磁电式传感器

合集下载

磁电式传感器

磁电式传感器

,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 磁 电 式 传 感 器 的 概 述 03 磁 电 式 传 感 器 的 结 构 与 特 点 04 磁 电 式 传 感 器 的 应 用 实 例 05 磁 电 式 传 感 器 的 优 缺 点 分 析 06 磁 电 式 传 感 器 的 发 展 趋 势 与 前 景 展 望
微型化:随着 微电子技术的 发展,磁电式 传感器将不断 缩小体积,提 高精度和灵敏
度。
智能化:通过 集成AI技术, 磁电式传感器 可以实现自适 应、自学习等 功能,提高测 量精度和效率。
多功能化:磁 电式传感器将 不断拓展应用 领域,实现多 种物理量的测
量和监测。
网络化:通过 物联网技术, 磁电式传感器 可以实现远程 监控和数据共 享,提高测量 效率和可靠性。
工业自动化领域:用于检测机 器的运行状态、位置、速度等
医疗领域:用于检测病人的生 理信号,如心电图、血压等
结构简单,工作可靠,寿命长
灵敏度高,测量范围大
添加标题
添加标题
输出阻抗低,负载能力强
添加标题
添加标题
测量精度高,稳定性好
磁饱和现象: 当磁电式传感 器受到过强的 磁场干扰时, 会导致磁饱和 现象,影响测
量精度
温度影响:磁 电式传感器的 磁阻效应受温 度影响较大, 温度变化可能 导致测量误差
机械振动:机 械振动可能影 响磁电式传感 器的测量结果, 导致测量误差
输出阻抗高: 磁电式传感器 的输出阻抗较 高,需要配用 适当放大电路 才能获得理想
的测量结果
提高灵敏度和精度 减小温度和机械应力的影响 增强抗干扰能力 降低成本并提高可靠性

磁电式传感器

磁电式传感器

位置检测
用于检测汽车各部件的位置,如节气门位置、油门踏板位置等,实现精确控制。
车速检测
通过测量汽车轮速或发动机转速,将机械旋转转换为电信号,用于车速表、里程计等。
安全性应用
在制动系统、安全气囊等安全相关系统中,磁电式传感器用于检测关键参数,确保系统可靠运行。
03
导航系统
在惯性导航系统中,磁电式传感器用于测量飞行器的加速度和角速度,提供导航信息。
宽测量范围
快速响应:由于磁电感应原理的特性,磁电式传感器具有快速响应的特点。
磁电式传感器的性能可能受到温度的影响,需要进行温度补偿以保证测量准确性。
在某些情况下,磁电式传感器的输出信号与被测物理量之间可能存在非线性关系,需要进行校准和修正。
非线性误差
受温度影响
04
CHAPTER
磁电式传感器在各个领域的应用实例
03
02
01
将位移、角度等物理量转换为周期性变化的电信号,通过计数和处理得到被测物理量的数值。
原理
分辨率高,测量精度高,可靠性好,适用于高速、高精度测量系统。
特点
用于高精度位置反馈系统,如伺服电机控制系统、自动化生产线等。
应用
03
CHAPTER
磁电式传感器工作原理与性能参数
磁电感应原理
磁电式传感器利用磁电感应原理,将被测物理量的变化转换为感应电动势或感应电流的变化。当被测物理量与磁场相互作用时,会在传感器内部产生感应电动势或感应电流,进而实现测量。
智能化
通过集成多种测量原理和功能模块,磁电式传感器将实现多参数、多量程的测量,满足复杂应用场景的需求。
多功能化
灵敏度与稳定性
在复杂电磁环境下,提高磁电式传感器的抗干扰能力是关键,需要研究先进的噪声抑制和信号提取技术。

磁电式传感器

磁电式传感器
➢如果是P型半导体,载流子是空穴,若空穴浓度为p,同理 可得UH=IB/ped。
➢因RH=ρμ(其中ρ为材料电阻率;μ为载流子迁移率, μ=v/E,即单位电场强度作用下载流子的平均速度),一 般电子迁移率大于空穴迁移率,因此霍尔元件多用N型半 导体材料。
➢霍尔元件越薄(即d越小),kH就越大,所以通常霍尔元 件都较薄。薄膜霍尔元件厚度只有1μm左右。
一般频响范围:10Hz~2kHz。
(二)变磁通式
又称为变磁阻磁电感应式传感器,常用来测量旋转物体的 角速度。结构原理如下图。
1、开磁路变磁通式
工作原理:线圈3和磁铁5静止不动,测量齿轮2(导磁材 料制成)安装在被测旋转体1上,随之一起转动,每转过一 个齿,它与软铁4之间构成的磁路磁阻变化一次,磁通也就 变化一次,线圈3中产生的感应电动势的变化频率等于测量 齿轮2上齿轮的齿数和转速的乘积。
(三)磁电感应式扭矩仪(变磁通式)
1、结构组成:
转子(包括线圈)固定在传感器轴上,定子(永久磁铁) 固定在传感器外壳上。转子、定子上都有一一对应的齿和 槽。
2、测量原理:
➢测量扭矩时,需用两个传感器,将它们的转轴(包括线圈 和转子)分别固定在被测轴的两端,它们的外壳固定不动。
➢安装时,一个传感器的定子齿与其转子齿相对,另一个传 感器的定子槽与其转子齿相对。
定义:通过磁电作用将被测量(如振动、位移、转 速)转换成电信号的一种传感器。
分类: 磁电感应式传感器; 霍尔式传感器; 磁栅式传感器。
第一节 磁电感应式传感器
▪ 磁电感应式传感器简称感应式传感器,也称为电动 式传感器。它是利用导体和磁场发生相对运动而在 导体两端输出感应电动势的。它是一种机-电能量 变换型传感器。
在这种结构中,也可以用齿轮代替椭圆形测量轮2,软铁 (极掌)4制成内齿轮形式,这时输出信号频率为f=nZ/60, 其中Z为测量齿轮的齿数。

(第6章)磁电式传感器

(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

磁电式传感器

磁电式传感器

图7.2.4 霍尔元件的等效电路
7.2 霍尔式传感器
此时可根据A、B两点电位的高低,判断应在某 一桥臂上并联一定的电阻,使电桥达到平衡,从而 使不等位电势为零。几种补偿线路如图7.2.5所示。
RP
RP RP (a) (b) (c) R (d)

RP
图7.2.5 不等位电势补偿电路
7.2 霍尔式传感器
第7章 磁电式传感器
7.1 磁电感应式传感器 7.2 霍尔式传感器
7.1 磁电感应式传感器
磁电式传感器——通过电磁感应原理将被测量 (如振动、转速、扭矩)转换成电势信号。
利用导体和磁场发生相对运动而在导体两端输出 感应电势;属于机-电能量变换型传感器
优点: 不需要供电电源,电路简单, 性能稳定,输出阻抗小
此时电荷不再向两侧面积累,达到平衡状态。
7.2 霍尔式传感器
若金属导电板单位体积内电子数为n,电子定 向运动平均速度为v,则激励电流I=nevbd,即
I v nebd
代入上两式得
IB EH nebd IB UH ned
7.2 霍尔式传感器
式中令RH=1/ne,称之为霍尔系数(反映霍尔效 应强弱),其大小取决于导体载流子密度, 则
等 效 机 械 系 统 Vo为传感器外壳的运动速度,即被测物体运动速度; Vm为传感器惯性质量块的运动速度。
7.1 磁电感应式传感器
若V(t)为惯性质量块相对外壳的运动速度 运动方程
dV0 (t ) dV (t ) m cV (t ) K V (t )dt m dt dt
Av ( ) ( / n ) 2 1 ( / n ) 2 [ 2 ( / n ) 2 ]
7.1 磁电感应式传感器

磁电式传感器课件

磁电式传感器课件

34
2. 工作原理
空穴
电子
磁场H = 0:
(a)
P
→ →→
i
←←←
N 电流
少量电子和空穴

复合区 H=0
I 区、r区复合
(b) P
i
H+
N 电流
正向磁场 H+ : 电子和空穴偏向 r 区, 电流因复合增大而减小
(c)
P
i
H-
N 电流
反向磁场 H- : 电子和空穴偏向 I 区, 电流因复合减少而增大
这种传感器工作磁场恒定,线圈和磁铁两者间 产生相对运动,切割磁场线而产生感应电势。
动圈式
动铁式
4
恒磁通式磁电传感器的结构原理图
e WBLvsin
e WBLvsin
e WBAsint
5
(二)变磁通式磁电式传感器(磁阻式)
线圈和磁铁部分都是静止的,与被测物连 接而运动的部分是用导磁材料制成的,在运动 中,它们改变磁路的磁阻,因而改变贯穿线圈 的磁通量,在线圈中产生感应电动势。
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
结构: 稳压器、霍尔片、 差分放大器,施 密特触发器和输
地 2 出级等部分组成。
24
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
工作原理:
有磁场:UH >开启阈值,
高电平,VT导通 开状态
磁场减弱:UH <断开阈值,
地 2 低电平,VT截止 关状态
45
谢谢!
46
2. 已知某霍尔元件尺寸为长L=10mm,宽 b=3.5mm,厚d=1mm。沿L方向通以电流 I=1.0mA,在垂直于L×b方向上加均匀磁场 B=0.3T,输出霍尔电势UH=6.55mV。求该霍尔 元件的灵敏度系数KH和载流子浓度n是多少?

磁电式传感器的工作原理

磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。

磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。

本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。

二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。

根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。

这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。

根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。

2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。

磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。

磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。

根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。

3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。

磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。

常见的磁电材料包括铁电材料和磁电材料。

电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。

封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。

相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。

4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。

当存在磁场时,磁电材料会产生相应的电场变化。

根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。

传感器原理及应用第六章 磁电式传感器

传感器原理及应用第六章 磁电式传感器

两者工作原理是完全相同的。 当壳体随被测振动体一起 振动时, 由于弹簧较软, 运动部件质量相对较大。当振动频率 足够高(远大于传感器固有频率)时, 运动部件惯性很大, 来 不及随振动体一起振动, 近乎静止不动, 振动能量几乎全被弹 簧吸收, 永久磁铁与线圈之间的相对运动速度接近于振动体振 动速度, 磁铁与线圈的相对运动切割磁力线, 从而产生感应电 势为
(一)磁电感应式传感器的工作原理
电磁式传感器工作原理
当一个W匝线圈相对静止地处于随时间变化的磁场中时,设穿 过线圈的磁通为Ф,则整个线圈中所产生的感应电动势e为
e W d dt
(二)磁电感应式传感器的结构及特点
1、磁电感应式传感器的结构
磁电式传感器基本上由以下三部分组成: ①磁路系统:它产生一个恒定的直流磁场,为了减小传感器 体积,一般都采用永久磁铁; ②线圈:它与磁铁中的磁通相交产生感应电动势; ③运动机构:它感受被测体的运动使线圈磁通发生变化。
式(7 - 7)可得近似值:
γt ≈(-4.5%)/10 ℃
(Hale Waihona Puke - 8)这一数值是很可观的, 所以需要进行温度补偿。 补偿通常采
用热磁分流器。热磁分流器由具有很大负温度系数的特殊磁
性材料做成。它在正常工作温度下已将空气隙磁通分路掉一
小部分。当温度升高时, 热磁分流器的磁导率显著下降, 经它
分流掉的磁通占总磁通的比例较正常工作温度下显著降低, 从
而保持空气隙的工作磁通不随温度变化, 维持传感器灵敏度为
常数。
(三)磁电感应式传感器的转换电路
磁电式传感器直接输出感应电势, 且传感器通常具有较高 的灵敏度, 所以一般不需要高增益放大器。但磁电式传感器是 速度传感器, 若要获取被测位移或加速度信号, 则需要配用积 分或微分电路。 图为一般测量电路方框图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此外,霍尔片电阻率不均匀,或片厚薄不 均匀,或控制电流极接触不良都将使等位 面歪斜,如图所示,致使两霍尔电极不在 同一等位面上而产生不等位电动势。
2) 寄生直流电势
在无磁场的情况下,元件通入交流电流,输出端除交流不等位电 压以外的直流分量称为寄生直流电势。产生寄生直流电势的原因 有两个方面:(1)由于控制电极焊接处接触不良而造成一种整流 效应,使控制电流因正、反向电流大小不等而具有一定的直流分 量。(2)输出电极焊点热容量不相等产生温差电动势。对于锗霍 尔元件,当交流控制电流为20 mA时,输出电极的寄生直流电压小 V 。 于100
6.2.1 霍尔传感器的工作原理 1.霍尔效应 半导体薄片臵于磁感应强度为B 的磁场中,磁场方向垂直 于薄片,当有电流I 流过薄片时,在垂直于电流和磁场的方向 上将产生电动势EH,这种现象称为霍尔效应。
B C A 磁感应强度B为零时的情况 D
第6章 磁电式传感器
当有图示方向磁场B作用时
作用在半导体薄片上的磁场强度 B越强,霍尔电势也就越高。 霍尔电势EH可用下式表示: EH=KH IB
第6章 磁电式传感器
6.1.2 变磁通式磁电感应传感器结构与工作原理 变磁通式磁电感应传感器一般做成转速传感器,产生感应电动 势的频率作为输出,而电动势的频率取决于磁通变化的频率。 变磁通式转速传感器的结构有开磁路和闭磁路两种。
如图所示开磁路变磁通式转速传感器。 测量齿轮4安装在被测转轴上与其一起 旋转。当齿轮旋转时,齿的凹凸引起 磁阻的变化,从而使磁通发生变化, 因而在线圈3中感应出交变的电势,其 频率等于齿轮的齿数Z和转速n的乘积, 即
f Zn /60
式中:Z为齿轮齿数;n为被测轴转速(v/min);f为感应 电动势频率(Hz)。这样当已知Z,测得f就知道n了。
第6章 磁电式传感器
开磁路式转速传感器结构比较简单,但输出信号小,另外当被 测轴振动比较大时,传感器输出波形失真较大。在振动强的场 合往往采用闭磁路式转速传感器。
第6章 磁电式传感器
第6章 磁电式传感器 在上述的4种零位误差中,寄生直流电动势、感应零电动势以及 自激场零电动势,是由于制作工艺上的原因而造成的误差,可以 通过工艺水平的提高加以解决。而不等位电动势所造成的零位误 差,则必须通过补偿电路给予克服。 霍尔元件结构及等效电路如图
在理想情况下R1=R2=R3=R4,即可取得零位电动势为零(或零位电阻 为零),从而消除不等位电动势。实际上,若存在零位电动势,则 说明此4个电阻不完全相等,即电桥不平衡。为使其达到平衡,可 在阻值较大的桥臂上并联可调电阻 R P 或在两个臂上同时并联电阻 RP 和R。
第6章 磁电式传感器
第6章 磁电式传感器
Magneto electric sensors
第6章 磁电式传感器
6.1 磁电感应式传感器
磁电感应式传感器又称电动势式传感器,是利用电磁感应原理 将被测量(如振动、位移、转速等)转换成电信号的一种传感器。 它是利用导体和磁场发生相对运动而在导体两端输出感应电动势 的。它是一种机-电能量变换型传感器,不需要供电电源,电路简 单,性能稳定,输出阻抗小,又具有一定的频率响应范围(一般为 10~1000 Hz),所以得到普遍应用。 磁电感应式传感器是以电磁感应原理为基础的。由法拉第电磁 感应定律可知,N 匝线圈在磁场中运动切割磁力线或线圈所在磁场 的磁通变化时,线圈中所产生的感应电动势E(V)的大小取决于穿过 线圈的磁通 Wb 的变化率,即
第6章 磁电式传感器
霍尔元件零位误差补偿电路
2.霍尔元件的温度误差及补偿 与一般半导体一样,由于电阻率、迁移率以及载流子浓度随温 度变化,所以霍尔元件的性能参数如输入、输出、电阻、霍尔 常数等也随温度而变化,致
N型锗(Ge) N型硅(Si) 锑化铟(InSb) 砷化铟(InAs)
/(cm² s) /V·
3500 1500 60000 25000
电子迁移率
霍尔系数 RH/(cm³ -1) · C
4250 2250 350 100
1/2
4000 1840 4200 1530
磷砷铟(InAsP)
0 z
式中: z 为传感器定子、转子的齿 数。
第6章 磁电式传感器
6.2
霍尔式传感器
霍尔式传感器是基于霍尔效应而将被测量转换成电动势输出的 一种传感器。霍尔器件是一种磁传感器,用它们可以检测磁场及 其变化,可在各种与磁场有关的场合中使用。
霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻, 寿命长,安装方便,功耗小,频率高(可达1 MHz),耐振动,不怕 灰尘、油污、水汽及盐雾等的污染或腐蚀。
被测转轴带动椭圆形测量轮5在磁场气隙中等速转动,使气隙 平均长度周期性地变化,因而磁路磁阻和磁通也同样周期性地 变化,则在线圈3中产生感应电动势,其频率f与测量轮5的转 速n(r/min)成正比,即f = n/30。在这种结构中,也可以用齿轮 代替椭圆形测量轮5,软铁(极掌)制成内齿轮形式,这时输出 信号频率f 同前式。
按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关 器件,前者输出模拟量,后者输出数字量。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无 磨损、输出波形清晰、无抖动、无回跳、位臵重复精度高(可达
m 级)。采用了各种补偿和保护措施的霍尔器件的工作温度范围
宽,可达-55~+150℃。
第6章 磁电式传感器
金属材料中的自由电子浓度n很高,因此RH很小,不宜作霍尔 元件。霍尔元件多用载流子迁移率大的N型半导体材料制作。 另外,霍尔元件越薄(d越小),kH 就越大,所以通常霍尔元件 都较薄。薄膜霍尔元件的厚度只有1 m左右。
第6章 磁电式传感器
2.霍尔元件 霍尔片是一块矩形半导体单晶薄片(一般为4 mm×2 mm×0.1 mm), 经研磨抛光,然后用蒸发合金法或其他方法制作欧姆接触电极, 最后焊上引线并封装。而薄膜霍尔元件则是在一片极薄的基片上 用蒸发或外延的方法做成霍尔片,然后再制作欧姆接触电极,焊 上引线最后封装。一般控制端引线采用红色引线,而霍尔输出端 引线则采用绿色引线。霍尔元件的壳体用非导磁金属、陶瓷或环 氧树脂封装。
0.1~1000 m 外形尺寸 1.9 k 质量
604 mV· cm-1 工作线圈内阻 s·
第6章 磁电式传感器 3.扭矩测量
当转轴不受扭矩时,两线圈输出 信号相同,相位差为零。当被测轴 感受扭矩时,轴的两端产生扭转角, 因此两个传感器输出的两个感应电 动势将因扭矩而有附加相位差 。 0 扭转角 与感应电动势相位差的关 系为
第6章 磁电式传感器
2) 霍尔元件的材料 锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)和砷化镓 (GaAs)是常见的制作霍尔元件的几种半导体材料。表6-2所列 为制作霍尔元件的几种半导体材料主要参数。
禁带宽度 Eg/(eV) 0.66 1.107 0.17 0.36 电阻率 /(Ω · cm) 1.0 1.5 0.005 0.0035
(4) 霍尔元件的电阻温度系数α:表示在不施加磁场的条件下, 环境温度每变化1℃时电阻的相对变化率,单位为%/℃。 (5) 霍尔寄生直流电势U0:在外加磁场为零、霍尔元件用交流激 励时,霍尔电极输出除了交流不等位电动势外,还有一直流电势, 称为寄生直流电势。 (6) 霍尔最大允许激励电流 I max :以霍尔元件允许最大温升为 限制所对应的激励电流称为最大允许激励电流。
第6章 磁电式传感器 3) 感应零电动势 感应零电动势是在未通电流的情况下,由于 脉动或交变磁场的作用,在输出端产生的电 动势。根据电磁感应定律,感应电动势的大 小与霍尔元件输出电极引线构成的感应面积 成正比,如图所示。 4) 自激场零电动势
霍尔元件控制电流产生自激场,如图所示。 由于元件的左右两半场相等,故产生的电动 势方向相反而抵消。实际应用时由于控制电 流引线也产生磁场,使元件左右两半场强不 等,因而有霍尔电动势输出,这一输出电动 势即是自激场零电动势。
(a) 霍尔元件外形
(b)电路符号
(c) 基本应用电路
第6章 磁电式传感器
3.霍尔元件的主要特性及材料
1) 霍尔元件的主要特性参数
(1) 灵敏度kH:表示元件在单位磁感应强度和单位控制电流下所 得到的开路霍尔电动势,单位为V/(A·T)。 (2) 霍尔输入电阻Rin:霍尔控制电极间的电阻值。
(3) 霍尔输出电阻Rout:霍尔输出电极间的电阻值。
第6章 磁电式传感器
霍尔效应演示
B
C D A
当磁场垂直于薄片时,电子受到洛仑兹力的作用,向内 侧偏移,在半导体薄片A、B方向的端面之间建立起霍尔电 势。
第6章 磁电式传感器 可以推出,霍尔电动势UH的大小为:
U H kH IB cos
式中:kH为灵敏度系数,kH= RH/d,表示在单位磁感应强度和单 位控制电流时的霍尔电动势的大小,与材料的物理特性(霍尔系 数)和几何尺寸d有关; 霍尔系数RH=1/(nq),由材料物理性质 所决定,q为电子电荷量 ;n为材料中的电子浓度。 为磁场 和薄片法线夹角。 结论:霍尔电势与输入电流I、磁感应强度B成正比,且当B的 方向改变时,霍尔电势的方向也随之改变。如果所施加的磁场 为交变磁场,则霍尔电势为同频率的交变电势。
不等位电动势是零位误差中最主要的一种, 它是当霍尔元件在额定控制电流(元件在空气 中温升10℃所对应的电流)作用下,不加外磁 场时,霍尔输出端之间的空载电动势。
不等位电动势产生的原因是由于制造工艺 不可能保证将两个霍尔电极对称地焊在霍 尔片的两侧,致使两电极点不能完全位于 同一等位面上。
第6章 磁电式传感器
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度( E / v )是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。
相关文档
最新文档