高中数列方法与解题技巧(学生版)
4.数列求和(学生版)

第四节数列求和知识梳理一公式求和法(1)如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.(2)等差数列的前n项和公式:S n=n(a1+a n)2=na1+n(n-1)2d=d2n2+a1-d2n.(3)等比数列的前n项和公式:S n=na1,q=1,a1-a n q1-q=a1(1-q n )1-q,q≠1.注意:等比数列公比q的取值情况,要分q=1,q≠1.二分组求和法一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.如若一个数列的奇数项成等差数列,偶数项成等比数列,则可用分组求和法求其前n项和.三倒序相加法如果一个数列{a n}的前n项中与首末两端等“距离”的两项的和相等且等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.四裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.五错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.六并项求和法在一个数列的前n项和中,可两两合并求解,则称之为并项求和.如{a n}是等差数列,求数列{(-1)n a n}的前n项和,可用并项求和法求解,分项数为奇数和偶数分别进行求和形如a n=(-1)n f(n)类型,可考虑采用两项合并求解.七四类特殊数列的前n项和①1+2+3+⋯+n=12n(n+1).②1+3+5+⋯+(2n-1)=n2.③12+22+32+⋯+n2=16n(n+1)(2n+1).④13+23+33+⋯+n3=14n2(n+1)2.题型探究一分组求和与并项求和一分组求和法解题通法分组转化法求和的常见类型(1)若a n=b n±c n,且{b n},{c n}为等差或等比数列,可采用分组求和法求{a n}的前n项和.(2)通项公式为a n=b n,n为奇数,c n,n为偶数的数列,其中数列{bn},{c n}是等比数列或等差数列,可采用分组求和法求和.1.已知数列{a n}的通项公式是a n=2n-12 n,则其前20项和为()A.379+1220B.399+1220C.419+1220D.439+12202.已知数列{a n}中,a1=a2=1,a n+2=a n+2,n是奇数,2a n,n是偶数,则数列{an}的前20项和为()A.1121B.1122C.1123D.11241.若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-22.若a n=1n n+2,n=2k-1,k∈N∗2n,n=2k,k∈N∗,求数列{a n}的前2n项的和S2n.二并项求和法3.已知数列{a n}中,a1=1,a n+1=13a n+n ,n为奇数a n-3n,n为偶数,n∈N*.(Ⅰ)证明:数列a2n-32是等比数列;(Ⅱ)记S n是数列{a n}的前n项和,求S2n.3.已知数列a n的通项公式a n=(-1)n(2n-1),求该数列的前n项和S n.4.已知数列{a n}的前n项和为S n=1-5+9-13+17-21+⋯+(-1)n-1(4n-3),则S15+S22-S31的值是()A.13B.76C.46D.-76二倒序相加法4.设f(x )=4x4x+2,若S=f12022+f22022+⋯+f20212022,则S=.反思感悟倒序相加法应用的条件与首末两项等距离的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和相加的方法求解.5. 设f(x)=x21+x2,则f12022+f12021+⋯+f(1)+f(2)+⋯+f(2022)=40432.6.(2022·全国·高三专题练习)已知f(x)=21+x2 (x∈R),若等比数列{a n}满足a1a2020=1,则f(a1)+ f(a2)+⋯+f(a2020)=( )A.20192 B.1010 C.2019 D.20207.(2022·全国·高三专题练习)已知函数f(x)=cos xcos30°-x,f1°+f2°+f3°+⋯+f59°=_ _______.三裂项相消法解题通法1.常见的裂项公式a n的裂项方法a n的裂项方法11n(n+k)=1k1n-1n+k72n(2n-1)(2n+1-1)=12n-1-12n+1-121n+n+k =1k(n+k-n)8a-1a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b31n2-1=121n-1-1n+19n+2n(n+1)2n=1n2n-1-1n+12n41(2n-1)(2n+1)=1212n-1-12n+110n⋅2n-1(n+1)(n+2)=2nn+2-2n-1n+154n2(2n-1)(2n+1)=1212n-1-12n+1+1111n(n2+1)=121(n-1)n-1n(n+1)61n2(n+2)2=141n2-1(n+2)2121n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2)2.裂项的步骤(以表中7举例)①先只观察分母并对其因式分解:(2n-1)(2n+1-1);②把分母中的两个因式分开并取倒数,然后做差:12n-1-12n+1-1;③通分:12n-1-12n+1-1=(2n+1-1)-(2n-1)(2n-1)(2n+1-1)=2n(2n-1)(2n+1-1);④跟原式进行比较来配平系数:系数为1.因此2n(2n-1)(2n+1-1)=12n-1-12n+1-13.裂项相消的注意事项①有时分母因式分解有三个因式(如11、12),这时需要把中间大小的重复利用两次,两两一组,分开,再取倒数做差;②裂项相消过程中,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,因此一次要真实相消;4.裂项相消的两种题型(1)直接考查裂项相消法求和.(2)与不等式相结合考查裂项相消法求和.解决第(2)类问题应分两步:第一步,求和;第二步,利用作差法、放缩法、单调性等证明不等式.裂项相消法求和在历年高考中曾多次出现,命题角度凸显灵活多变.在解题中,要善于利用裂项相消的基本思想,变换数列{a n}的通项公式,达到求解的目的.一形如b n =1a n a n +1({a n }为等差数列)型5.已知公差不为0的等差数列{a n }的前n 项和为S n ,且S 4=26,a 1,a 3,a 11成等比数列.(1)求数列{a n }的通项公式;(2)若数列1S n +n的前n 项和为T n ,求T n .二形如a n =1n +k +n型6.(2021·西安八校联考)已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N +.记数列{a n }的前n 项和为S n ,则S 2022等于()A.2021-1B.2022-1C.2023-1D.2023+1三形如b n =a n(a n +k )(a n +1+k )({a n }为等比数列)型7.(2021·辽宁凌源二中联考)已知数列{a n }与{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,n ∈N *,b n =2a n(2a n -1)(2a n +1-1),若对任意的n ∈N *,k >T n 恒成立,则k 的最小值是()A.17B.49C.149D.8441四带(-1)n的特殊裂项相消类型8.(2022.临沂一模,20)已知数列{a n}的前n项和为S n,a1=1,4S n=a n+1a n+1(1)求数列{a n}的通项公式;(2)若数列b n满足a n b n a n+1=(-1)n n,求b n的前2n项和T2n(n∈N*).8.(角度1)在数列{a n}中,a n=1n+1+2 n+1+⋯+nn+1,又b n=1a n a n+1,则数列{b n}的前n项和S n=.9.(角度2)求和S=11+3+13+5+⋯+1119+121=( )A.5B.4C.10D.910.(角度3){a n}是等比数列,a2=12,a5=116,b n=a n+1(a n+1)(a n+1+1),则数列{b n}的前n项和为( )A.2n-12(2n+1)B.2n-12n+1C.12n+1D.2n-12n+211.已知数列{a n}是递增的等比数列,且a1+a4 =9,a2a3=8.(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,b n=a n+1S n S n+1,求数列{b n}的前n项和T n.四错位相减法解题通法1.用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n·b n}是由等差数列{a n}与等比数列{b n}(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n·b n}的前n项和为T n,然后两边同乘以q.第三步:(错位相减)乘以公比q后,向后错开一位,使含有q k(k∈N*)的项对齐,然后两边同时作差.第四步:(求和)将作差后的结果求和化简,从而表示出T n.2.用错位相减法求和应注意的问题(1)在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.(2)“S n-qS n”化简的关键是化为等比数列求和,一定要明确求和的是n项还是n-1项,一般是n-1项.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况讨论求解.3.错位相减法的快捷公式S n=An+Bq n-B(利用a n解出S1,S2解关于A和B的一元二次方程组即可)9.(2022·陕西榆林·三模)已知数列{a n}的前n项和为S n,且2S n=3a n-9.(1)求{a n}的通项公式;(2)若b n=a n⋅log3a n+1,求数列{b n}的前n项和T n.12.(2020·课标Ⅰ,17节选)已知数列{a n}的通项公式a n=n(-2)n-1,求{a n}的前n项和S n.13.(2021·全国乙)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n2.14.1+2x+3x2+⋯+nx n-1=.(其中x≠0)15.在数列{a n}中,任意相邻两项为坐标的点P(a n,a n+1)均在直线y=2x+k上,数列{b n}满足条件:b1=2,b n=a n+1-a n(n∈N*).(1)求数列{b n}的通项公式;(2)若c n=b n∙log21bn,求数列{c n}的前n项和S n.16.已知等差数列{a n}公差不为零,且满足:a1= 2,a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=3n a n,求数列{b n}的前n项和.17.(2022·河南)已知在数列a n中,a1=1,a2= 2,a n+2=4a n n∈N*.(1)求a n的通项公式;(2)记b n=3n-5a n,求数列b n的前n项和T n.跟踪测验1已知数列{a n }满足a 1=1,且对任意的n ∈N *都有a n +1=a 1+a n +n ,则1a n的前100项和为( )A.100101 B.99100 C.101100D.2001012已知F (x )=f x +12-1是R 上的奇函数,a n =f (0)+f 1n +f 2n +⋯+f n -1n+f (1)(n∈N *),则数列a n 的通项公式为( )A.a n =n B.a n =2n C.a n =n +1D.a n =n 2-2n +33(2021·哈尔滨三中期末)数列{a n }的前n 项和为S n ,且a n =(-1)n (2n -1),则S 2023=( )A.2021 B.-2021C.-2023 D.20234已知数列{a n }满足:a 1为正整数,a n +1=a n2,a n 为偶数3a n +1,a n 为奇数,如果a 1=1,则a 1+a 2+a 3+⋯+a 2018=.5(2021·山东省济南市历城二中高三模考)等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =2S n ,n 为奇数b n ,n 为偶数,设数列{c n }的前n 项和T n ,求T 2n .6(2020·天津,19)已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4-a 3),b 5=4(b 4-b 3).(1)求{a n }和{b n }的通项公式;(2)记{a n }的前n 项和为S n ,求证:S n S n +2<S 2n +1(n∈N *);(3)对任意的正整数n ,设c n =(3a n -2)b n a n a n +2,n 为奇数,a n -1b n +1,n 为偶数. 求数列{c n }的前2n 项和.7(2021·浙江,20,15分)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n ,若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.8(2021·湖南岳阳一模,18)已知数列{a n}满足a1=1,且点(a n,a n+1-2n)在函数f(x)=3x的图象上.(1)求证:a n2n+1是等比数列,并求{an}的通项公式;(2)若b n=a n+1a n,数列{b n}的前n项和为S n,求证:S n>3n+23.9已知数列{a n}的前n项和S n=-12n2+ kn(其中k∈N*),且S n的最大值为8.(1)确定常数k,并求a n;(2)若数列9-2a n2n的前n项和为Tn.试证明:T n<4.10已知数列{a n}的前n项和S n=-a n-12 n-1 +2,数列{b n}满足b n=2n a n.(1)证明:数列{b n}是等差数列;(2)设c n=n(n+1)2n(n-a n)(n+1-a n+1),求数列{c n}的前n项和T n.11已知数列{a n}的前n项和S n满足2S n-na n =3n(n∈N*),且a2=5.(1)证明数列{a n}为等差数列,并求{a n}的通项公式;(2)设b n=1a n a n+1+a n+1a n,T n为数列{b n}的前n项和,求使T n>310成立的最小正整数n的值.12记数列{a n }的前n 项和为S n ,已知S n =2a n -2n +1.(1)求数列{a n }的通项公式;(2)记b n =(-1)n ·log 223(a n +4)-43,求数列{b n }的前n 项和T n .13已知{a n }为等差数列,{b n }为等比数列,b 1=2,数列{a n ⋅b n }的前n 项和为(n -1)⋅2n +1+2.(1)求数列{a n }和{b n }的通项公式.(2)设S n 为数列{a n }的前n 项和,c n =4S n ⋅t n -1n (n +1)b n ,t ≠0,求c 1b n +c 2b n -1+⋯+c n b 1.14(2023·菏泽模拟)已知数列{a n }中,a 1=1,它的前n 项和S n 满足2S n +a n +1=2n +1-1.(1)证明:数列a n -2n3 为等比数列;(2)求S 1+S 2+S 3+⋯+S 2n ;(3)求S 1+S 2+S 3+⋯+S n .15已知正项数列a n 的前n 项和为S n ,满足32S n=1a n -2-1a n +4.(1)求数列a n 的通项公式;(2)求数列-1 n S n -3n 的前n 项和T n .16(2022·山东日照·模拟预测)已知数列a n 中,a 1=1,a 2=2,a n +2=ka n (k ≠1),n ∈N ∗,a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求k 的值和a n 的通项公式;(2)设b n =a 2n ,n 为奇数log 2a n ,n 为偶数 ,求数列b n 的前n 项和S n .17(2022·全国·高三专题练习)已知等差数列a n的前n项和为S n,且S5=25,a2+a5+a10=31.(1)求数列a n的通项公式以及前n项和S n;(2)若b n=2a n,n为奇数1a n a n+2,n为偶数,求数列b n 的前2n-1项和T2n-1.18(2022·沈阳第一二〇中学高三月考)已知数列a n的前n项和S n=a n a n+12,且a n>0.(1)证明:数列a n为等差数列;(2)若b n=a n⋅2na n+1⋅a n+2,求数列b n的前n项和T n.。
计算第43讲_分数数列找规律(学生版)A4

一.常见数列规律1.分子与分母分别为一个简单数列. 2.分子分母之间存在直观的简单规律.3.反约分数列:同时扩大数列中某些分数的分子与分母(分数值不变),从而时的分数的分子与分母分别形成简单数列. 二.解题技巧1.经典约分:当分子和分母含有相同因子时,应将其化成最简分数. 2.经典通分:当分数的分母很容易化成一致时,将其化为相同数. 3.分子通分:当分数的分子很容易化成一致时,将其化为相同数.重难点:分数数列找规律.题模一:求某位置的数例1.1.1观察数列: 1111111111,,,,,,,,,,1223334444…. 请问:其中的第150项是多少?例1.1.2观察数列: 1212121212,,,,,,,,,,1122334455… 请问:其中的第101项是多少?例1.1.3有这样一列数,前两个数分别是0和1,从第三个数开始,每一个数都是前两个数计算第43讲_分数数列找规律知识精讲三点剖析题模精选的和:0,1,1,2,3,5,8,13,21,34,.那么这个数列的第1000个数除以8所得的余数是=__________.例1.1.4一列数按下述规律排列:(1)第一项是101;(2)奇数项与下一项的比是3:2;(3)偶数项与下一项的比是4:3.那么,第10项与第15项的比为.例 1.1.5有一串数,13、36,59、712、915、1118、……,后一个数的分子比前一个数的分子大2,分母大3.所以第n个数为:213nn,第30个数是________,第45个数是________.例1.1.6观察数列:1121231234 ,,,,,,,,,, 1223334444…请问:其中的第150项是多少?例1.1.7观察数列:113135135720052007 ,,,,,,,,,,,, 244666888820082008…请问:其中的第2008项是多少?题模二:某数在什么位置例1.2.1观察数列:1111111111 ,,,,,,,,,, 1223334444….请问:第一次出现的151是其中第几项?例1.2.2观察数列:1212121212,,,,,,,,,,1122334455…请问:149是其中第几项?例1.2.3观察数列:1121231234,,,,,,,,,, 1223334444…请问:4949是其中第几项?例1.2.4观察数列:113135135720052007,,,,,,,,,,,, 244666888820082008…请问:4748是其中第几项?例 1.2.5观察按下列规律排成的一列数:1121231234123451 ,,,,,,,,,,,,,,,,......, 1213214321543216在这个数列中,从左边起第m个数记为F(m),当F(m)=22001时,m=_______随练1.1观察数列:1111111111 ,,,,,,,,,, 1223334444….请问:其中的第50项是多少?随练1.2观察数列:1212121212 ,,,,,,,,,, 1122334455…请问:其中的第100项是多少?随练1.3找规律填数:12,56,1112,1920,__________,4142,……随练1.4观察数列:1121231234 ,,,,,,,,,, 1223334444…请问:其中的第50项是多少?随堂练习随练1.5观察数列:113135135720052007 ,,,,,,,,,,,, 244666888820082008…请问:其中的第2009项是多少?随练1.6观察数列:1111111111 ,,,,,,,,,, 1223334444….请问:第一次出现的149是其中第几项?随练1.7观察数列:1212121212,,,,,,,,,,1122334455…请问:250是其中第几项?随练1.8观察数列:113135135720052007,,,,,,,,,,,, 244666888820082008…请问:350是其中第几项?作业1观察数列:1111111111 ,,,,,,,,,, 1223334444….请问:其中的第100项是多少?课后作业作业2观察数列:1212121212 ,,,,,,,,,, 1122334455…请问:其中的第99项是多少?作业3观察数列:1121231234 ,,,,,,,,,, 1223334444…请问:其中的第100项是多少?作业4观察数列:113135135720052007 ,,,,,,,,,,,, 244666888820082008…请问:其中的第2007项是多少?作业5有一串真分数12、13、23、14、24、34、15、25、35、45……那么按规律,第100个分数是().A.915B.315C.116D.316作业6观察下面一列数的规律,这列数从左往右第100个数是__________.12,35,58,711,914…….作业7观察数列:1111111111 ,,,,,,,,,, 1223334444….请问:第一次出现的150是其中第几项?作业8观察数列:1212121212,,,,,,,,,,1122334455…请问:150是其中第几项?作业9观察数列:1121231234,,,,,,,,,, 1223334444…请问:150是其中第几项?作业10已知数列:11212312341 ,,,,,,,,,,,, 12132143215请问:(1)1130是第__________项.(2)数列第2012项是__________.。
求数列通项公式方法(学生版)

求数列通项公式方法(1).公式法(定义法)根据等差数列、等比数列的定义求通项 例:1已知等差数列}{n a 满足:26,7753=+=a a a , 求n a ;2.已知数列}{n a 满足)1(1,211≥=-=-n a a a n n ,求数列}{n a 的通项公式;3.数列{}n a 满足1a =8,022124=+-=++n n n a a a a ,且 (*∈N n ),求数列{}n a 的通项公式;4.等比数列}{n a 的各项均为正数,且13221=+a a ,62239a a a =,求数列}{n a 的通项公式5.已知数列}{n a 满足)1(3,211≥===n a a a n n ,求数列}{n a 的通项公式;6.已知数列}{n a 满足2122142++=⋅==n n n a a a a a 且, (*∈N n ),求数列{}n a 的通项公式;7.已知数列}{n a 满足,21=a 且1152(5)n nn n a a ++-=-(*∈N n ),求数列{}n a 的通项公式;8.已知数列}{n a 满足,21=a 且115223(522)n n n n a a +++⨯+=+⨯+(*∈N n ),求数列{}n a 的通项公式;9.数列已知数列{}n a 满足111,41(1).2n n a a a n -==+>则数列{}n a 的通项公式= (2)累加法1、累加法 适用于:1()n n a a f n +=+21321(1)(2) ()n n a a f a a f a a f n +-=-=-= 两边分别相加得 111()nn k a a f n +=-=∑例:1.已知数列{}n a 满足141,21211-+==+n a a a n n ,求数列{}n a 的通项公式。
2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
2.数列计算-学生版

第2讲 数列计算第一部分:知识介绍1、等差数列三个重要的公式:① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯()递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()② 项数公式:项数=(末项-首项)÷公差+1 ③ 求和公式:和=(首项+末项)⨯项数÷22、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.3、公式综合:1) 连续自然数求和(1)1232n n n ⨯+++++=L2) ()()()213572112311321n n n n n +++++-=++++-++-++++=L L L 3) N 个连续自然数的平方和 2222(1)(21)1236n n n n ⨯+⨯+++++=L4) N 个连续自然数的立方和 ()2223333(1)1231234n n n n ⨯+++++=++++=L L 5) 平方差公式:()()22a b a b a b -=+- 完全平方公式()2222a b a ab b ±=±+ 6) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+7) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+4、等比数列:如果一个数列,从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用q 表示()0q ≠。
(或者从第二数开始每一个数都和前面数的倍数都是相同的,这个数列就叫做等比数列。
)一般地,等比数列求和采用“错位相减法”。
(公比不为1)其它复合型数列整数与数列本讲数表应用题找规律计算等差数列应用题求和方法初步认识等比数列第二部分:例题精讲【例 1】(试题汇编)计算11、14、17、20、……、95、98这个等差数列的项数是()【例 1】在等差数列6,13,20,27,…中,从左向右数,第_______个数是1994.【巩固】5、8、11、14、17、20、L,这个数列有多少项?它的第201项是多少?65是其中的第几项?已知数列0、4、8、12、16、20、…… ,它的第43项是多少?【例 1】用等差数列的求和公式会计算下面各题吗?⑴3456767778L+++++++=⑵13578799L++++++=⑶471013404346L+++++++=【例 2】已知一个等差数列第8项等于50,第15项等于71.请问这个数列的第1项是()【例 3】把210拆成7个自然数的和,使这7个数从小到大排成一行后,相邻两个数的差都是5,那么,第1个数与第6个数分别是多少?【例 4】(试题汇编)有一本50页的书,再把这本书的各页的页码累加起来时,有一张纸的页码错误的多加了一次,得到的和为1302,那么中间多加的页码为()。
数列题型及解题方法

数列题型及解题方法数列是数学中常见的概念,也是高中数学中重要的内容之一。
在数学学习中,数列题型及解题方法是学生们需要掌握的重要知识点。
本文将从数列的基本概念入手,介绍常见的数列题型及解题方法,希望能帮助学生们更好地理解和掌握数列的相关知识。
一、数列的基本概念。
数列是按照一定顺序排列的一串数,这些数之间存在着一定的规律。
数列可以分为等差数列、等比数列和其他特殊数列等多种类型。
在解题时,首先需要明确数列的类型,然后根据数列的特点和规律进行分析和计算。
二、等差数列题型及解题方法。
1. 求等差数列的通项公式。
等差数列的通项公式一般为an=a1+(n-1)d,其中an表示数列的第n项,a1为首项,d为公差,n为项数。
通过已知的首项和公差,可以利用通项公式求出数列的任意一项。
2. 求等差数列的前n项和。
等差数列的前n项和公式为Sn=n/2(a1+an),通过这个公式可以求出等差数列前n项和的数值,其中n为项数,a1为首项,an为第n项。
3. 应用等差数列解决实际问题。
在解决实际问题时,可以将问题转化为等差数列的形式,然后利用等差数列的性质进行求解。
例如,求等差数列中满足某个条件的项数,或者求解等差数列中某些项的和等问题。
三、等比数列题型及解题方法。
1. 求等比数列的通项公式。
等比数列的通项公式一般为an=a1q^(n-1),其中an表示数列的第n项,a1为首项,q为公比,n为项数。
通过已知的首项和公比,可以利用通项公式求出数列的任意一项。
2. 求等比数列的前n项和。
等比数列的前n项和公式为Sn=a1(q^n-1)/(q-1),通过这个公式可以求出等比数列前n项和的数值,其中n为项数,a1为首项,q为公比。
3. 应用等比数列解决实际问题。
同样地,可以将实际问题转化为等比数列的形式,然后利用等比数列的性质进行求解。
例如,求等比数列中满足某个条件的项数,或者求解等比数列中某些项的和等问题。
四、其他特殊数列题型及解题方法。
2024新高考新试卷结构数列的通项公式的9种题型总结(学生版+解析版)

2024新高考新试卷结构数列的通项公式的9种题型总结题型解密考点一:已知S n =f n ,求a n利用S n =a 1,n =1S n−Sn −1,n ≥2,注意一定要验证当n =1时是否成立【精选例题】1已知S n 为数列a n 的前n 项和,且S n =2n +1-1,则数列a n 的通项公式为()A.a n =2nB.a n =3,n =12n,n ≥2C.a n =2n -1D.a n =2n +1【答案】B【详解】当n ≥2时,S n -1=2n -1,a n =S n -S n -1=2n +1-1-2n +1=2n ;当n =1时,a 1=S 1=21+1-1=3,不符合a n =2n ,则a n =3,n =12n,n ≥2.故选:B .2定义np 1+p 2+p 3+⋅⋅⋅+p n为n 个正数p 1,p 2,p 3,⋅⋅⋅,p n 的“均倒数”,若已知数列a n 的前n 项的“均倒数”为15n,则a 10等于()A.85B.90C.95D.100【答案】C【详解】因为数列a n 的前n 项的“均倒数”为15n ,所以n a 1+a 2+a 3+⋅⋅⋅+a n =15n⇒a 1+a 2+a 3+⋅⋅⋅+a n =5n 2,于是有a 1+a 2+a 3+⋅⋅⋅+a 10=5×102,a 1+a 2+a 3+⋅⋅⋅+a 9=5×92,两式相减,得a 10=5×(100-81)=95,故选:C3(多选题)定义H n =a 1+2a 2+⋯+2n -1a nn为数列a n 的“优值”.已知某数列a n 的“优值”H n =2n ,前n 项和为S n ,下列关于数列a n 的描述正确的有()A.数列a n 为等差数列B.数列a n 为递增数列C.S 20222022=20252 D.S 2,S 4,S 6成等差数列【答案】ABC【详解】由已知可得H n =a 1+2a 2+⋯+2n -1a nn=2n ,所以a 1+2a 2+⋯+2n -1a n =n ⋅2n ,①所以n ≥2时,a 1+2a 2+⋯+2n -2a n -1=n -1 ⋅2n -1,②得n ≥2时,2n -1a n =n ⋅2n -n -1 ⋅2n -1=n +1 ⋅2n -1,即n ≥2时,a n =n +1,当n =1时,由①知a 1=2,满足a n =n +1.所以数列a n 是首项为2,公差为1的等差数列,故A 正确,B 正确,所以S n =n n +3 2,所以S n n =n +32,故S 20222022=20252,故C 正确.S 2=5,S 4=14,S 6=27,S 2,S 4,S 6不是等差数列,故D 错误,故选:ABC .4设数列a n 满足a 1+12a 2+122a 3+⋅⋅⋅+12n -1a n =n +1,则a n 的前n 项和()A.2n -1B.2n +1C.2nD.2n +1-1【答案】C【详解】解:当n =1时,a 1=2,当n ≥2时,由a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1+12n -1a n =n +1得a 1+12a 2+122a 3+⋅⋅⋅+12n -2a n -1=n ,两式相减得,12n -1a n =1,即a n =2n -1,综上,a n =2,n =12n -1,n ≥2 所以a n 的前n 项和为2+2+4+8+⋯+2n -1=2+21-2n -1 1-2=2n ,故选:C .【跟踪训练】1无穷数列a n 的前n 项和为S n ,满足S n =2n ,则下列结论中正确的有()A.a n 为等比数列B.a n 为递增数列C.a n 中存在三项成等差数列D.a n 中偶数项成等比数列【答案】D【详解】解:无穷数列a n 的前n 项和为S n ,满足S n =2n ∴n ≥2,a n =S n -S n -1=2n -2n -1=2n -1,当n =1时,a 1=S 1=21=2,不符合上式,∴a n =2,n =1,2n -1,n ≥2,所以a n 不是等比数列,故A 错误;又a 1=a 2=2,所以a n 不是递增数列,故B 错误;假设数列a n 中存在三项a r ,a m ,a s 成等差数列,由于a 1=a 2=2,则r ,m ,s ∈N *,2≤r <m <s ,所以得:2a m =a r +a s ⇒2×2m -1=2r -1+2s -1∴2m =2r -1+2s -1,则∴1=2r -m -1+2s -m -1,又s -m -1≥0⇒2s -m -1≥1且2r -m -1>0恒成立,故式子1=2r -m -1+2s -m -1无解,a n 中找不到三项成等差数列,故C 错误;∴a 2n =22n -1(n ∈N *),∴a 2(n +1)a n =22n +122n -1=4∴a 2n 是等比数列,即a n 中偶数项成等比数列,故D 正确.故选:D .2对于数列a n ,定义H n =a 1+2a 2+3a 3+⋯+na nn为a n 的“伴生数列”,已知某数列a n 的“伴生数列”为H n =(n +1)2,则a n =;记数列a n -kn 的前n 项和为S n ,若对任意n ∈N *,S n ≤S 6恒成立,则实数k 的取值范围为.【答案】 3n +1;227≤k ≤196.【详解】因为H n =(n +1)2=a 1+2a 2+3a 3+⋯+na nn,所以n ⋅(n +1)2=a 1+2a 2+3a 3+⋯+na n ①,所以当n =1时,a 1=4,当n ≥2时,(n -1)⋅n 2=a 1+2a 2+3a 3+⋯+(n -1)a n -1②,①-②:3n 2+n =na n ,所以a n =3n +1,综上:a n =3n +1,n ∈N *,令b n =a n -kn =(3-k )n +1,则b n +1-b n =3-k ,可知{b n }为等差数列,又因为对任意n ∈N *,S n ≤S 6恒成立,所以S 6-S 5=b 6≥0,S 7-S 6=b 7≤0,则有b 6=3-k ×6+1=19-6k ≥0,b 7=3-k ×7+1=22-7k ≤0, 解得227≤k ≤196.故答案为:3n +1;227≤k ≤196考点二:叠加法(累加法)求通项若数列a n 满足a n +1−a n =f (n )(n ∈N *),则称数列a n 为“变差数列”,求变差数列a n 的通项时,利用恒等式a n =a 1+(a 2−a 1)+(a 3−a 2)+⋅⋅⋅+(a n −a n −1)=a 1+f (1)+f (2)+f (3)+⋅⋅⋅+f (n −1)(n ≥2)求通项公式的方法称为累加法。
高中数学数列求通项七法 - 学生版

求数列的通项公式.(也满足叠乘法)
例 2、已知数列 {an } 满足 a1 例 3、已知数列{a n}中,a1=
3 an 1 1 , an (n 2) ,求通项 an . 2 2
数列求通项方法练习题
1、观察法: 2、定义法: 3、公式法:若已知数列的前 n 项和 S n 与 an 的关系,求数列 an 的通项 an 可用公式
(n 1) Sn an Sn Sn 1 (n 2)
例 1、已知数列{a n}的前 n 项和 S n 满足 an 2Sn Sn 1 0 ( n 2 ) ,a1= ,求 a n .
1 1 n 1 5 , an 1 an ( ) ,求通项 an . 3 2 6
例 11、已知数列 {a n } ,其中 a1 1 ,且 a n 1
an ,求通项 a n. 2 ·a n 3
n
例 12、⑴在数列 {an } 中, a1 2 , a2 3 , an 2 3 an 1 2 an ,求 a n ;
1 2
例 2、数列 an 的各项都为正数,且满足 Sn
a 1 n
4
2
n N ,求数列的通项公式.
*
例 2、已知数列 {a n } 满足 a n 1 a n 2 3n 1 ,a 1 3 ,求求通项 a n . 例 3、已知数列 an 满足 an1 2an 2n1 3n 1( n N * ) , a3 5
2 1 ⑵在数列 an 中, a1 1 , a2 2 , an 2 an 1 an ,求 an . 3 3
数学人教A版高中必修5数列专题 : 等差、等比数列的基本量计算复习(学生版)

1
1 1 1 ;
n(n 1) n n 1
升级: 1 1 (1 1 )
n(n k) k n n k
变式:
n
1 2-
(n 1
2)=
1= n2 3n 2
1
(2n 1)(2n 1)
专题:数列
微专题 1:等差、等比数列的基本量计算
立足于两数列的概念,设出相应基本量:
an 等差: a1, d , n, an, Sn
bn 等比: b1, q, n,bn, Sn (方程思想)
1、已知公差不为 0 的等差数列{an}的前 n 项和为 Sn,S1+1,S3,S4 成等差数列, 且 a1,a2,a5 成等比数列。 (1)求数列{an}的通项公式; (2)若 S4,S6,Sn 成等比数列,求 n 及此等比数列的公比。
an
a1
(n 1)(3 2
2n
1)
=n 2
1, Q
a1
1 an
n2
练习:已知数列an满足 a1 2 ,且 an an1 2n (n 2, n N ) ,求数列 an
的通项公式。
4、累乘法( 形如
an f (n) an1
)
例:已知数列 an满足 a1
2 ,且
an an1
1
1 n
N)
,求数列 an 的通项
公式。
6、构造法
方向 1:构造成等差数列( 形如
an1
pan p qan
)
解法:
(取倒法)两边取倒数 1 p qan 1 1 q ,构造成等差数列。
an1
pan
an1 an p
(同除法)分式变成整式
pan1 qanan1
pan
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数列方法与解题技巧一、数列求通项的10种方法二、数列求和的7种方法三、6道高考数列大题数列求通项的10种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式.方法:等式两边同时除以12n + ,构造成等差数列,利用等差数列公式求解。
形式:n a 项系数与后面所加项底数相同二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.方法: 12121........................211n n a a n a a +--=+=⨯- 将上述各式累加,中间式子首尾项相抵可求得n a形式:()1n n a a f n +=+; 要求1n a +、n a 的系数均为1,对于n a 不为1时,需除以系数化为1。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.方法:同例2例4 已知数列{}n a 满足1132313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.方法:等式的两边同除以3,,将n a 系数化为1,再用累加法。
三、累乘法例5 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式.。
方法:()()1121215..........................2115nn na n a a a +=+=+ 将上述各式累乘,消除中间各项,可求得n a形式:()1n n a f n a +=•;1n n a +是a 的关于n 的倍数关系。
例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式. 方法:本题与例5不同之处是想要通过错位相减法,求出1n n a a +与 的递推关系,然后才能用累成法求。
四、待定系数法(X,Y,Z 法)例7 已知数列{}n a 满足112356n n n a a a +=+⨯=,,求数列{}n a 的通项公式.方法:构造数列()11525,n n n n a x a x x +++•=+•反解。
形式:()1n n a ka f n +=+例8 已知数列{}n a 满足1135241n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 方法:构造数列()11232n n n n a x y a x y +++•+=+•+ ,本题中递推关系中含常数4,对于常数项,可看成是0n 。
对于不同形式的n 要设不同的参数。
例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式. 方法:同例8,但它的参数要设3个。
五、对数变换法例10 已知数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.方法:等式两边同取对数得到1lga lg2lg35lg n n n a +=++ ,然后可利用待定系数法或者累加法求之。
形式:()1x n n a f n a += ,其中对与n a 的高次方特别有效。
六、迭代法例11 已知数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}na 的通项公式. 方法:按照数列对应函数关系,由1a 逐层加上去,直到推到n a 为止。
形式:()1n n a f a +=七、数学归纳法 例12 已知数列{}n a 满足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式. 方法:演算n a 的前4项,猜测、发现项数n 与项值之间的关系,然后证明猜测的正确性。
形式:对于形式比较繁复,无从下手时,可以考虑用数归法去大胆猜测。
八、换元法例13 已知数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式. 方法:令n b =,可将数列n a 递推关系转化为数列n b的递推关系。
从而去掉,实现有理化或者整式化。
形式:111n n n a f a f a ++⎛⎫== ⎪⎝⎭或者九、不动点法例14 已知数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式. 方法:求函数()212441x x f x x -==+ ,两个自变量与对应函数相等时的值,解得122,3x x == 。
即存在k 使得113322n n n n a a k a a ++--=-- ,由此可构成新的等比数列 形式:()()112n n n f a a f a += ,且对应函数有两个不同的解。
例15 已知数列{}n a 满足1172223n n n a a a a +-==+,,求数列{}n a 的通项公式. 方法:本题对应函数的解相等,为1,所以不能用不动点法,只能才用数归法做。
十、阶差法(逐项相减法)例16 已知数列{}n a 的各项均为正数,且前n 项和n S 满足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.方法:由1nn n a s s -=- 推出1n n a a -与 的递推关系,然后再求数列n a 的通项。
形式:()nn s f a =练习 已知数列}{n a 中, 0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.数列求和的基本方法和技巧数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法.1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+= 2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n 3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S n k n 5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n n S n S n f 的最大值.二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ [例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n(n+1)(2n+1)}的前n 项和.五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+(3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n (6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值 .七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.[例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.四川高考理科数学试题2008年--2013年数列解答题设数列{}n a 的前n 项和为n S ,已知()21n n n ba b S -=- (Ⅰ)证明:当2b =时,{}12n n a n --⋅是等比数列;(Ⅱ)求{}n a 的通项公式设数列{}n a 的前n 项和为n S ,对任意的正整数n ,都有51n n a S =+成立,记*4()1n n n a b n N a +=∈-。