纯电动汽车锂离子电池的热分析及散热结构设计

合集下载

电子电路PCB的散热分析与设计

电子电路PCB的散热分析与设计

电子电路PCB的散热分析与设计随着科技的不断发展,电子设备已经成为了我们生活中不可或缺的一部分。

然而,在电子设备运行过程中,由于电路板上的元器件会产生大量的热能,如果散热不良,会导致设备性能下降、可靠性降低甚至出现安全问题。

因此,针对电子电路PCB的散热分析与设计至关重要。

本文将结合实际案例,对电子电路PCB的散热问题进行分析和讨论。

电路板的热阻:热阻是表示热量传递难易程度的物理量,值越小表示热量传递越容易。

电路板的热阻主要包括元器件的热阻和电路板本身的热阻,其中元器件的热阻受到其功耗、结点温度等因素的影响。

自然对流:自然对流是指空气在温度差的作用下产生的流动现象。

在电子设备中,自然对流可将热量从电路板表面传递到周围环境中,从而降低电路板温度。

然而,自然对流的散热效果受到空气流动速度、环境温度等因素的影响。

强迫通风:强迫通风是通过风扇等装置强制空气流动,以增强电子设备的散热能力。

强迫通风的散热效果主要取决于风扇的功率、风量等因素。

选择合适的导热材料:导热材料具有将热量从高温区域传导到低温区域的能力,常用的导热材料包括金属、陶瓷、石墨烯等。

在电路板设计中,应根据元器件的功耗和结点温度等因素,选择合适的导热材料。

提高电路板表面的散热能力:提高电路板表面的散热能力可以有效降低电路板的温度。

常用的方法包括增加电路板表面积、加装散热片、使用热管等。

合理安排元器件的布局:元器件的布局对电路板的散热效果有着重要影响。

在布局时,应尽量将高功耗元器件放置在电路板的边缘或中心位置,以方便热量迅速散出。

同时,应避免将高功耗元器件过于集中,以防止局部温度过高。

增强自然对流:自然对流是电路板散热的重要途径之一。

在电路板设计中,应尽量减少对自然对流的阻碍,如避免使用过高的结构、保持电路板表面的平整度等。

可在电路板下方或周围增加通风口或风扇等装置,以增强自然对流的散热效果。

采用强迫通风:强迫通风可以显著提高电子设备的散热能力。

纯电动汽车磷酸铁锂电池的热特性参数辨识和热仿真分析

纯电动汽车磷酸铁锂电池的热特性参数辨识和热仿真分析

汽车专栏Automobile纯电动汽车磷酸铁锂电池的热特性参数辨识和热仿真分析刘杨,赵中阁(中国航空综合技术研究所,北京100028)摘要:磷酸锂铁作为新型的高能化学电源,常被用作纯电动汽车电池。

因此,需要对磷酸锂特电池的热性能进行研究。

本文以某型号磷酸锂铁电池单体为研究对象。

研究磷酸锂铁电池的生热和传热机制。

建立电池的电化学一热耦合模型,并对电池的热物性参数进行计算,对电池的生热速率模型进行选取。

应用计算得到的电池热物性参数,对磷酸锂铁电池单体进行CFD模型建立。

应用非接触式热测量方式对CFD模型进行模型校核。

运用FloTHERM热分析软件对磷酸锂铁电池组在不同散热条件下的温度场进行仿真,为电池组的设计和优化提供参考和指导。

关键词:磷酸铁锂电池;热特性;CFD仿真;热测试中图分类号:TM911文献标识码:A文章编号:1004-7204(2020)05-0013-07Thermal Characteristic Analysis and Simulation of Lithium Iron PhosphateBatteryLIU Yang,ZHAO Zhong-ge(China Aero-polytechnology Establishment,Beijing100028)Abstract:As a new type of high-energy chemical power supply,lithium iron phosphate ba/tteries are often used as power source of pure electrie vehicles.Therefore,it is necessary to study the thermal performance of lithium iron phosphate batteries.A certain type of lithium iron phosphate battery cell is taken as research object in this paper to study the heat generation and transfer mechanism of lithium iron phosphate batteries.The thermo-physical parameters of the cell are calculated and the heat generation model is selected.Besides,the CFD(Computa/tional Fluid Dynamics)model of the lithium iron phosphate battery cell is established out of the thermophysical parameters.FloTHERM is used to Simulate the temperature profile of the cell under different working conditions.The temperature is also tested by non-contact temperature measurement.It provides reference and guidance for battery pack design and optimization.Key words:lithium iron phosphate ba/ttery;thermal characteristics;CFD Simulation;thermal test引言温度影响着磷酸铁锂电池的性能、安全性和寿命。

纯电动汽车锂离子电池热效应的建模及仿真

纯电动汽车锂离子电池热效应的建模及仿真

纯电动汽车锂离子电池热效应的建模及仿真侯永涛;赛羊羊;孟令斐;石杰【摘要】电池热模型可用来研究电池内部的温度分布和热传递,从而进一步提高电池的安全性能.通过实验测得不同温度和荷电状态(soc)下电动车用锂离子电池内阻的变化情况,拟合得到电池内阻和SOC的关系表达式.通过Fluent软件建立了锂离子电池的单体温度场模型并进行仿真.仿真结果表明电池壳体对电芯的散热作用明显,在建模时不能忽略;电池正负极耳对电池整体的温度影响不大,在进行电池组建模时为了加快运算,可以忽略电池极耳.【期刊名称】《电源技术》【年(卷),期】2016(040)006【总页数】4页(P1185-1188)【关键词】锂离子电池;热模型;内阻;Fluent;仿真【作者】侯永涛;赛羊羊;孟令斐;石杰【作者单位】江苏大学机械工程学院,江苏镇江212013;江苏大学机械工程学院,江苏镇江212013;江苏大学机械工程学院,江苏镇江212013;江苏大学机械工程学院,江苏镇江212013【正文语种】中文【中图分类】TM912随着纯电动汽车的推广应用,锂离子电池的安全性受到越来越多的关注。

锂电池的安全问题主要是由电池的滥用和热失控引起的,锂离子电池的热模型研究也因此成为该领域的研究热点之一。

通过建立热模型,可以预测电池内部温度的分布以及热传递过程,从而进一步精确分析热失控现象,为提高电池的安全性能提供保障。

锂离子电池热模型主要通过基本传热方程和能量平衡描述电池内部的热效应;或将热量方程引入到电化学模型中,形成电化学-热耦合模型,Chen和Evans先后建立了二维和三维的热传导模型[1],提出了一个描述电池整体生成热的方程,用以计算电池内部的温度分布。

随后,Pals等模拟了单电池和电池组内部的热量传导行为[2],建立了锂离子电池包含热效应和能量平衡的通用模型。

电化学-热耦合模型从电化学反应生热的角度描述电池热模型,可用于仿真电池在正常工作状态下的温度情况。

锂离子电池中的热重差热分析方法(TG-DSC)参数选择和曲线分析

锂离子电池中的热重差热分析方法(TG-DSC)参数选择和曲线分析

锂离子电池中的热重差热分析方法(TG-DSC)的参数选择和曲线分析一.测试原理在锂离子电池研究分析中,热重差热分析方法(TG-DSC)一般用来研究锂离子正负极材料的合成分析研究中,用来指导改善合成条件。

热重差热分析方法(TG-DSC)其实是2种分析方法,是热重分析和差热分析,为了测试方便,通常把这2种方法合成在一起通过热重差热仪,测试一个样品可以得到2种曲线。

热重分析原理:在程序控温下,测量物质与温度的关系的技术(包括在恒温下,测量物质的质量与时间的关系)差热分析原理:差热分析的基本原理是将被测物质与参比物质放在同一条件的测温热电偶上,在程序温度控制下,测量物质与参比物之间温度差与温度变化的一种技术。

其实际就是通过测量材料状态改变时产生的热力学性能变化,来判断材料物理或化学变化过程。

通过重量和热量的变化可以推测材料在升温过程中,材料发生的变化。

二.电池材料测试过程中的差热热重分析数据的受哪些因素的影响呢?(1)样品与称量皿选择选择好样品后,选择称量皿时必须考虑样品在选定的温度范围内不发生化学反应。

否则肯定会影响测定结果。

(2)升温速率的选择升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。

比如锂离子磷酸铁锂正极材料的温升速度一般选择为5°/min-10°/min之间。

(3)材料粒度样品的粒度大,材料内部的气体就不容易挥发出来,这样会影响曲线的变化,太细,就容易导致差热曲线往低温方向移动。

锂离子电池的测试中,比如正极材料,一般为纳米或者微米级别。

(4)样品的用量样品的用量也会影响测试数据,试样量小, 测试设备的灵敏度会下降。

试样量大的优点是可以观察到细小的转变,可以得到较精确的定量结果。

在正极材料的测试中,一般测试的样品要求在5~30 mg之间变动。

(5)气氛的影响(氧化/还原、 惰性, 热导性, 静态/动态)一般锂离子电池材料测试中,采用惰性气体进行保护测试。

锂离子电池温升特性分析及液冷结构分析

锂离子电池温升特性分析及液冷结构分析

近年来,我国在电动汽车的制造过程中把动力电池作为电动汽车得以发展的核心问题,尤其以锂离子电池高比能量、高电压、高功率能够使得电动汽车在工作的过程中具有良好的动力和耐久性。

但如今的锂离子电池由于开发得程度不足存在着些许问题,例如,在高温或者低温的环境下会使电池包性能降低。

并且一旦汽车在这种环境下进行驾驶的过程中,可能导致电池包内大量热量聚集在电池包内部,影响电池包的总体性能。

因而科研人员不得不研究电动汽车在不同条件下电池包的温升状态,并寻求在其行驶过程中所产生的散热性不佳的问题的解决方法。

因此我们实际调研,对电池包温度场的测控和数据采样,本文在研究过程中首先采集实车电流进行拟合仿真电池包的温升状态后进行数据采样分析并探究液冷结构下汽车的温升程度。

1锂离子电池温升特性1.1电池温升过程中影响因素随着科研投入的增加,人们逐渐把汽车制造转移到电动汽车研发上来,那么电池就是极其重要的问题,因此,在探究锂离子电池的温升过程中影响它温升的因素。

首先,应了解电池的组成,例如,锂离子电池,它的正极材料是由镍、钴、锰等化合构成,整个电池制造中又有电解液、薄膜、铝箔、铜箔等的加入,最终形成锂离子电池[1]。

而依据材料中的金属来看,其所采用的金属其本身导热性就比较强,因而这也是其电池在工作中容易达到很高温升的影响因素之一。

其次,应探求电池本身的热物性,说到热物性,就不得不对电池进行热物性参数进行计算。

电池热物性参数包括:比热容、导热系数以及密度。

比热容采用质量加权方法进行计算,密度可用质量和体积求出,导热系数采用计算电路等效电阻的方法计算电池三个方向导热系数。

最终可以从分析得到电池本身具有的热物性是影响其温升的重要因素。

最后,就谈到得影响电池温升的因素就是电池内阻。

电池内阻因为受温度的影响比较大,尤其是在低温度小于零摄氏度的低温的环境下,其内阻快速增加。

当在实际温度大于零摄氏度的环境,电池内阻变化较小[2]。

1.2对锂离子电池进行建模分析在对锂离子电池的研究不应该局限于理论上的研究,对于这种温升过程应该通过大量的实践进行对其特性的验证。

电动汽车锂离子电池组散热优化设计

电动汽车锂离子电池组散热优化设计

s me h a si a in sr c u e,b o ng ma e et rc o i g ef c h n s ci n;a d t e c a g flc l a e tdisp to tu t r lwi k sb t o ln fe tt a u to e n h h n e o a o
进风 口流速超 过 某一 范 围 ( 0m s 时 , 热效 果递 增 不 明显 ; 于相 同的散 热结 构 , 风 冷却 效果 3 / ) 散 对 鼓
明显优 于抽 风 冷却 效果 ; 通过 电池组局 部倒 角等局部 微 小结 构 可 以实现 温 度场优 化 . 关键 词 :电动 汽 车 ; 离子 电池组 ;温度 场 ;散 热 ;F U N 锂 LET 中 图分 类 号 :U 6 .2 4 3 4; B 1 . 4 9 7 ;U 7 . T 15 2 文 献标 志码 : A
收 稿 日期 : 0 10 —8 修 回 日期 : 0 10 -7 2 1—2 2 2 l —52
基 金 项 目 :国 家重 点 基 础研 究发 展 计 划 ( 九 七 三 ” 划 ) 2 1 C 7 10 ) “ 计 (0 1 B 123
作 者 简 介 :杨 志 刚 ( 9 l ) 男 , 宁鞍 山 人 , 16 一 , 辽 教授 , 导 , 士 , 究 方 向 为 车 辆 工程 及 空 气 动 力 学 , Ema )hgnyn @ t gieu c 博 博 研 ( — i ziagag o j d .n l n .
间很 有 限 , 时车 用锂 离 子 动力 电池 在 充 放 电过 程 同 中会 伴随很 大 的热 流 量 , 如果 不 及 时散热 , 容易 引 很 起 电池 内的热 量 累积 , 响 电池 的性 能 和安 全. 果 影 如 散 热 不均 匀 , 会 造成 电池 组 内温差 很大 . 更 电池组 温

电动汽车用锂离子电池热管理系统的研究

电动汽车用锂离子电池热管理系统的研究

电动汽车用锂离子电池热管理系统的研究摘要:电动汽车改变了传统汽车的供应体系,其核心技术包括3种:电机、电池和电控系统,而电池性能和成本直接决定新能源车的使用经济性。

作为电动汽车核心部件之一的动力电池,随电动汽车行业的崛起迅速发展起来。

近年来,在政策、市场等的多项驱动下,电动汽车动力电池产业发展提速,特别是2020年疫情过后,动力电池产业呈现出诸多全新特点。

本文就其锂离子电池热管理系统展开了探究。

关键词:电动汽车;锂离子电池;热管理系统1电动汽车用锂离子电池发展现状1.1安全性依然是动力电池领域布局重点电池安全问题一直备受关注,2020年国内就有多企业布局“永不起火”的电池,如比亚迪刀片电池、宁德时代811、孚能科技“永不起火”电池、欣旺达“只冒烟、不起火”动力电池解决方案、蜂巢能源果冻电池等,2021年上半年广汽、东风等企业同样加速布局。

广汽埃安“弹匣电池”:弹匣电池技术是一个从电芯本征安全提升、整包被动安全强化、再到主动安全防控的一整套安全技术。

搭载“弹匣电池”技术的三元锂电池系统,针刺后只有被刺电芯模块热失控而不会蔓延至其它电芯模块,从而实现三元锂电池系统针刺不起火的高安全水平。

东风岚图“琥珀电池”:电芯三维隔热墙设计、电池安全监测和预警模型、电池PACK设计,在电池包热失控触发并发出热事件报警信号后,做到了“三不”现象(不起火、不冒烟、不爆炸)。

“琥珀电池”已经进入了量产阶段,并且将于今年第3季度上市交付。

1.2新型电池技术路线多有布局,短期内难取代锂离子电池1.2.1全气候电池为了解决电动汽车冬季续驶里程的问题,全气候电池进入大众视野。

全气候电池采用电池自加热技术,能快速提升电池温度。

基于自加热技术的电池系统可在30s内使电池温度从-20℃上升到0℃以上。

而传统的外部加热技术可能需要长达30min,并且能耗高、效率低。

然而,当前全气候电池仍处于试验阶段,对于未来是否能在乘用车领域大规模普及仍未可知。

基于ANSYS的18650锂离子电池单体稳态热分析

基于ANSYS的18650锂离子电池单体稳态热分析

15483 个,该尺寸网格可以保证其结果的收敛性[7]。18650 锂 离子电池网格划分如图 2 所示。
图 2 18650 锂离子电池单体网格划分
3、计算结果及分析
图 1 简化 18650 锂离子电池单体模型 2.2 材料参数
选择磷酸铁锂电池作为分析对象,根据电池单体分配材 料属性,设置电池各个材料的比热容和热传导系数。材料参 数[4]如表 1 所示。
18650 lithium ion battery based on ANSYS Steady state thermal analysis
Yu Xiaoqing, Chen Guoxi, Zou Jialin, Chen Dongyun, Wang Xuanyi ( Institute of advanced manufacturing engineering of chongqing university of posts and
引言
1、仿真计算理论依据
锂离子电池因其大容量、高电压、良好的安全性能及循 环性能等优越性能广泛应用于电动汽车行业[1],但其在使用 过程中过度放热会引起电池内部温度异常升高,缩短电池的 使用寿命,因此需要对电池温度场分析研究[2]。本文利用 ANSYS 软件,建立 18650 锂离子电池单体模型,进行热分 析研究,对 18650 锂离子电池在使用过程中的温度场分布进 行模拟,得到热分析结果。在实际工程中,该分析结果为锂离 子电池温度场的分布测定和优化设计提供了一定的理论依 据。
telecommunications, Chongqing 400065 )
Abstract: Lithium-ion batteries superior performance is widely used in electric cars, but in use process will be a large number of fever, pose a safety hazard. For 18650 lithium battery monomer three-dimensional model is established, using the finite element analysis software ANSYS to simulate its specific operating mode, 18650 lithium-ion battery monomer the temperature field of hot condition. Keywords: 18650 lithium batteries; ANSYS; The steady state thermal analysis; The temperature field CLC NO.: U469.7 Document Code: A Article ID: 1671-7988 (2017)07-18-02
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.在现有电池包的基础上,进行电池包液冷散热结构的设计,并 与未采用液冷散热结构的电池包,在环境温度(25℃)下、以1C放 电倍率持续稳定放电的温升情况进行对比,温升降低了3℃左右, 结果表明:液冷散热结构具有较好的散热效果。本文主要探究了 三元锂离子电池在不同工况下的发热特性,根据分析结果采取相 关的热管理措施并验证其有效性,研究结果对解决电动汽车电池 的安全及寿命等问题具有重要意义,亦将为今后三元锂离子电池 包液冷散热结构的设计提供理论指导。
纯电动汽车锂离子电的热分析及散 热结构设计
新能源汽车的迅速发展对解决“环境”与“资源”这两大难题 有着十分重要的意义,作为纯电动汽车的核心部件-电池,承担着 越来越重要的角色,但电池的发热问题对电池本身的安全性能和 使用寿命影响较大。因此需要对电池的发热行为进行分析并采 取相关的散热措施。
本文的研究工作主要从以下几个方面开展:1.对锂离子电池的结 构、发热行为及发热原理进行理论分析,阐述电池热失控的一般 过程及产生热失控原因,通过试验探究温度对电池性能的影响。 首先对不同温度下电池的充、放电深度进行探究,其次对不同温 度下电池的内阻进行测量,采用密集的环境温度区间,并拟合多 项式,用于热仿真内热源代码的编写,并通过理论计算求得电池 的热物性参数,为后文电池温度场的发热仿真提供数据基础。
2.根据传热学及计算流体力学相关理论知识,建立电池小模组及 电池包的发热、传热数学模型及有限元分析模型,对电池小模组 在不同放电倍率下的发热情况进行仿真分析,并进行试验验证。 在仿真分析与试验研究一致的前提下,根据分析结果进行小模组 液冷散热结构的设计,通过试验验证散热结构的有效性,并对采 用不同冷却介质、不同冷却液温度下的散热效果进一步探究。
3.探究不同车速下电池包内部的发热情况。首先,纯电动汽车以 不同车速在城市工况下匀速行驶,获取瞬时电流数据,通过加权 计算得到加权平均电流,并将其作为温度场仿真的输入条件,其 次将仿真监测与实车采集的温度数据进行对比,验证了模型的准 确性,确定了不同车速下电池包的发热情况并得到结论:纯电动 汽车在不同车速行驶下,电池包内部的发热与车速有关,车速越 高,热量积聚越快,温升越高。
相关文档
最新文档