电力电子技术课程设计分析解析

合集下载

电力电子类课程设计

电力电子类课程设计

电力电子类课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理,掌握各类电力电子器件的构造、工作原理及应用场合。

2. 掌握电力电子变换器的基本电路拓扑,了解其功能、性能及在实际应用中的优缺点。

3. 学会分析电力电子电路的静态和动态特性,能够对简单电路进行设计和计算。

技能目标:1. 培养学生运用所学知识分析和解决实际电力电子问题的能力。

2. 提高学生动手实践能力,能够正确搭建和调试基本的电力电子实验电路。

3. 培养学生团队协作能力和沟通表达能力,能够就电力电子技术问题进行有效讨论。

情感态度价值观目标:1. 激发学生对电力电子技术领域的兴趣,培养其探索精神和创新意识。

2. 培养学生严谨、认真、负责的学习态度,使其养成良好的学习习惯。

3. 增强学生的环保意识,认识到电力电子技术在节能减排方面的重要作用,培养其社会责任感。

课程性质:本课程为电力电子类课程的实践性教学环节,旨在培养学生的实际操作能力和创新能力。

学生特点:学生已具备一定的电力电子基础知识,对实际应用有较高的兴趣,动手实践能力较强。

教学要求:结合课本内容,注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性,提高其分析和解决问题的能力。

将课程目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. 电力电子器件:包括二极管、晶体管、晶闸管、场效应晶体管等基本器件的原理、特性及应用。

2. 电力电子变换器:介绍升压、降压、逆变、斩波等基本变换器的工作原理、电路拓扑及控制方法。

3. 电力电子电路分析与设计:学习静态和动态分析方法,对简单电力电子电路进行设计和计算。

4. 电力电子技术应用:分析电力电子技术在电力系统、新能源、电力传动等领域的应用实例。

教学大纲安排如下:第一周:电力电子器件原理与特性第二周:电力电子器件的应用及选型第三周:电力电子变换器的工作原理及电路拓扑第四周:电力电子变换器的控制方法第五周:电力电子电路的静态分析第六周:电力电子电路的动态分析第七周:电力电子电路设计与计算第八周:电力电子技术应用及发展趋势教学内容与课本关联性:参照教材《电力电子技术》相关章节,结合课程目标,对教学内容进行选择和组织,确保科学性和系统性。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告一、引言电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到将电能转换为不同形式以满足不同需求的技术。

本文将介绍一个基于电力电子技术的课程设计报告,旨在帮助读者了解该设计的步骤和思考过程。

二、设计目标我们的设计目标是实现一个具有高效能转换和可靠性的电力电子系统。

该系统能够将直流电能转换为交流电能,并能够在不同负载条件下提供稳定的电力输出。

三、系统设计1. 选取合适的电力电子器件为了实现电能的转换,我们需要选取合适的电力电子器件。

在这个设计中,我们选择使用开关管作为主要的电力电子器件。

开关管具有快速开关和可控的特性,适合用于电能转换。

2. 设计电力电子控制电路为了控制开关管的工作,我们需要设计一个电力电子控制电路。

这个电路主要由控制芯片、传感器和驱动电路组成。

控制芯片用于生成控制信号,传感器用于监测电流和电压等参数,驱动电路用于控制开关管的导通和关断。

3. 进行系统建模和仿真在进行实际电路设计之前,我们需要对系统进行建模和仿真。

这可以帮助我们验证设计的正确性,并且可以提前发现潜在的问题和改进的空间。

我们可以使用电路仿真软件来进行系统建模和仿真。

4. PCB设计和元器件选型在完成系统建模和仿真后,我们需要进行PCB设计和元器件选型。

PCB设计是将电路设计转化为实际电路板的过程。

在PCB设计中,我们需要考虑电路的布局和走线,以及选择适当的元器件。

5. 制作和调试电路板在完成PCB设计后,我们可以开始制作电路板。

制作电路板可以通过将电路设计转移到电路板上,并使用电路板制作设备进行制作。

制作完成后,我们需要进行电路板的调试,以确保电路的正常工作。

6. 测试和优化系统性能在完成电路板的制作和调试后,我们需要对系统进行测试和优化。

测试可以帮助我们评估系统的性能,并发现潜在的问题。

根据测试结果,我们可以进行优化,以提高系统的效率和可靠性。

四、总结本文介绍了一个基于电力电子技术的课程设计报告的步骤和思考过程。

电力电子技术的课程设计

电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。

技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。

课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。

通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。

教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。

教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。

教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。

教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。

电力电子课设总结与体会

电力电子课设总结与体会

电力电子课设总结与体会电力电子课设是电力与能源类专业学生在学习过程中进行实践的一项重要任务。

通过这次课设,我深刻体会到了电力电子技术的应用与实际操作的重要性,并对自己的专业知识有了更深入的理解。

本文将对我在电力电子课设中的总结与体会进行阐述。

一、课设背景介绍在电力电子课设中,我选择了一个与电力传输和变换相关的课题,即基于逆变器的太阳能电池发电系统设计。

该课设旨在通过设计、搭建和调试太阳能电池逆变器,实现太阳能电池发电的稳定输出,并将其转换为交流电。

在此背景下,我深入学习了逆变器的工作原理、太阳能电池的特性与接口要求等相关知识。

二、课设过程1. 调研与问题分析在开始课设之前,我首先进行了相关领域的调研,了解了目前逆变器技术的发展状况、太阳能电池的性能要求以及市场上的相关产品。

同时,我对太阳能电池发电系统中可能出现的问题进行了分析,为后续的设计工作提供了方向。

2. 设计与搭建基于之前的调研和问题分析,我开始进行逆变器的设计。

首先,我选取了合适的逆变器拓扑结构,并根据功率需求和电流特性来选择元件参数。

随后,我使用仿真软件进行电路仿真,并对输出波形、损耗等进行了分析和优化。

在仿真结果满足要求后,我开始进行逆变器的搭建工作,选择了适用的元器件并进行电路焊接和组装。

3. 调试与测试搭建完成后,我对逆变器进行了系统性的调试和测试工作。

通过接入太阳能电池,并辅助使用示波器、电压表等仪器,我分析了逆变器在不同条件下的输出性能和稳定性。

通过多次调试和测试,我逐渐优化了逆变器工作的稳定度和转换效率。

三、经验与体会1. 实践提升理论知识理解通过电力电子课设,我深刻体会到了实践对于理论知识的提升作用。

在课设过程中,我将在课堂上学到的电力电子理论与实际操作相结合,更加深入地理解了逆变器的工作原理、太阳能电池的特性以及系统的整体设计与调试流程。

2. 团队合作与沟通在课设中,我与同组的同学们一起分工合作,各自负责不同模块的设计和调试工作。

电子行业电力电子技术课程设计

电子行业电力电子技术课程设计

电子行业电力电子技术课程设计引言背景随着电子行业的蓬勃发展,电力电子技术在各个领域中扮演着重要的角色。

电力电子技术涉及到将电能进行转换、传递和控制,以满足各种应用的需求。

因此,对于从事电子行业的从业者来说,掌握电力电子技术是必不可少的。

目的本课程设计旨在帮助学生深入了解电力电子技术的基本原理和应用,并通过实际案例的设计和实施来提升学生的实践能力。

通过该课程,学生将能够独立设计和实现电力电子系统,提高其在电子行业就业的竞争力。

课程设计内容第一周:电力电子技术概述在第一周的课程中,学生将会对电力电子技术的基本概念和原理进行学习。

包括电力电子的发展历程、基本电力电子器件的特性和使用、常见的电力电子系统等内容。

此外,还将介绍电力电子技术在各个领域中的应用案例。

第二周:电力电子器件的特性和使用在第二周的课程中,学生将深入学习常见的电力电子器件的特性和使用。

包括二极管、晶闸管、场效应管等。

通过理论讲解和实验实践,学生将了解到这些器件在电力电子系统中的作用以及如何正确选择和使用它们。

第三周:电力电子系统设计基础在第三周的课程中,学生将学习电力电子系统的基本设计原则和方法。

包括电力电子系统的开关技术、控制电路设计、功率传递和转换等。

通过案例分析和实验演练,学生将能够独立设计和实现简单的电力电子系统。

第四周:电力电子系统可靠性和保护在第四周的课程中,学生将学习电力电子系统的可靠性和保护技术。

包括防雷保护、过流、过压和过温保护等。

通过理论学习和实践操作,学生将掌握电力电子系统故障排除和维修的基本方法。

第五周:电力电子系统的应用案例研究在第五周的课程中,学生将分组进行电力电子系统的应用案例研究。

每个小组将选择一个具体的应用场景,并进行系统设计和实施。

通过实践操作,学生将加深对电力电子技术的理解和掌握。

第六周:项目展示与总结在第六周的课程中,每个小组将展示他们的项目成果,并进行总结和讨论。

学生将有机会分享彼此的设计思路和经验,并从中获取更多的学习收获。

浅析电力电子技术课程设计

浅析电力电子技术课程设计

浅析电力电子技术课程设计电力电子技术是指通过使用电子器件和控制系统来处理电力信号,以实现电力控制和转换的技术。

这是一个非常重要的课程,因为电力电子技术已经越来越广泛地应用于现代电力系统和工业领域。

本文将浅析电力电子技术课程设计的关键点和注意事项。

首先,电力电子技术是一个复杂的领域,涉及到不同类型的电子器件和控制系统,因此任何课程设计都应该着眼于培养学生对于这些器件和系统的深入理解。

在课程设计中,应该安排足够的时间来探讨不同类型的电子器件,例如晶体管、场效应管、二极管、可控硅和晶闸管等等,并着重探讨它们的工作原理和应用场合。

此外,应该掌握各种控制系统和技术,如脉宽调制、电流控制、电压控制和功率控制等等,以便更好地进行电力转换和控制。

其次,电力电子技术的实际应用是非常重要的,因为只有学生了解其应用,才能更好地理解其工作原理和设计要求。

在课程设计中,应该花费一些时间来介绍电力电子技术的应用领域,例如变频器、电机驱动、UPS电源和光伏逆变器等等。

此外,应该让学生了解诸如系统级设计、电路开发、元器件选择和性能测试等实际技能,以帮助他们更好地应用理论知识。

最后,课程设计还应该强调实验教学和实践能力培养。

电力电子技术是一个实验性质的学科,需要通过实验来巩固和应用理论知识。

在课程设计中,应该安排足够的实验教学,在实验中引导学生更好地应用电力电子技术,在实践中掌握技能,并发现可能存在的问题或错误。

此外,应该注重培养学生的创新能力和团队协作能力,鼓励学生进行研究课题和项目开发。

总之,电力电子技术课程设计应该注重理论教学、实际应用和实验教学,培养学生的理论和实践能力。

同时,教师应该在设计中注重灵活性和创新性,以适应不同学生的学习需求和技能水平。

最终,通过电力电子技术课程的学习和实践,学生将能够更好地应用电力电子技术,并为以后的职业生涯做好准备。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告.doc本次课程设计的主题是电力电子技术,旨在通过实践操作及深入研究,掌握电力电子器件和系统的运行原理、设计与控制方法。

本报告将详细介绍本次课程设计的内容、目的及实施过程,并对结果进行总结与展望。

一、课程设计的内容及目的本次课程设计的主要内容为电力电子器件模块的设计及控制,具体包括以下内容:(1)电力电子器件模块的设计:本次课程设计的目标是实现一个电力电子器件模块,该模块采用的器件是MOSFET,要求能够实现输入电压与输出电压的变化控制,并具有良好的稳定性和可靠性。

(2)控制电力电子器件模块:本次课程设计还要求实现对电力电子器件模块的控制,包括输出电压的变化控制和保护性措施的设计等。

通过本次课程设计,学生可以了解电力电子器件的工作原理、性能特点和设计方法,掌握电力电子器件的调节和控制技术,提高学生的综合实践能力和创新能力。

二、课程设计的实施过程本次课程设计主要分为设计、制作及测试三个阶段。

1、设计阶段在设计阶段,学生需按照要求完成电力电子器件模块的设计,具体包括以下内容:(1)设计输入输出电压的大小和变化范围。

(2)选择合适的电力电子器件,确定电路拓扑结构。

(3)设计电力电路的关键参数,包括电流、电压、功率等。

(4)根据设计参数选择合适的控制电路,包括开关电路、反馈电路等。

(5)通过电路仿真软件进行仿真分析,调整电路参数,保证各项参数性能合理、稳定、可靠。

2、制作阶段在设计阶段完成电路模块的主要参数设定后,开始实际制作电路模块。

具体操作流程如下:(1)选购相关器件,如MOSFET、电容、电感等。

(2)通过电路图纸完成电路板原理图和PCB布局设计。

(3)利用PCB设计软件进行图纸制作,并进行打样检验。

(4)进行电路元器件焊接。

(5)检查焊接后电路元器件的连接情况是否正确。

(6)测试电路模块的基本性能,包括输入输出电压的测试、开关信号测试等。

3、测试阶段在电路模块制作完成后,需要进行测试,以检验电路的性能是否满足要求。

《电力电子技术》课程设计

《电力电子技术》课程设计

电力电子技术课程设计一、课程设计的目的1. 掌握电力电子电路的设计方法,具体包含功率器件、电感、电容等选取原则和设计依据。

2. 掌握控制器的设计方法,尤其针对不同对象和采样时间PID控制参数的选用。

3. 掌握现代仿真工具的使用,针对仿真过程中出现的问题,能够独立或通过查找文献、小组讨论等方式分析问题产生的原因,寻找解决方案。

4. 撰写符合规范的课程设计报告。

二、基于Boost电路APFC原理及设计2.1题目要求设计基于Boost变换器的有源功率因数校正电路,额定功率为1kW,峰值功率为1.5kW,负载为电阻性负载。

其输入交流电电压范围在190-240V/50Hz,其输出电压恒定在400V,在输入电压20%波动工况下,系统动态调整时间在0.5s内。

功率器件工作频率:20kHz,输出电压波纹5%,电流波纹10%。

2.2BOOST电路及工作原理图1 BOOST 电路原理图假设其中断电感、电容的值都极大,当IGBT 导通时,电感通过电源进行充电,此时充电电流恒定,令其电流大小恒为I 1,且此时,电容两端的电压向负载供电,由于电容的阻值很大,故输出电压为恒值,记为U 0。

令IGBT 的开通的时间为t on ,在此阶段中电感上积蓄的能量为E on ;当IGBT 关断时,电源和电感共同向电容充电并向负载R 进行供电。

设IGBT 的关断时间为t off ,则此期间电感L 释放能量为:E off =(U 0−E)I 1t off543QDLC ZV du ci Ci o Boost电路图i LQDLC ZV du ci Ci oi LQDLC ZV du ci C i oi LQDLC ZV du ci C i oi LbQ导通Q关断Q关断时电感电流为零adci L I Lmax I LminI i i LI LmaxI Lmin I Lmin I Lmaxi Q i D i Cu c ΔU Cttt tt ttt t tttI LmaxI LmaxI Lmaxi Cu ca 电感连流连续b 电感电流断续00000000000I it ont offTt onTt ’off-I OI max -I OV GE V GE-I OI max -I O又当其处于稳态时,在一个周期内电感L上吸收和释放的能量相等,故:(U0−E)I1t off=EI1t on由上述公式整理可得:U0=t on+t offt offE=Tt offE由于该电路的输出电压U0高于电源电压E,故又称为:升压斩波电路,也就是BOOST电路,又α=t onT,其中α为导通占空比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。

它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。

BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。

关键词:稳压电源;buck变换器AbstractHas been widely used in the DC power supply, AC power supply, industry power supply of high frequency switching power supply, communication power supply, communication power supply, inverter power supply, computer power supply etc.. It can provide high power and coarse grid electricity, it is an important system of modern electronic equipment "the blood flow to the heart". BUCK converter is a switch for power supply the basic topology of BUCK converter, also called buck converter, a DC chopper for buck to input and output voltage, the output voltage is less than the input voltage, because of its variable function superior, therefore, it can be directly used for the need for direct step-down place.Keyword:regulated power supply;BUCK converterII目录摘要------------------------------------------------------------------------------ⅠAbstract------------------------------------------------Ⅱ第一章设计目的与要求-----------------------------------11、设计目的-------------------------------------------12、设计要求-------------------------------------------1第二章主电路设计与元件参数选型-------------------------21、主电路设计-----------------------------------------22、IGBT驱动电路简介-----------------------------------33、元件参数选型----------------------------------------3第三章系统建模与仿真-----------------------------------51、MATLAB仿真简介------------------------------------52、主电路建模-----------------------------------------53、控制电路的实现-------------------------------------104、仿真中出现的问题以及解决方法-------------------------11第四章仿真结果分析------------------------------------14第五章设计小结----------------------------------------15第六章参考文献-------------------------------------------------------------16第一章设计目的与要求1、降压斩波电路的设计目的(1)、通过对降压斩波电路(buck chopper)的设计,掌握buck chopper 电路的工作原理,综合运用所学知识,进行buck chopper电路和系统设计的能力。

(2)、了解与熟悉buck chopper电路拓扑、控制方法。

(3)、理解和掌握buck chopper电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。

(4)、具有一定的电力电子电路及系统实验和调试的能力。

2、降压斩波电路的设计要求(1)、计内容: 对Buck Chopper电路的主电路和控制电路进行设计,参数如下:直流电压E=380V,反电动式E1=48V,输出功率为5KW。

(2)设计要求(a)理论设计:了解掌握Buck Chopper电路的工作原理,设计Buck Chopper电路的主电路和控制电路。

包括:IGBT电流,电压额定的选择,画出完整的主电路原理图和控制电路原理图、列出主电路所用元器件的明细表。

(b)仿真实验:利用MATLAB仿真软件对Buck Chopper 电路主电路和控制电路进行仿真建模设计第二章 主电路设计与元件参数选型1、主电路设计降压斩波电路主电路工作原理图如下:图一:降压斩波电路主电路工作原理图(1)t=0时刻驱动V 导通,电源E 向负载供电,负载电压0U E =,负载电流0i 按指数曲线上升。

(2)t=t1时控制V 关断,二极管VD 续流,负载电压0U 近似为零,负载电流0i 呈指数曲线下降。

通常串接较大电感L 使负载电流连续且脉动小。

当电路工作稳定时,负载电流在一个周期的初值和终值相等如图2所负载电压的平均值为:0on on on off t t U E E E t t T α===+ 式中,on t 为V 处于通态的时间,off t 为V 处于断态的时间;T 为开关周期;α为导通占空比,简称占空比或导通比。

负载电流的平均值为:00U I R =若负载中L 值较小,则在V 关断后,到了2t时刻,,负载电流已衰减至零,会出现负载电流断续的情况。

负载电压0U平均值会被抬高,一般不希望出现电流断续的情况。

2、IGBT驱动电路简介IGBT 是三端器件,具有栅极G,集电极 C和发射极 E。

它是个场控器件,通断由栅射极电压 Uge决定。

Uge 大于开启电压Uge(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT 导通。

通态时电导调制效应使电阻 R减小,使通态压降减小。

当栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT 关断。

一般IGBT的开启电压Uge(th)在 25度时为2~6V左右,而实际一般驱动电压取15~20V,且关断时施加一定幅值的负驱动电压,有利于减小关断时间和关断损耗。

在栅极串入一只低值电阻有利于减小寄生振荡,该电阻值应随被驱动器件电流定额值的增大而减小。

图二:IGBT结构3、元件参数选型有题目知P=5000W ,U=380V ,E=0V ,U2=48V ,所以负载电阻R=22Ω,占空比为12.6%,有频率f=5KHZ ,所以T=1/f=0.0002S 。

由于反电动势E=0所以m=E m /E=0。

(1)IGBT 的选择:因为本电路设计的E=48V , 因此根据P=5000W ,U=104V ,由于晶闸管安全域量可知所选IGBT 的额定电压与额定电流分别为200-300V 、50A-100A 。

(2)栅极串联电阻Rg 的阻值:根据IGBT 的选择,由可知知R 的值为10欧。

(3)其他元器件的选择标准如下:二极管额定电压50V 电流有:式中,(4)电感取很大。

R E m e e R E R E e e I m T t ⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=1111//101ραρττR E m e e R E R E e e I m T t ⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=----ραρττ1111//201RL /=ττρ/T =E E m m /=αρττ=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=T T t t 11/第三章系统建模与仿真1、MATLAB仿真简介MATLAB 是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB的优势如下:(1)友好的工作平台和编程环境;(2)简单易用的程序语言;(3)强大的科学计算机数据处理能力;(4)出色的图形处理功能;(5)应用广泛的模块集合工具箱;(6)实用的程序接口和发布平台;(7)应用软件开发(包括用户界面)。

2、主电路建模(1)在simulink平台下新建一个m文件(2)根据主电路在matlab中搭建模块图三Scope增加引脚图四根据原理图,设置相关的参数,其中U=380V,PWM的占空比为12.6%(根据计算可得),电阻取值22欧姆,电感取值很大,搭建的matlab 模型如下图:图五:占空比调节图六:设置输入信号大小图七:设置电感值图八:设置电阻值图九:设置g级电阻值图十:仿真模型图(3)调试结果输出电流I0波形图输出电压U0波形图3、控制电路的实现在本设计中,IGBT的驱动采用了东芝公司的TLP250芯片。

TLP250前端最小导通电流为5mA,供电电压为10—35V,输出电流可达1.5A,隔离电压可达2500V,额定工作频率为25KHz。

据此,TlP250满足设计要求,并且外围电路简单,工作稳定可靠。

IGBT的驱动电路如图所示。

PWM信号输入TLP250,然后,TLP250从G1和E1输出IGBT的驱动信号,G1和E1分别接到IGBT的栅极和发射极。

为了使IGBT可以加快关断速度,使系统运行更加可靠,当IGBT 关断时,使栅极和发射极之间为负电压。

在电路中,采用9V的稳压管Z1,供电电压为24V。

当前端输入导通时,栅极和发射极之间产生15V电压,驱动IGBT导通;当前端输入关断时,栅极和发射极之间产生负9V的电压,加快了IGBT的关断,保证了系统的可靠运行。

4、仿真中出现的问题以及解决方法(1)刚开始进去的时候没有设置仿真参数,在查阅了相关的步骤以及相关的资料后,设置了算法参数、仿真的开始时间和停止时间,设置的算法为ob23tb算法。

相关文档
最新文档