复数的复习(习题课)1

合集下载

复数的四则运算及几何意义习题课

复数的四则运算及几何意义习题课

题型四:求复数式中的实参数值
练习已知复数z满足|z|=1,且
(z - m ) = 2m (m < 0) ,求m的值.
2
m = 1-
2
题型五:证明复数的有关性质
例10 已知复数z满足|z|=1,求证: 1 z+ R. z
题型五:证明复数的有关性质 例12 求证:复数z为纯虚数的充要 条件是z2<0.
复数的概念与运算典型题型分析
题型一:复数的混合运算
3 - 4i 15 8 例1 计算: + i - (1 + i ) 1 + 2i
-17-3i 3 2z + (4z + 6)i 练习设复数z=1-i,求
的值.
- 3z
1 -i

1 例3 已知复数z满足 z + - i = 0 , 2 z z - z + 1
.
1 x
变式1:若复数z满足|z+1|+|z-1|=4,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,长轴长为4的椭圆 变式2:若复数z满足|z+1|-|z-1|=1,则复数z所对应的 点表示什么图形? 以(1,0),(-1,0)为焦点,实轴长为1的双曲线的右支
变式3:你能给出下列方程所表示的图形的复数 表达形式吗?
解:由条件|z-4i|=|z+2|知复数z 对应的点到点A(0,4)与点 B(-2,0)的距离相等,所以复数 z对应的点的集合是线段AB的垂直 平分线.由平面解析几何知识得x,y 满足x+2y=3,所以由均值不等式得
2 x 4 y 2 2 x 4 y 2 2 x2 y 4 2
y 4
2、思考题: (1)你能写出线段Z1Z2的垂直平分线的复数表达形式吗? (2)你能写出抛物线y2=2px(p>0)的复数表达形式吗?

复数习题课

复数习题课
(2)减法法则:z1-z2=(a-c)+(b-d)i.
(3)复数的乘法法则:
(a bi)(c di) (ac bd) (bc ad)i
(4)除法法则:
a bi ac bd bc ad (a bi) (c di) c di c2 d 2 c2 d 2 i
a bi (a bi)(c di)
当 b 0时, z a bi 叫做虚数.
当 a 0且b 0 时,z bi 叫做纯虚数.
规定:两复数 a bi 与 c di (a, b, c, d R)
讲 课 人 :
相等的充要条件是 a c 且 b d .

启 强
2
共轭复数:
定义:实部相等,虚部互为相反数
a+bi 的共轭复数记作 z, 即 z a bi
说明: 1 | z || z | z z
2 Z1 Z2 Z1 Z2
Z1 Z2 Z1 Z2
3. | z |2 z z a2 b2





启 强
3
复数的意义. 有序实数对(a,b)
复数z=a+bi 一一对应 直角坐标系中的点Z(a,b)
2 i 2 i (2 i)(2 i)
5
所以(1-i)2+a(1-i)+b=1+i,即-2i+a-ai+b=1+i,从而有: (a+b)+(-a-2)i=1+i.
a b 1 a 3
讲 课 人 :
a
2
1
b
4
.

启 强
9
4.计算:(1+2 i )2
3 4i
5.计算(i-2)(1-2i)(3+4i) -20+15i 6.计算 (1 i)3 -2+2i 7.若 z C 且 (3 z)i 1 ,则 z -__3_-_i_ . 3

高中复数练习题及答案

高中复数练习题及答案

高中复数练习题及答案精品文档高中复数练习题及答案1(已知z1,a,bi,z2,c,di,若z1,z2是纯虚数,则有A(a,c,0且b,d?0B(a,c,0且b,d?0C(a,c,0且b,d?0 D(a,c,0且b,d?02([,i],[,i]等于A(,2b,2bi B(,2b,2bi的值为,下列结论正确的是A(a,0?a,bi为纯虚数 B(b,0?a,bi为实数C(a,i,3,2i?a,3,b,,D(,1的平方等于i8,若复数,i不是纯虚数,则A(a,,1 B(a?,1且a?2C(a?,1 D(a?29,已知|z|,3,且z,3i是纯虚数,则z,A(,3i B(3iC(?3i D(4i10,若sin2θ,1,i是纯虚数,则θ的值为ππA(2kπ, B(2kπ44πkππC(2kπ?D.,以上k?Z) 12131415虚[答案]1,A ,A3,C ,B ,C ,D ,B ,B ,B 10,1 / 18精品文档B 11, 16i 12, 13,— 14, 1 15, ,11i16, [解析] 所以当a,6时,z为实数(所以当a????时,z为虚数(所以不存在实数a使得z为纯虚数(一、选择题3,i1(复数等于1,iA(1,2iB(1,2iC(2,iD(2,i 答案:C3,i4,2i解析:,2,i.故选C.21,i3,2i3,2i2(复数,2,3i2,3iA(0 B( C(,2iD(2i 答案:D3,2i3,2i13i,13i解析:,,,i,i,2i.132,3i2,3i13z,23(已知z是纯虚数,z等于1,iA(2i B(i C(,iD(,2i 答案:D解析:由题意得z,ai.( z,22,a,i?,2 / 18精品文档21,i则a,2,0,?a,,2.有z,,2i,故选D.(若f,x3,x2,x,1,则f, A(2i B(0 C(,2iD(,答案:B解析:依题意,f,i3,i2,i,1,,i,1,i,1,0,选择B.2,i5(复数z,在复平面内对应的点位于1,iA(第一象限 B(第二象限 C(第三象限 D(第四象限答案:D2,i13解析:zi,它对应的点在第四象限,故选D.1,i222,ib6(表示为a,biia11A(,B(, C(D.22答案:A3 / 18精品文档2,ib解析:,1,2i,把它表示为a,bi的形式,则2,故选A.ia27(设i是虚数单位,复数z,tan45?,i?sin60?,则z等于 13i B.,3i471,D.,44答案:B31解析:z,tan45?,i?sin60?,1,i,z2,,3i,故选B.248(3,i在复平面内对应的直线的倾斜角为ππA. B(,625π D.π6答案:D353,i对应的点为,所求直线的斜率为,,则倾斜角为,故选D.36a,bi9(设a、b、c、d?R,若c,diA(bc,ad?0B(bc,ad?0 C(bc,ad,0D(bc,ad,0 答案:Ca,biac,bdbc,adbc,ad4 / 18精品文档解析:因为i,所以由题意有,0?bc,ad,0. c,dic,dc,dc,dc,d110(已知复数z,1,2i,那么z55,i5512,55答案:D525512D.,i5B.11,2i121,i.故选D. z1,2i1,455解析:由z,1,2i知z,1,2i,于是z11(已知复数z1,3,bi,z2,1,2i是实数,则实数b的值为z21A( B(,C(0 D.6答案:Az13,bi,i解析:是实数,则实数b的值为6,故选A.z21,2i512(设z是复数,α表示满足zn,1的最小正整数n,则对虚数单位i,α, A( B( C(D(答案:B解析:α表示in,1的最小正整数n,因i4k,1,显5 / 18精品文档然n,4,即α,4.故选B.1313(若z,且4,a0x4,a1x3,a2x2,a3x,a4,则a2等于2213A(,,iB(,3,33i22C(6,33iD(,3,33i 答案:B4,r解析:?Tr,1,Crr,x由4,r,2得r,2,1322?a2,C2i),6?,i对应的点位于 A(第一象限B(第二象限 C(第三象限D(第四象限答案:B解析:??ABC为锐角三角形, ?A,B,90?,B,90?,A, ?cosB,sinA,sinB,cosA,?cosB,sinA,0,sinB,cosA,0, ?z对应的点在第二象限(2,bi15(如果复数的实部和虚部互为相反数,那么b等于1,2i22C(, D(26 / 18精品文档33答案:C2,bi解析:51,2i552,2b,4,b2由,,b553,1316(设函数f,,x5,5x4,10x3,10x2,5x,1,则f的值为221331A(,,i B.,i2222131,iD(,222答案:C解析:?f,,51313?f,),,5222213,,ω5221313,,ω,,,i.222217(若i是虚数单位,则满足2,q,pi的实数p,q7 / 18精品文档一共有 A(1对 B(2对 C(3对 D(4对答案:D22???p,q,q,??p,0,?p,0,222解析:由,q,pi得,2pqi,q,pi,所以?解得?或??2pq,p.?q,0,?q,,1,????p,2或?1q,?2,?p2,或?1q,?2因此满足条件的实数p,q一共有4对(总结评述:本题主要考查复数的基本运算,解答复数问题的基本策略是将复数问题转化为实数问题来解决,解答中要特1别注意不要出现漏解现象,如由2pq,p应得到p,0或q22x2018(已知,6的展开式中,不含x的项是,那么正数p的值是xp27A(1 B( C( D(答案:C204128 / 18精品文档解析:由题意得:C62,,求得p,3.故选C.p27总结评述:本题考查二项式定理的展开式,注意搭配展开式中不含x的项,即找常数项(,19(复数z,,lg,i在复平面内对应的点位于 A(第一象限 B(第二象限 C(第三象限 D(第四象限答案:C解析:本题考查复数与复平面上的点之间的关系,复数与复平面上的点是一一对应的关系,即z,a,bi,与复平面上的,点Z对应,由z,,lg,i知:,,a,,lg,0,又2x,2x,1?2?2,1,1,0;,?,,0,即b,0.?应为第三象限的点,故选C.20(设复数z,i在映射f下的象为复数z的共轭复数与i的积,若复数ω在映射f下的象为,1,2i,则相应的ω为A(B(2,2i C(,2,i D(2,i 答案:A9 / 18精品文档解析:令ω,a,bi,a,b?R,则ω,[a,i],i, ?映射f下ω的象为[a,i]?i,,ai,,1,2i. ???b,1,,1,?b,0,??解得??ω,2. ?a,2.?a,2.??第?卷二、填空题1(已知z是复数,i是虚数单位,若z,2i,则z,________. 答案:,1,i2i解析:z,2i,z,,,1,i.1,i22(若复数z满足z,1,i,则其共轭复数z,________. 答案:i1,i2解析:zi,1,i?z,i.23(若复数z1,4,29i,z2,6,9i,其中i是虚数单位,则复数i的实部为________( 答案:,20解析:i,i,,20,2i,故i的实部为,20.1,ai24(在复平面内,复数对应的点位于虚轴上,则a,________.i答案:01,ai解析:a,i,由于它对应的点在虚轴上,则a,0.10 / 18精品文档i223344556625(i是虚数单位,则1,C16i,C6i,C6i,C6i,C6i,C6i,________. 答案:,8i22334455666233解析:1,C16i,C6i,C6i,C6i,C6i,C6i,,[],,,8i.三、解答题6(计算下列问题: 773;1,i1,i4,3i2,2i83112,.221,3i分析:对于复数运算,除了应用四则运算法则之外,对于一些简单算式是知道其结果,这样起点高,方便计算,达到迅1,i1,ia,bi11313速简捷、少出错的效果(比如2,?2i,,,i,i,i,,b,ai,3,1,)3,,1等等( ii22221,i1,i28?2i231,i231,i8解析:原式,[],[],3?i,3?,11 / 18精品文档i1,i1,ii,8,8,16,16i,,16i.2,2i83112,221,3i?1,i?133?,i12?12,?122???22?13[2]42213,[3]4,221333[]2213,1,422,1,8,83i,,7,83i.27(求同时满足下列两个条件的所有复数z;101,z,6;z12 / 18精品文档z的实部和虚部都是整数( 解析:设z,x,yi,222210xy则z,,i.zx,yx,yy,0,???10?1,z6,??xz1,6. ??x,y?1010由?得y,0或x2,y2,10,将y,0代入?得1,,x?6x?210,6矛盾,xx1?y?0.将x2,y2,10代入?得,x?3.2?x,1,?x,3,??又x,y为整数,??或???y,?3.y,?1.??故z,1?3i或z,3?i.3228(已知z1,,i,z2,,b,i且3z21,z2,0,求z1和z2.213 / 18精品文档解析:?3z21,z2,0, zz?2,,3,即3i. z1z1?z2,3iz1.当z2,3iz1时,得33,33b,i,3i[a,i],,3,ai.22由复数相等的条件,知b,a,1,????a,2,????b,1.b,2,,??2?22?z1,,3i,z2,,33,3i.3当z2,,3iz1时,得,3b,i3,2,3b,a,1,??由复数相等的条件,知?b,2.?2??a,,7,??1b,?7.10?已知a,b?,?此时适合条件的a,b不存在( ?z1,3,3i,z2,,33,3i.14 / 18精品文档高三复习:复数一、选择题1( [2014?重庆卷] 实部为,2,虚部为1的复数所对应的点位于复平面的A(第一象限 B(第二象限 C(第三象限 D(第四象限7,i2( [2014?天津卷] i是虚数单位,复数,,4i17311725A(1,i B(,1,Ii D(,,2525772i3( [2014?安徽卷] 设i是虚数单位,复数i3,, 1,iA(,i B(i C(,1 D(14( [2014?福建卷] 复数i等于A(,2,3i B(,2,3i C(2,3i D(2,3i5( [2014?广东卷] 已知复数z满足z,25,则z,A(,3,4i B(,3,4i C(3,4i D(3,4i6( [2014?广东卷] 对任意复数ω1,ω2,定义ω1*ω2,ω1ω2,其中ω2是ω2的共轭复数,对任意复数z1,z2,z3有如下四个命题:?*z3,,;?z1*,,;?*z3,z1*;?z1*z2,z2*z1. 则真命题的个数是A(1 B( C( D(41,i2?7( [2014?湖北卷] i为虚数单位,?, ?115 / 18精品文档,i?A(1 B(,1 C(i D(,i8( [2014?江西卷] 若复数z满足z,2i,则|z|,A(1 B( D.39( [2014?辽宁卷] 设复数z满足,5,则z,A(2,3i B(2,3i C(3,2i D(3,2i1,3i10( [2014?新课标全国卷?] 1,iA(1,2i B(,1,2iC(1,2i D(,1,2i111( [2014?全国新课标卷?] 设zi,则|z|, 1,i123A. B.D(22212( [2014?山东卷] 已知a,b?R,i是虚数单位,若a,i,2,bi,则2,A(3,4i B(3,4i C(4,3i D(4,3i,13( [2014?陕西卷] 已知复数z,2,i,则z?z的值为A( B. C( D.二、填空题2,2i14( [2014?四川卷] 复数,________( 1,i1,i15( [2014?浙江卷] 已知i是虚数单位,计算,________( 16( [2014?北京卷] 若i,,1,2i,则x,________(3,i17( [2014?湖南卷] 复数的实部等于16 / 18精品文档________( i18( [2014?江苏卷] 已知复数z,2,则z的实部为________(复数答案:一、选择题1(B2(A3(D4(B5(D6(B7(B8(C9(A10(B11(B12(A13(A二、填空题14(,2i1115(,i 216(2 17(,18(2117 / 18精品文档18 / 18。

2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)

2021高考数学 复数历年来高考习题荟萃(2020-2021)(含解析)(1)

zi,+2=2z设=2a+2bi在复平面内对应的.第四象限,故答案为D.对应的点的坐标是( ) ()(+为虚数单位1i iA .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i·(1+i) = i – 1,因此对应点(-1,1).选B 选B9.【2021山东】(1)复数z 知足(z-3)(2-i)=5(i 为虚数单位),那么z 的共轭复数为( D )A. 2+i C. 5+i10.【2021上海理】设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,那么________m =【解答】2220210m m m m ⎧+-=⇒=-⎨-≠⎩11.【2021四川理】2.如图,在复平面内,点A 表示复数z ,那么图中表示z 的共轭复数的点是( )(A )A (B )B (C )C (D )D 12.【2021全国新课改II 】设复数z 知足(1i )z = 2 i ,那么z =(A )1+ i(B )1 i(C )1+ i(D )1 i答案:A【解法一】将原式化为z =2i 1- i ,再分母实数化即可.【解法二】将各选项一一查验即可.13.【2021课标1】假设复数z 知足 (3-4i)z =|4+3i |,则z 的虚部为()A 、-4(B )-45(C )4(D )45【命题用意】此题要紧考查复数的概念、运算及复数模的计算,是容易题.【点评】此题考查复数代数形式的四那么运算及复数的大体概念,考查大体运算能力.先把Z 化成标准的(,)a bi a b R +∈形式,然后由共轭复数概念得出1z i =--. 10.【2021高考湖北文12】.若=a+bi (a ,b 为实数,i 为虚数单位),那么a+b=____________. 【答案】3【点评】此题考查复数的相等即相关运算.此题假设第一对左侧的分母进行复数有理化,也能够求解,但较繁琐一些.来年需注意复数的几何意义,大体概念(共轭复数),大体运算等的考查.11.【2021高考广东文1】设i 为虚数单位,那么复数34ii+= A. 43i -- B. 43i -+ C. 43i + D. 43i - 【答案】D12.【2102高考福建文1】复数(2+i )2等于 +4i +4i +2i +2i 【答案】A.【解析】i i i 43)22()14()2(2+=++-=+,应选A.13.【2102高考北京文2】在复平面内,复数103ii+对应的点的坐标为 A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1) 【答案】A14.【2021高考天津文科1】i 是虚数单位,复数534i i+-=(A )1-i (B )-1+i (C )1+i (D )-1-i【答案】C或,复数a+为纯虚数0,0b00b,应选B.=+(i为虚数单位年高考(山东理))假设复数)117i-i D.3--B.35i【解析】1iz i-=2021年高考(大纲理)【考点定位】此题要紧考查复数的代数运算在复平面内所对应的图形的面积为__8__.3416.(2021年高考(上海春))假设复数z 知足1(iz i i =+为虚数单位),那么z =1i -_______.34(江苏))设a b ∈R ,,117ii 12ia b -+=-(i 为虚数单位),那么a b +的值为____. 7. 【考点】复数的运算和复数的概念.【分析】由117ii 12ia b -+=-得()()()()117i 12i 117i 1115i 14i ===53i 12i 12i 12i 14a b -+-+++=+--++,因此=5=3a b ,,=8a b + .2020年高考复数1.【2020安徽理】 设 i 是虚数单位,复数aii1+2-为纯虚数,那么实数a 为 (A )2 (B) -2 (C) 1-2(D) 12A. 【命题用意】此题考查复数的大体运算,属简单题.【解析】设()aibi b R i1+∈2-=,那么1+(2)2ai bi i b bi =-=+,因此1,2b a ==.应选A. 2.【2020北京理】复数i 212i-=+ A. i B. i - C. 43i 55-- D. 43i 55-+【解析】:i 212ii -=+,选A 。

高一数学(人教B版)-复数的运算习题课-PPT课件

高一数学(人教B版)-复数的运算习题课-PPT课件
为 51 6 , 最 小 值 为 5 1 4.
y
(4, 3)
Z
1 0 1
x
已知复数 z 满足 z 1,则 z (4 3i) 的最大、最小值为( )
A. 5,3
B. 6,4
C. 7,5
分析与解答:(思维方向:向量)
D. 6,5
y
(4, 3)
z (4 3i)
两个向量差的模
Z
向量 向量
根据复数减法几何意义的不等式:
类比多项式乘法计算
思想方法
几何意义
方程 类 数形 思想 比 结合
除法
分母实数化
几何意义
课后作业
1.求下列各式的值.
(1)( 2 i) (1 2 i) (1 3 i); (2) 5 3i 3 5i ;
1 2
3 2
i
.
分析与解答:
5
5
5
对于○3
1 1
i i
5
1 i 1 i
4 4
1 i4
1
i
4
4
2i 2
2i
2
4
1:
在实数集中,xR 都有(xm )n xmn (m,nR),而在复数 集中,仅对 m,nN有(xm )n xmn,盲目将实数集中的指
数运算法则推广到复数集,错误.
已知复数 z 满足 z 1,则 z (4 3i) 的最大、最小值为( )
A. 5,3
B. 6,4
C. 7,5
D. 6,5
分析与解答:(思维方向:代数)
z abi z 1
z = a2 b2
z (4 3i)
a2 b2 1
(a 4) (b 3)i
(a 4)2 (b 3)2

复数习题课(新新)

复数习题课(新新)

复 数 习 题【知识提要】复数减法几何意义的应用:1. 设复数21,z z 分别对应复平面上两点A 、B ,则21z z AB -=。

2. 设0z 对应的点为C ,以C 为圆心,r 为半径的圆:r z z =-0。

3. 设复数21,z z 分别对应复平面上两点A 、B ,线段AB 的中垂线;21z z z z -=-。

4. 设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,长轴长为2a 的椭圆: )2z ( 22121a z a z z z z <-=-+-。

5.设复数21,z z 分别对应复平面上两点A 、B ,以A 、B 为焦点,实轴长为2a 的双曲线: )2( 22121a z z a z z z z >-=---。

【练习】1.计算:________5312i i i i =-+- ; (2)i i i i 212)1()31(63+--++-=_2i____ . 2.复数ii m z 212+-=()R m ∈在复平面上对应的点不可能位于第__一___象限。

3.已知})65(13,2,1{22i m m m m M --+--= ,1{-=N ,3},}3{=N M ,则实数m=__________。

解:}3{=N M ,3)65(1322=--+--∴i m m m m ,即 3132=--m m 0652=--m m 1-=∴m._______ , ,91)2() 103(. 4的和等于则实数若y x i x i y i -=+-+-i i y x x y 91)10()23(::-=-+-原式化为解 根据复数相等的充要条件,有910123-=-=-y x x y , 解得 11==y x , 2=+∴y xi z z z z z z z ==+-211221 , , 022,..5则在第一象限且的两个根是方程已知. 6.已知5 4log 21≥+i x ,则实数x 的取值范围是_________ 。

第三章3.1 复数习题课

习题课 课时目标 1.进一步理解复数的概念.2.通过具体实例理解复平面的概念,复数的模的概念.1.复数的代数形式:____________ (a ,b ∈R ).2.复数相等的条件:a +b i =c +d i ⇔____________(a ,b ,c ,d ∈R ).3.复数z =a +b i (a ,b ∈R )对应向量OZ →,复数z 的模|z |=|OZ →|=____________.一、选择题1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( )A .3-3iB .3+iC .-2+2iD .2+2i2.若2+a i =b -i ,其中a ,b ∈R ,i 是虚数单位,则a 2+b 2等于( )A .0B .2C .52D .5 3.若点P 对应的复数z 满足|z |≤1,则P 的轨迹是( )A .直线B .线段C .圆D .单位圆以及圆内4.在复平面内表示复数z =(m -3)+2m i 的点在直线y =x 上,则实数m 的值为( )A .1B .1或3C .3D .95.在复平面内,O 为原点,向量OA →对应复数为-1-2i ,则点A 关于直线y =-x 对称点为B ,向量OB →对应复数为( )A .-2-iB .2+iC .1+2iD .-1+2i二、填空题6.若x 是实数,y 是纯虚数且满足2x -1+2i =y ,则x =________,y =________.7.下列命题:(1)两个复数不能比较大小;(2)若z =a +b i ,则当a =0,b ≠0时,z 为纯虚数;(3)x +y i =1+i ⇔x =y =1;(4)若实数a 与虚数a i 对应,则实数集与纯虚数集一一对应.其中正确命题的个数是________.8.若|log 3m +4i|=5,则实数m =________.三、解答题9.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为 (1)实数?(2)虚数?(3)纯虚数?10.已知z =2a +1-2+(a -3)i 对应的点在第四象限,求a 的取值范围.能力提升11.求复数z 1=3+4i ,及z 2=-12-2i 的模,并比较它们模的大小.12.实数m 分别取何值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 的对应点:(1)在x 轴上方;(2)在直线x +y +5=0上.1.复数问题主要是利用实数化思想,转化为复数的实虚部应满足的条件.2.复数可以和复平面内的点、复平面内从原点出发的向量建立一一对应关系.习题课答案知识梳理1.a +b i 2.a =c ,b =d 3.a 2+b 2作业设计1.A [3i -2的虚部为3,3i 2+2i 的实部为-3,故所求复数为3-3i.]2.D [由已知a =-1,b =2,∴a 2+b 2=5.]3.D4.D [若表示复数z =(m -3)+2m i 的点在直线y =x 上,则m -3=2m ,即m -2m -3=0, ∴(m -3)(m +1)=0,∴m =3,∴m =9.]5.B [点A (-1,-2),设B (x ,y ),则⎩⎪⎨⎪⎧ y +2x +1=1-1+x 2+-2+y 2=0,解得⎩⎪⎨⎪⎧ x =2y =1,∴向量OB →对应的复数为2+i.]6.122i 解析 设y =b i (b ≠0),∴⎩⎪⎨⎪⎧ 2x -1=0b =2,∴x =12. 7.0解析 因为实数也是复数,而两个实数是可以比较大小的,故(1)错;(2)中没有注意到z =a +b i 中未对a ,b 加以限制,故(2)错;(3)中在x ,y ∈R 时可推出x =y =1,而此题未限制x ,y ∈R ,故(3)错;(4)中忽视了当a =0时,a i =0,即0在虚数集中没有对应,故(4)错.8.27或127解析 由题意得,(log 3m )2+16=25,即(log 3m )2=9,∴log 3m =±3,∴m =27或m =127. 9.解 (1)当⎩⎪⎨⎪⎧ m 2-2m =0m ≠0, 即m =2时,复数z 是实数;(2)当m 2-2m ≠0,即m ≠0,且m ≠2时,复数z 是虚数;(3)当⎩⎪⎨⎪⎧m 2+m -6m =0m 2-2m ≠0, 即m =-3时,复数z 是纯虚数.10.解 由题意得⎩⎨⎧ 2a +1-2>0,a -3<0,∴32<a <3. 11.解 |z 1|=32+42=5,|z 2|=⎝⎛⎭⎫-122+(-2)2=32. ∵5>32,∴|z 1|>|z 2|. 12.解 (1)由题意得m 2-2m -15>0,解得m <-3或m >5.(2)由题意得(m 2+5m +6)+(m 2-2m -15)+5=0,m =-3±414.。

复数习题课课件


二.复数的乘法法则:
(a+bi)(c+di)=ac+bci+adi+bdi2
=(ac-bd)+(bc+ad)i 显然任意两个复数的积仍是一个复数. 复数的乘法运算法则: 对于任意z1,z2,z3 ∈ C,有
z1∙z2= z2∙z1 , z1∙z2 ∙z3= z1∙(z2 ∙z3) , z1∙(z2 +z3)= z1∙z2 +z1∙z3
当堂检测
1.a 0是复数a bi(a, b R)为纯虚数的( ) A.充分非必要条件 C.充分必要条件 B.必要非充分条件 D.既不充分也不必要条件
2.设o是原点,向量OA, OB对应的复数分别为2 3i, 3 2i 那么向量BA对应的复数是() A. 5 5i B. 5 5i C.5 5i D.5 5i 2 3.当 m 1时,复数m(3 i ) (2 i )在复平面内 3 对应的点位于( )
4.若z 1 2i, 则z 2 2 z的值为 __________
1 z 5.若复数z满足 i则 z 1的值为 __________ 1 z 1 3 ( .( i) (1 i ) 计算: 1) 2 2 3 1 1 3 (2).( i )( i) 2 2 2 2 2i (3). 7 4i 5(4 i ) 2 (4). i(2 i)
复数z=a+bi (数)
y 一一对应
直角坐标系中的点Z(a,b) (形)
b
建立了平面直角坐标系来 z=a+bi 表示复数的平面——复平面 Z(a,b) x轴——实轴 y轴——虚轴 a x
0
这是复数的一种几何意义.
有序实数对(a,b)

(最新整理)复数运算习题

(完整)复数运算习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)复数运算习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)复数运算习题的全部内容。

复数运算习题一.选择题(共13小题)1.(2016•淮南一模)复数的虚部是( )A.i B.﹣i C.1 D.﹣12.(2016•眉山模拟)已知i是虚数单位,则复数i(1+i)的共轭复数为( )A.1+i B.l﹣i C.﹣l+i D.﹣l﹣i3.(2016•黄浦区一模)已知复数z,“z+=0"是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件4.(2016•临沂一模)复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为( )A.﹣3 B.3 C.﹣D.5.(2016•广西一模)在复平面内,复数+2i2对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2016•白山一模)若=a+bi(a,b∈R,i为虚数单位),则a﹣b等于( )A.B.1 C.0 D.﹣17.(2016•衡阳一模)如图,在复平面内,复数z1和z2对应的点分别是A和B,则=()A.+i B.+i C.﹣﹣i D.﹣﹣i8.(2016•河西区模拟)已知复数z 1=3﹣i,z2=1+i,是z1的共轭复数,则=( )A.1+i B.1﹣i C.2+i D.2﹣i(2016•青浦区一模)复数(a∈R,i是虚数单位)在复平面上对应的点不可能位于( )9.A.第一象限B.第二象限C.第三象限D.第四象限10.(2015•新课标II)若a为实数且,则a=()A.﹣4 B.﹣3 C.3 D.411.(2015•静安区一模)已知i为虚数单位,图中复平面内的点A表示复数z,则表示复数的点是()A.M B.N C.P D.Q12.(2015•固原校级一模)若复数(i为虚数单位,a∈R)在复平面内对应点在第四象限,则a的取值范围为()A.{a|a<﹣6}B.C.D.13.(2015•海南模拟)已知i是虚数单位,m∈R,且是纯虚数,则()2011的值为()A.i B.﹣i C.1 D.﹣1二.填空题(共5小题)14.(2015•曲阜市校级模拟)若=1﹣bi,其中a,b都是实数,i是虚数单位,则a+b= .15.(2015秋•启东市校级期末)复数z满足|z﹣2+i|=1,则|z+1﹣2i|的最小值为.16.(2015春•淮安校级期末)定义:若z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数﹣3+4i的平方根是.17.(2015秋•大丰市校级期末)已知复数z=x+yi(x,y∈R,x≠0)且|z﹣2|=,则的范围为.18.(2015春•常州期中)设x是纯虚数,y是实数,且2x﹣1+i=y﹣(3﹣y)i,则|x+y|= .。

第三章3.2复数 习题课

习题课 课时目标 1.进一步理解复数代数形式的运算.2.将复数的运算和复数的几何意义相联系,加深对复数的模概念的理解.1.复数z =a +b i (a ,b ∈R )的模|z |=____________,在复平面内表示点Z (a ,b )到_______.复数z 1=a +b i ,z 2=c +d i ,则|z 1-z 2|=(a -c )2+(b -d )2,在复平面内表示__________________________________.2.i 4n =______,i 4n +1=______,i 4n +2=________,i 4n +3=________ (n ∈Z ),1i=______一、选择题1.复数⎝ ⎛⎭⎪⎫3-i 1+i 2等于( ) A .-3-4i B .-3+4iC .3-4iD .3+4i2.已知i 2=-1,则i(1-3i)等于( )A.3-i B .3+iC .-3-iD .-3+i3.设a ,b 为实数,若复数1+2i a +b i=1+i ,则( ) A .a =32,b =12B .a =3,b =1C .a =12,b =32D .a =1,b =3 4.下列式子中正确的是( )A .3i>2iB .|2+3i|>|1-4i|C .|2-i|>2·i 4D .i 2>-i5.对任意复数z =x +y i (x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z |=2yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y |二、填空题6.若复数z =1-2i (i 为虚数单位),则z ·z +z =__________.7.设复数z 满足z (2-3i)=6+4i(其中i 为虚数单位),则z 的模为________.8.设复数z 满足关系式z +|z |=2+i ,那么z =______.三、解答题9.已知复平面上的▱ABCD 中,AC →对应的复数为6+8i ,BD →对应的复数为-4+6i ,求向量DA →对应的复数.10.已知关于x 的方程x 2-(6+i)x +9+a i =0 (a ∈R )有实数根b .(1)求实数a ,b 的值;(2)若复数z 满足|z -a -b i|-2|z |=0,求z 为何值时,|z |有最小值,并求出|z |的最小值.能力提升11.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z 1+i的点是( )A .EB .FC .GD .H 12.(1)证明|z |=1⇔z =1z ; (2)已知复数z 满足z ·z +3z =5+3i ,求复数z .1.复数的运算可以看作多项式的化简,加减看作多项式加减,合并同类项,乘法可看作多项式的乘法,除法类比分式的分子分母有理化.2.复数的几何意义使复数及复平面内的点的数学问题转化成一系列的实数集中的问题.习题课答案知识梳理1.a 2+b 2 原点的距离 点Z 1(a ,b ),Z 2(c ,d )两点间的距离2.1 i -1 -i -i作业设计1.A [⎝ ⎛⎭⎪⎫3-i 1+i 2=⎣⎡⎦⎤(3-i )(1-i )22 =(1-2i)2=-3-4i.]2.B [i(1-3i)=i +3,选B.]3.A4.C [在A 、D 中都含有虚数.因虚数不能比较大小,故A 、D 错;在B 中:|2+3i|=13,|1-4i|=1+16=17,故B 错;在C 中,|2-i|=4+1=5,2·i 4=2,故C 正确.]5.D [可对选项逐个检查,A 项,|z -z |≥2y ,故A 错,B 项,z 2=x 2-y 2+2xy i ,故B 错,C 项,|z -z |≥2y ,故C 错,D 项正确.]6.6-2i解析 z ·z +z =(1-2i)(1+2i)+1-2i =6-2i.7.2解析 考查复数的运算、模的性质.z (2-3i)=2(3+2i),2-3i 与3+2i 的模相等,z 的模为2.8.34+i 解析 设z =x +y i ,则z +|z |=x 2+y 2+x +y i =2+i ,∴⎩⎨⎧ x 2+y 2+x =2y =1,∴⎩⎪⎨⎪⎧x =34y =1,∴z =34+i. 9.解 设▱ABCD 的对角线AC 与BD 相交于点P ,由复数加减法的几何意义,得 DA →=P A →-PD →=12CA →-12BD →=12(CA →-BD →) =12(-6-8i +4-6i)=-1-7i , 所以向量DA →对应的复数为-1-7i.10.解 (1)∵b 是方程x 2-(6+i)x +9+a i =0 (a ∈R )的实根,∴(b 2-6b +9)+(a -b )i =0,故⎩⎪⎨⎪⎧b 2-6b +9=0a =b 解得a =b =3.(2)设z =x +y i (x ,y ∈R ),由|z -3-3i|=2|z |,得(x -3)2+(y +3)2=4(x 2+y 2),即(x +1)2+(y -1)2=8.∴Z 点的轨迹是以O 1(-1,1)为圆心,22为半径的圆. 如图,当Z 点在OO 1的连线上时,|z |有最大值或最小值. ∵|OO 1|=2,半径r =22,∴当z =1-i 时,|z |min = 2.11.D [由题图知复数z =3+i ,∴z 1+i =3+i 1+i =(3+i )(1-i )(1+i )(1-i )=4-2i 2=2-i. ∴表示复数z 1+i的点为H .] 12.(1)证明 设z =x +y i (x ,y ∈R ), 则|z |=1⇔x 2+y 2=1,z =1z⇔z ·z =1⇔(x +y i)(x -y i)=1 ⇔x 2+y 2=1,∴|z |=1⇔z =1z. (2)解 设z =x +y i (x ,y ∈R ),则z =x -y i , 由题意,得(x +y i)(x -y i)+3(x +y i) =(x 2+y 2+3x )+3y i =5+3i ,∴⎩⎪⎨⎪⎧ x 2+y 2+3x =5,3y =3∴⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =-4y =1. ∴z =1+i 或z =-4+i.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 x 8 (1 log2 y)i ,则 z=_____.
-1
已知关于 x 的方程 x 2 (2i 1) x 3m i 0 有实根. 则实数 m 的取值范围是____________. 1
5答案
12
5. (《随堂通》 P111 12) 已知关于 x 的方程 x 2 (2i 1) x 3m i 0 有实根. 则实数 m 的取值范围是____________.
解:原方程整理得: (x2+x+3m)-(2x+1)i=0 ∵x、m∈R,由复数相等的充要条件得: x 2 x 3m 0 1 1 解得 x , m . 2 12 2 x 1 0
1 ∴实数 m 的取值范围是 . 12 评注: 一元二次方程系数为虚数时, △ 法判别实 根已经不适用了.
C
4 2
A
1 2
5答案
5.已知关于 x 的实系数方程 x -2ax+a -4a+4=0 的两 虚根为 x1、x2,且|x1|+|x2|=3,则 a 的值为 .
解:依题意可设两虚根为 m ni , m ni m ni m ni 2a 则由韦达定理得 ( m ni )( m ni ) a 2 4a 4 又∵ m ni m ni 3 ,∴ 2 m2 n2 3 9 1 7 2 ∴ a 4a 4 解得 a 或 ( 舍去) 4 2 2 评注: 实系数一元二次方程有虚根一定是成 对出现的.(两虚根互为共轭复数) 作业:课本 P A 组题 1、2、3(第 1 题不抄题) 129
4
能力练习: 1.(《随堂通》 P111 16)已知 z = x+yi(x,y∈R), 且 2
x y
2+i 或 1+2i 1 3 9 4 2 8 2.若 i ,则 (1 )(1 )(1 )(1 ) 的值为____. 2 2 1 3.设 Sn 1 i i 2 i n1 ,则 S2007 等于________. 1 1 14 4.已知 x 1, 则 x 14 _____. x x 5. (《随堂通》 P111 12)
拓展练习: 1.满足条件|z-i|=|3+4i|的复数 z 在复平面上对应 点的轨迹是( ) (A)一条直线 (B)两条直线 (C)圆 (D) 椭圆 2.复数 z=x+yi(x, y∈R)满足|z-4i|=|z+2|, 则 2x +4y 的最小值是_______. 3.如果复数 z 满足|z+i|+|z-i|=2, 那么|z+i+1|的最小 值是( )(A)1 (B) 2 (C)2 (D) 5 4.已知复数 z x 2 yi ( x, y R) 的模是 3 , y 3 则 的最大值是______. x 5.已知关于 x 的实系数方程 x2-2ax+a2-4a+4=0 的两 虚根为 x1、x2,且|x1|+|x2|=3,则 a 的值为 .
B)
z1 3.已知复数 z1 2 i , z2 1 i ,则 在复平面内 z2 四 对应的点位于第_____象限. 25 4.若复数 z 的共轭复数是 3-4i . 3 4i 5.已知复数 z1=3+4i, z2=t+i,且 z1 z2 是实数,则实 3 数 t =____.
复数的复习(习题课)
知识概括
基础练习
能力练习
拓展练习
作业:课本 P A 组题 1、2、3(第 1 题不抄题) 129
复数的复习(习题课)
一、本章知识结构
虚数的引入 复 复数的表示 代数表示 几何表示 数 复数的运算
代数运算
几何意义
下面我们主要通过练习来巩固相关概念和方法.
基础练习: 1. a 0 是复数 a bi (a , b R) 为纯虚数的( (A)充分条件 (B)必要条件 (C)充要条件 (D)非充分非必要条件 2.已知复数 z 1 i , z 4 =_______ 4
相关文档
最新文档