热时,有一段时间炉 体温度基本保持不变,这一段 时间称之为滞后时间,其大小 通常取决于炉体结构,尤其是 炉体体积。
2.型号编制说明 例8-3 试说明型号为WG-5412温度控制器的主要性能。
解:(1)该仪表是智能型双三位显示调节仪; (2)调节方式为二位PID调节; (3)报警为上限报警; (4)输入信号采用热电阻温度传感器; (5)输出信号为继电器触点输出。
电炉调温原理

电炉调温原理
电炉调温原理是通过控制电源的通断来实现温度的调节。
电炉通常由一个加热元件和一个温度控制系统组成。
加热元件通常采用电阻丝或电热管,当通电时,电流通过加热元件,使其发热,从而将炉体加热至设定的温度。
温度控制系统是电炉调温的关键部分,它通常包括温度传感器和控制器。
温度传感器用于实时监测炉体的温度,将温度信号传递给控制器。
控制器根据设定的温度值和实际温度值的差异,控制电源的通断,从而实现温度的调节。
当设定温度高于实际温度时,控制器会将电源接通,使加热元件发热,提高炉体温度。
当设定温度低于实际温度时,控制器会将电源断开,停止加热元件的发热,使炉体温度下降。
通过不断地检测和调节,控制器能够使炉体保持在设定的温度范围内,实现精确的温度控制。
电炉调温原理基于电力的供给和控制,并通过温度传感器和控制器的配合,实现对炉体温度的精确控制。
这种调温原理被广泛应用于各种电炉中,如家用电热水器、电烤箱和工业热处理设备等。
电锅炉温度控制系统的设计

单位代码01学号100119064分类号TP273+.2密级毕业设计说明书电锅炉温度控制系统的设计院(系)名称信息工程学院专业名称测控技术与仪器学生姓名邓继文指导教师吴娟2014年4月25日电锅炉温度控制系统的设计摘要电锅炉温度智能控制系统在工业生产和科研工作中占有重要的地位。
锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标。
温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。
尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。
因此,在锅炉运行中,保证温度在正常范围是非常重要的。
基于单片机技术实现的电锅炉温度控制系统主要由温度检测电路、温度控制电路、温度显示电路三个部分组成。
在本次设计中,选用符合测量温度范围要求的热电偶温度传感器来实现数据采集,用仪表放大电路对电压信号进行放大,实现对温度的检测和信号的传输;用单片机对所采集的数据进行处理后,再进行相应的控制,从而实现对温度的控制;采用LCD1602液晶显示器将处理的数据进行实时显示。
然后根据设计电路进行了实际制作和测试分析,达到了预期的要求。
关键词:单片机,热电偶温度传感器,LCD,MAX6675The Design of the Electric Boiler Temperature Control SystemAuthor:Deng JiWenTutor:Wu JuanAbstractAnnealing temperature control system in industrial production and scientific research occupies an important bustion system of boiler steam drum is industrial steam boiler safe and stable operation of the important indicators.Temperature is too high, can make the steam with water too much, separation of poor, make the follow-up of superheater tube wall scaling, heat transfer efficiency drops, superheated steam temperature drop, serious when will cause steam quality to drop, affect the production and safety; Temperature is too low will damage part of the wall of the water cycle can't meet the technological requirements, serious happens when the boiler exploded.Especially large boiler, once the improper control, easy to make all of the water in the water or steam drum drum with vaporization, cause serious accident. Therefore, in boiler operation, it is very important to ensure that the temperature in the normal range.Based on single chip microcomputer technology to realize the electric boiler temperature control system is mainly composed of the temperature detection circuit, temperature control circuit, display circuit of three parts.In this design, choose to meet the requirements of measuring temperature range thermocouple temperature sensor to achieve data acquisition, instrument amplifier circuit of voltage signal is amplified and realize the temperature detection and signal transmission; After the data collected in the MCU, then the corresponding control, so as to realize the temperature control; Adopt LCD1602 LCD monitor the real-time display of data processing.Then according to the design of circuit are analyzed in actual production and testing, to achieve the desired requirements.Key words: MCU,Thermocouple Temperature Sensor,LCD,MAX6675目录1 绪论 (1)1.1 课题背景 (1)1.2 电锅炉简介 (1)1.3 电锅炉温度控制系统 (2)1.4 设计要求 (2)2 温度控制系统方案分析 (3)2.1 设计思想 (3)2.2 几种方案设计 (3)2.3 方案设计要求 (4)2.4 课题研究的意义 (4)3 电锅炉温度控制系统硬件设计 (6)3.1 温度检测电路 (6)3.1.1 热电偶传感器 (6)3.1.2 MAX6675电路 (6)3.2 温度显示单元电路 (8)3.3 温度控制电路 (10)3.3.1 蜂鸣器驱动电路 (10)3.3.2 继电器 (11)3.3.3 STC89C51单片机 (12)4 电锅炉温度控制系统软件设计 (18)5 电锅炉温度控制系统仿真 (20)5.1 电路仿真结果 (20)6 电锅炉温度控制系统设计实物图 (22)结论 (23)致谢 (24)参考文献 (25)附录 (26)附录A (26)附录B (26)1绪论1.1课题背景锅炉技术的发展受经济发展速度和投资规模因素影响,能源政策和节能、环保要求的制约等越来越严重。
电炉温度控制器原理

电炉温度控制器原理电炉温度控制器是一种用来控制电炉温度的装置,它通过对电炉内部温度进行监测和调节,以实现温度的稳定控制。
电炉温度控制器的原理主要包括温度检测、信号处理和控制输出三个方面。
一、温度检测温度检测是电炉温度控制器的基础,它通过感温元件来实现对电炉内部温度的监测。
常用的感温元件有热电偶和热敏电阻。
热电偶是一种由两种不同金属材料组成的闭合电路,当电炉升温时,热电偶的两端产生的温差将引起电势差的变化,通过测量电势差的变化可以得到电炉的温度。
热敏电阻是一种电阻值随温度变化而变化的元件,通过测量电阻值的变化可以得到电炉的温度。
二、信号处理信号处理是将温度检测得到的电信号转换为可用于控制的信号的过程。
温度检测得到的信号往往是微弱的模拟信号,需要经过放大、滤波和变换等处理,才能得到稳定可靠的控制信号。
放大是将信号的幅度增大,以提高信号的灵敏度和稳定性。
滤波是去除信号中的干扰成分,以保证控制信号的纯净性。
变换是将模拟信号转换为数字信号,以便于数字处理和控制。
三、控制输出控制输出是根据信号处理得到的控制信号,通过控制装置对电炉进行温度调节的过程。
常见的控制装置有比例控制器、比例积分控制器和比例积分微分控制器等。
比例控制器根据控制信号的大小来控制电炉的加热功率,以实现温度的控制。
比例积分控制器在比例控制的基础上增加了积分环节,可以更加精确地控制温度。
比例积分微分控制器在比例积分控制的基础上增加了微分环节,可以更好地抑制温度的波动。
电炉温度控制器的原理是通过温度检测、信号处理和控制输出三个方面的操作,实现对电炉温度的稳定控制。
温度检测通过感温元件对电炉内部温度进行监测,信号处理将检测得到的信号转换为可用于控制的信号,控制输出通过控制装置对电炉进行温度调节。
通过这一原理,电炉温度控制器可以实现对电炉温度的精确控制,保证电炉的正常运行和产品质量的稳定性。
电炉箱恒温自动控制系统原理

电炉箱恒温自动控制系统原理电炉箱恒温自动控制系统原理电炉箱恒温自动控制系统是一种用于控制电炉箱温度的自动化系统。
该系统通过传感器检测电炉箱内部温度,并根据设定的温度值自动调节电炉箱的加热功率,以保持电炉箱内部温度稳定在设定值范围内。
电炉箱恒温自动控制系统主要由以下几个部分组成:1.传感器:传感器是用于检测电炉箱内部温度的装置。
常用的传感器有热电偶、热敏电阻等。
传感器将检测到的温度信号转换成电信号,传送给控制器。
2.控制器:控制器是电炉箱恒温自动控制系统的核心部件。
控制器接收传感器传来的温度信号,并根据设定的温度值计算出电炉箱需要的加热功率。
控制器还可以根据用户的需求进行定时开关机、报警等功能。
3.执行器:执行器是用于控制电炉箱加热功率的装置。
常用的执行器有继电器、晶体管等。
执行器接收控制器发出的控制信号,控制电炉箱的加热功率,以达到恒温的目的。
电炉箱恒温自动控制系统的工作原理如下:1.传感器检测电炉箱内部温度,并将检测到的温度信号传送给控制器。
2.控制器根据设定的温度值计算出电炉箱需要的加热功率,并将控制信号发送给执行器。
3.执行器接收控制信号,控制电炉箱的加热功率,以达到恒温的目的。
4.如果电炉箱内部温度超出设定范围,控制器会发出报警信号,提醒用户进行处理。
电炉箱恒温自动控制系统的优点是可以自动调节电炉箱的加热功率,保持电炉箱内部温度稳定在设定值范围内,从而提高电炉箱的加热效率,延长电炉箱的使用寿命。
此外,该系统还可以根据用户的需求进行定时开关机、报警等功能,提高了电炉箱的智能化程度。
总之,电炉箱恒温自动控制系统是一种非常实用的自动化系统,可以有效提高电炉箱的加热效率和使用寿命,为用户带来更加便利的使用体验。
PID电加热炉温度控制系统

PID电加热炉温度控制系统工业炉是指在工业生产中,利用燃料燃烧产生的热量或者将电能转化成热量对工件或者物料进行加热的设备。
按供热方式工业炉分为两大类:一是火焰炉,或称燃料炉,是用各种燃料的燃烧热量在炉内对工件或者物料进行加热;二是电炉,是在炉内将电能转化为热能对工件或物料进行加热。
本文选用电炉作为控制模型。
无论是火焰炉还是电炉,温度控制都是其性能好坏的一个重要指标,是产品质量及安全生产的重要保证。
电炉作为一种加热系统,有着大滞后性、非线性、时变性等特点。
在工业运作过程中有一种最为常见的控制器就是PID控制器,由于其具有操作简单、算法通俗、效果良好等优势,因而在工业领域应用广泛,比如化工行业、轻热工行业、治金机械行业等。
那么何谓PID 控制?简而言之,就是对比例积分及微分控制的合称。
但同时,因PID 控制超调量大,对加热系统这样大滞后、非线性、时变的系统,参数整定值只是具有一定的局域性的优化,不能达到很好的全局控制效果。
因此实际使用中在PID控制器中加入模糊控制,使系统能达到较好的控制效果。
1 系统结构如图1所示,将炉体划分为8个温控区。
图1 炉体温控区划分该热处理工业炉为长8m、宽2m的单炉膛炉加热炉,因为长度较大,所以在控制上将其分为8个温度控制区。
每一个温度控制区设一个加热控制器、两个热电偶传感器、一组电阻丝加热管。
2 系统组成系统由温度传感器、计算机、西门子PLC、电加热器、电热控制器和无纸记录仪等组成。
温度传感器:温度传感器是指能感受温度并转换成可用输出信号的传感器。
西门子PLC:从温度传感器采集到的信号连接到PLC中,通过PLC中的温度控制程序计算输出4~20mA信号控制电加热控制器输出功率。
电加热器:系统加热部件。
电热控制器:通过输入的4~20mA信号,改变输出电加热器功率,从而达到控制温度变化的效果。
系统按炉体结构,划分为8个温度控制区,每一个温度控制区设两组电加热器、两组温度传感器。
电锅炉温度控制系统的设计

单位代码01学号100119064分类号TP273+.2密级毕业设计说明书电锅炉温度控制系统的设计院(系)名称信息工程学院专业名称测控技术与仪器学生姓名邓继文指导教师吴娟2014年4月25日电锅炉温度控制系统的设计摘要电锅炉温度智能控制系统在工业生产和科研工作中占有重要的地位。
锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标。
温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。
尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。
因此,在锅炉运行中,保证温度在正常范围是非常重要的。
基于单片机技术实现的电锅炉温度控制系统主要由温度检测电路、温度控制电路、温度显示电路三个部分组成。
在本次设计中,选用符合测量温度范围要求的热电偶温度传感器来实现数据采集,用仪表放大电路对电压信号进行放大,实现对温度的检测和信号的传输;用单片机对所采集的数据进行处理后,再进行相应的控制,从而实现对温度的控制;采用LCD1602液晶显示器将处理的数据进行实时显示。
然后根据设计电路进行了实际制作和测试分析,达到了预期的要求。
关键词:单片机,热电偶温度传感器,LCD,MAX6675The Design of the Electric Boiler Temperature Control SystemAuthor:Deng JiWenTutor:Wu JuanAbstractAnnealing temperature control system in industrial production and scientific research occupies an important bustion system of boiler steam drum is industrial steam boiler safe and stable operation of the important indicators.Temperature is too high, can make the steam with water too much, separation of poor, make the follow-up of superheater tube wall scaling, heat transfer efficiency drops, superheated steam temperature drop, serious when will cause steam quality to drop, affect the production and safety; Temperature is too low will damage part of the wall of the water cycle can't meet the technological requirements, serious happens when the boiler exploded.Especially large boiler, once the improper control, easy to make all of the water in the water or steam drum drum with vaporization, cause serious accident. Therefore, in boiler operation, it is very important to ensure that the temperature in the normal range.Based on single chip microcomputer technology to realize the electric boiler temperature control system is mainly composed of the temperature detection circuit, temperature control circuit, display circuit of three parts.In this design, choose to meet the requirements of measuring temperature range thermocouple temperature sensor to achieve data acquisition, instrument amplifier circuit of voltage signal is amplified and realize the temperature detection and signal transmission; After the data collected in the MCU, then the corresponding control, so as to realize the temperature control; Adopt LCD1602 LCD monitor the real-time display of data processing.Then according to the design of circuit are analyzed in actual production and testing, to achieve the desired requirements.Key words: MCU,Thermocouple Temperature Sensor,LCD,MAX6675目录1 绪论 (1)1.1 课题背景 (1)1.2 电锅炉简介 (1)1.3 电锅炉温度控制系统 (2)1.4 设计要求 (2)2 温度控制系统方案分析 (3)2.1 设计思想 (3)2.2 几种方案设计 (3)2.3 方案设计要求 (4)2.4 课题研究的意义 (4)3 电锅炉温度控制系统硬件设计 (6)3.1 温度检测电路 (6)3.1.1 热电偶传感器 (6)3.1.2 MAX6675电路 (6)3.2 温度显示单元电路 (8)3.3 温度控制电路 (10)3.3.1 蜂鸣器驱动电路 (10)3.3.2 继电器 (11)3.3.3 STC89C51单片机 (12)4 电锅炉温度控制系统软件设计 (18)5 电锅炉温度控制系统仿真 (20)5.1 电路仿真结果 (20)6 电锅炉温度控制系统设计实物图 (22)结论 (23)致谢 (24)参考文献 (25)附录 (26)附录A (26)附录B (26)1绪论1.1课题背景锅炉技术的发展受经济发展速度和投资规模因素影响,能源政策和节能、环保要求的制约等越来越严重。
电炉温度控制系统

引言前言:电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。
然而,大多数电阻炉存在着各种干扰因素。
一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。
起先由于电阻炉的发热体为电阻丝,传统方法大多采用仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率。
电阻炉微机自动程序温度控制系统就是通过单片机对加热炉的升、降温速率和保温时间进行严格控制的装置,它将温度变送、显示和数字控制集于一体,以微机控制为基础,以A/D转换器为核心,并配以适当的外围接口电路,实现对电阻炉温度自动控制。
摘要:自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
1.电加热炉温度控制系统的特性温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1.1所示。
图1.1被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图1.2所示。
如图1.3所示,设周期Tc内导通的周期的波数为n,每个周波的周期为T,则调功器的输出功率为P=n×T×Pn /Tc,Pn为设定周期Tc内电压全通过时候装置的输出功率。
图1.2 图1.3 执行器的特性:电炉的温度调节是通过调节剂(供电能源)的断续作用,改变电炉丝闭合时间Tb 与断开时间Tk的比值α,α=Tb/Tk。
调节加热炉的温度,在工业上是通过在设定周期范围内,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期内通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管是导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期Tc内导通的电压周波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引言前言:电阻炉在国民经济中有着广泛的应用,而大功率的电阻炉则应用在各种工业生产过程中。
然而,大多数电阻炉存在着各种干扰因素。
一直以来,人们采用了各种方法来进行温度控制,都没有取得很好的控制效果。
起先由于电阻炉的发热体为电阻丝,传统方法大多采用仪表测量温度,并通过控制交流接触器的通断时间比例来控制加热功率。
电阻炉微机自动程序温度控制系统就是通过单片机对加热炉的升、降温速率和保温时间进行严格控制的装置,它将温度变送、显示和数字控制集于一体,以微机控制为基础,以A/D转换器为核心,并配以适当的外围接口电路,实现对电阻炉温度自动控制。
摘要:自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。
随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。
1.电加热炉温度控制系统的特性温控系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图1.1所示。
图1.1被控制对象是大容量、大惯性的电热炉温度对象,是典型的多阶容积迟后特性,在工程上往往近似为包含有纯滞后的二阶容积迟后;由于被控对象电容量大,通常采用可控硅作调节器的执行器,其具体的电路图如图1.2所示。
如图1.3所示,设周期Tc内导通的周期的波数为n,每个周波的周期为T,则调功器的输出功率为P=n×T×Pn /Tc,Pn为设定周期Tc内电压全通过时候装置的输出功率。
图1.2 图1.3 执行器的特性:电炉的温度调节是通过调节剂(供电能源)的断续作用,改变电炉丝闭合时间Tb 与断开时间Tk的比值α,α=Tb/Tk。
调节加热炉的温度,在工业上是通过在设定周期范围内,将电路接通几个周波,然后断开几个周波,改变晶闸管在设定周期内通断时间的比例,来调节负载两端交流平均电压即负载功率,这就是通常所说的调功器或周波控制器;调功器是在电源电压过零时触发晶闸管是导通的,所以负载上得到的是完整的正弦波,调节的只是设定周期Tc内导通的电压周波。
2.电炉的电加热原理及方式当电流在导体中流过时,因为任何导体均存在电阻,电能即在导体中形成损耗,转换为热能,按焦耳楞次定律:Q=0.2412Rt,Q代表热能,单位卡;I代表电流,单位安9;R代表电阻,单位欧姆;t代表时间,单位秒。
按上式推算,当1千瓦小时的电能,全部转换为热能时Q=(0.24×1000×36000)/1000=864千卡。
在电热技术上按l千瓦小时=860千卡计算。
电炉在结构上是使电能转换为热能的设备,它能有效地用来加热指定的工件,并保持高的效率。
电阻炉按热量产生的方法不同,可分为间接加热式和直接加热式二大类。
间接加热式电阻炉、就是在炉子内部有专用的电阻材料做的发热元件。
电流通过加热元件时产生热量,再通过热的传导、对流、辐射而使放置在炉中的炉料被加热。
直接加热式电阻炉,电源直接接在所需加热的材料上,使强大的电流直接流过所需加热的材料而使材料自己发热达到加热效果。
3.温度控制系统组成3.1硬件部分一般电路有元件如:8031芯片、8255A芯片、74LS373芯片、6116芯片、2764芯片、ADC0809转换器、温度检测元件及变送器.温度调节仪是控温系统的核心部分,采用单片机控制,实现智能化,它主要由输入通道、输出通道、人机对话通道以及一些外围电路组成。
它把传感器送来的温度信号进行放大、比较、运算后,输出控制信号,触发执行装置,实现温度的自动控制,同时还实现多种温度传感器的转换、调零、调幅的软调整等功能。
主要设备:热电偶或热电阻,智能PID温控仪,可控硅触发调功器等。
图1.4 系统硬件组成3.2软件部分系统软件采用中断方式编程,主要部分是时钟中断程序,主要由输入处理程序、控制算法程序、显示处理、输出处理和自诊断程序等组成。
仪表通电启动后,初始化程序进行时间给定,每隔500ms时钟中断一次,中断后进入时钟中断处理。
对于纯滞后,大惯性环节控制对象,一般采用积分分离PID控制算法。
4.炉温自动控制原理根据炉温对给定温度的偏差,自动接通或断开供给炉子的热源能量,或连续改变热源能量的大小,使炉温稳定有给定温度范围,以满足热处理工艺的需要。
温度自动控制常用调节规律有二位式、三位式、比例、比例积分和比例积分微分等几种。
电阻炉炉温控制是这样一个反馈调节过程,比较实际炉温和需要炉温得到偏差,通过对偏差的处理获得控制信号,去调节电阻炉的热功率,从而实现对炉温的控制。
系统控制程序采用两重中断嵌套方式设计。
首先使T0计数器产生定时中断,作为本系统的采样周期。
在中断服务程序中启动A/D,读入采样数据,进行数字滤波、上下限报警处理,PID计算,然后输出控制脉冲信号。
脉冲宽度由T1计数器溢出中断决定。
在等待T1中断时,将本次采样值转换成对应的温度值放入显示缓冲区,然后调用显示子程序。
从T1中断返回后,再从T0中断返回主程序并且、继续显示本次采样温度,等待下次T0中断。
其原理在实际中表现有:1)二位式调节--它只有开、关两种状态,当炉温低于限给定值时执行器全开;当炉温高于给定值时执行器全闭。
(执行器一般选用接触器)2)三位式调节--它有上下限两个给定值,当炉温低于下限给定值时招待器全开;当炉温在上、下限给定值之间时执行器部分开启;当炉温超过上限给定值时执行器全闭。
(如管状加热器为加热元件时,可采用三位式调节实现加热与保温功率的不同)3)比例调节(P调节)--调节器的输出信号(M)和偏差输入(e)成比例。
即:M=ke,式中:K-----比例系数4)比例积分(PI)调节--为了“静差”,在比例调节中添加积分(I)调节积分,调节是指调节器的输出信号与偏差存在随时间的增长而增强,直到偏差消除才无输出信号,故能消除“静差”比例调节和积分调节的组合称为比例积分调节. 5) 比例积分微分(PID)调节--比例积分调节会使调节过程增长,温度的波动幅值增大,为此再引入微分(D)调节。
微分调节能加快调节速度,降低温度波动幅度,比例调节、积分调节和微分调节的组合称为比例积分微分调节。
(一般采用晶闸管调节器为执行器)。
根据生产现场的运行情况,这种控温方法,精度比较高,系统性能稳定,满足生产的实际需要。
5.控制算法原理控制算法为分段式PID控制。
在系统工作的大多数时间内,仅为PID控制,其参数由10%电源开度下的温度飞升曲线测得。
在温度响应曲线的由初态向设定点的上升段过程中,大致采用三段控制。
首先置电源为满开度,以最大的功输出克服热惯性;接下来转入PID控制;接近设定点时置电源开度为0,提供一个保温阶段,以适应温度的滞后温升。
具体参数及处理可见源程序。
出于实际考虑,程序在温度升至距设定点6/8度时,恢复PID控制,以缩短上升时间,尽快达到设定点。
本模型是一个温度类型模拟量的控制系统。
温度信号由铂热阻采集,变换为电阻信号后,直接送人热电阻/电阻信号输入模块(1746-NR4)。
在此模块中产生对应的D/A数字值,其对热电阻变送的温度信号的分辨率约为1/8度,处理中直接使用NR4的转换值,无需在硬件级电路上作其他处理。
处理器为SLC-5/04,通过DH+网同上位机(PC)通信;使用RS-view制作的人机界面中的数据上传和下传皆由此通道进行另外在Ethernet上,亦可将数据传送至局域网中的任一工作站。
执行机构由可控硅电压调整器(提供可控硅触发脉冲的控制下的输出移相触发方式)和一个双向可控硅构成。
调整器接受来自模拟量I/O模块的电压输出信号,以通过双向可控硅控制电源的开度,从而控制电源的输出功率。
6.系统仿真图1.5图1.67.主要的技术特性电阻炉消耗电能转换来的热能.一部分由电炉构筑材料及传热的各种因素而散失到空间去了,另一部分则用于对炉内工件的加热,前面的一部分形成了电炉损失功率,后一部分形成了电炉有效功率。
当电炉开始升温时,炉内砌砖体大量地吸收热量,以提高本身温度,在停炉冷下来时又把这一部分热量散失到空间去;这一部分形成炉体蓄热损失。
一台先进的电炉应具有低的空炉损失及高的有效功率。
一般工业电阻炉的效率。
小型电炉较低一些.大型电炉较高一些,从10—100千瓦的箱式电炉效率约为65-85%,空炉损失约占总功率的35--15%。
电炉从室温升到工作温度的时间对电炉的经济指标是有明显影响的,升温时间短则炉子投入正常使用的时间就较长每天的生产率就较高,每公斤工件的电耗量就降低,所以要尽量采用热惯性小的炉衬材料并降低炉体蓄热量来加快电炉的升温速度。
对连续作业炉其影响就不明显。
加热能力是一台电炉的主要技术指标,加热能力是指电炉的有效功率,从理论计算上在一个小时内能把指定的材料加热到额定温度的最大重量数,以公斤/小时计算。
8.用途工业电阻炉的主要用途是供机械工业对原材料、毛坯、机械另件加热用。
如板材轧制前的坯料加热,锻件的加热。
机械另件及半成品的热处理以改善其机械性能,如进杆淬火、回火、退火、正火、气体渗碳、氮化等。
亦有用于烧结、钎焊,部份电阻炉用于低熔点金属的熔炼及陶瓷玻璃工业的加热。
9.参考文献[1]刘复华.8098单片机及其应用系统设计[M].清华大学出版社,1991.[2]黄泽铣.热电偶原理及其检定[M].北京:中国计量出版社,1993.[3]陈建铎.8098单片机原理及其应用技术[M].北京:电子工业出版社,1997.[4]邹逢兴.微型计算机原理与接口技术[M].长沙:国防科技大学出版社,1993.[5]穆兰.单片微型计算机原理及接口技术[M].北京:机械工业出版社,1996.[6]沈德金,陈粤初.接口电路与应用程序例 [M].机械工业出版社,2003.[7]百度文库。