压裂施工井下监测技术简介
压裂裂缝监测技术及应用

压裂裂缝监测技术及应用【摘要】目前国内外油气田普遍采用裂缝监测技术了解水力裂缝扩展情况及其复杂性,将裂缝与油藏、地质相结合以评价增产效果,并制定针对性的措施。
目前形成的技术主要分为间接诊断、直接近井诊断、直接远场诊断等三类十多种方法,在B660、F142等区块开展了多口直井现场应用,并在F154-P1井采用多种监测方法对水平井多级分段压裂裂缝进行了监测试验。
通过裂缝监测技术的应用,大大提高了对裂缝复杂形态的认识。
【关键词】水力压裂;裂缝监测;微破裂成像;示踪陶粒;井下微地震裂缝监测技术是指通过一定的仪器和技术手段对压裂全过程进行实时监测和测试评价,通过数据处理,得到裂缝的方向、长、宽、高、导流能力、压裂液的滤失系数、预测产量、计算压裂效益等,从而评价压裂效果。
使用评价的结果可以验证或修正压裂中使用的模型、选择压裂液、确定加砂量、加砂程序、采用的工艺等,保证压裂施工按设计顺利进行并且取得最好的改造效果。
1、压裂裂缝监测技术裂缝监测的主要目的在于了解裂缝真实形态,并利用监测结果评价改造效果、储层产能、指导压裂设计。
目前国内外采用的裂缝监测技术可以分为地震学方法和非地震学方法,主要采用地面微地震、井下微地震、阵列式地面微地震和测斜仪阵列水准观测等技术。
1.1地面微地震技术1.1.1简易地面微地震简易地面微地震技术是采用最多的裂缝监测技术,该技术采用地震学中的震源定位技术,通过3-6个观察点接受的信号来定位震源。
该技术具有原理简单,费用低的特点,但对于埋藏的深油藏,井下微地震信号需要穿越多个性质不同的地层,因此只有震级高的脆性破裂信号可以被从噪音中区分出来,信号采集方面的缺陷降低了该技术的精确度。
目前在使用中多采用贴套管的微地震监测技术,通过在相邻井的套管上放置检波器来收受信号,可以在一定程度上避免这一问题,但是要求井距要小。
1.1.2微破裂成像技术微破裂成像裂缝监测技术采用埋在地表下30cm的20-30台三分量检波器,利用向量扫描技术分析目的层位发生的破裂能量分布,用能量叠加原理,解释出裂缝方位、裂缝动态缝长、裂缝动态缝高。
井下压裂作业过程监测技术探析

井下压裂作业过程监测技术探析摘要近年来,井下压裂技术已经成为了油气增产的主要手段。
深入了解压裂产生的裂缝几何形状、产状、密度以及相关的其它参数对于了解地层地质情况、渗滤参数和改善低渗透油气藏具有极其重要的意义。
传统的监测技术有远源裂缝监测技术和直接的压裂井裂缝监测技术,其都存在很大的局限性。
本文中,笔者在理论研究和大量实地考查的基础上提出了一种井下压裂实时监测技术,并提出相应的数据解释处理软件。
该方法在辽河油田新老区近50口井的压裂监测中都显示出了良好的效果,准确性高,误差小,参数稳定,能够精确反映出压裂作业的效果,并为同一地层同一压力系统此后的压裂方案设计提供参数和技术依据。
关键词井下;压裂作业;监测技术0引言井下压裂技术是目前油气井增产、注水井增注的一项非常重要的举措,尤其对于我国一些超低渗透油气层来说,井下压裂技术的高低已经成为了油气产量突破的掣肘点。
而在压裂作业的过程中,对于压裂层段温度、压力、压裂液的密度以及被压裂的裂缝的产状、密度及分布等参数的检测也非常关键。
比较传统的压裂检测主要是采用井口的温度和压力等数据进行测定,而后通过经验或估算摩阻来得到井下温压等数据,实施监测。
然而,由于摩阻是一个受压裂液、排量、砂比等影响的不断变化的动态值,且实际经验又存在很大的不准确性,因而,井口所测得的各项参数就很难真实地反映井下压裂作业的实际效果。
本文中,笔者在进行大量的理论研究的基础上,同时结合自己多年的工作经验,提出了一种可以更准确地对井下压裂情况进行实时监测的技术,并为该技术编制了相关的程序。
利用该技术不仅能够利用所设计的软件对已经录入的数据进行评价,还可以对井下的压裂过程进行监测与控制,因此能够对实际的压裂效果更加真实客观的表达。
1 系统的硬件部分设计1.1监测管柱本方法中的监测管柱在跟随着压裂管被下入以后,可以利用软件对其进行监测,在预先设定的时间和采集频率之下,对井底各项数据进行采集并实施传输到井口控制系统中,从而,可获得整个压裂作业过程效果的数据。
浅谈低渗油田水力压裂裂缝方位监测技术

浅谈低渗油田水力压裂裂缝方位监测技术引言随着油田开发的不断推进,我国低渗透油藏开发技术已处于世界领先地位,水力压裂技术在低渗透油田开发中得到了广泛的应用,而裂缝监测技术制约着水力压裂技术的突破。
水力压裂技术是目前低渗透油田改造增产最主要的措施之一。
水力压裂产生的裂缝延伸方位,不仅是储层压裂改造效果的衡量标准之一,而且能为其他井水力压裂提供参考与借鉴,并能够为后期调整生产措施提供依据。
本文针对低渗油田水力压裂裂缝方位监测技术进行了较深入的调研,并设计一套低成本、高性能、低功耗的压裂裂缝方位监测系统。
1.几种常见的水力压裂裂缝方位监测技术(1)微地震监测技术天然地震监测技术是微地震压裂的监测技术的起源。
水力压裂施工过程中,压裂能量将沿主裂缝方向不断向四周地层中进行辐射传递,造成主裂缝周围地层内部产生裂张和错动。
这些裂张和错动会引起不同类型和强度的地下弹性波,即横波和纵波。
在压裂时产生的这些不同強度不同类型的横波和纵波将以主裂缝为中心,从各个方位来辐射波及周围地层,通过这类辐射的弹性波地震能量能够向周围相邻的地层源源不断地传波。
通过接收、过滤和分析接收到的地下弹性波信号的强弱、方向及波及面积等参数,便可获得实际压裂施工过程裂缝方位、面积及对地层的影响强度的信息。
再借助三维成像技术,采用相应配套的软件对微地震事件分析对比,便可获得压裂裂缝的各种几何参数,从而达到对压裂裂缝的延伸方位的监测目的。
(2)井温测井监测技术水力压裂施工所注入的液体或压后人为注入的液体进入地层往往会带来低温异常,通过监测井温变化情况便可确定压裂裂缝的缝高,这就是井温测井监测技术的理论基础。
水力压裂所注入地层的液体温度通常会低于地层原温度,因此体现在吸液层段井温曲线的是低温异常段,监测这一低温异常段便可获知压裂裂缝的存在以及分布高度等情况。
在压裂前先进一次行井温测井,得到一条井温变化的基准线,对比压裂后井温变化线,可将井温突变段确定为压裂裂缝的高度。
压裂监测技术简介1

•
微地震来自地下介质质点的位移,只要 质点间发生相对移动,就会出现微地震。 微地震发生不仅是破裂过程。微地震信号 强度对我们的仪器水平提出要求,达不到 要求就记不到微地震。
2.微地震发生与强度
• 用微地震波确定油田压裂裂缝走向、形态, 有三个基本假定:(1)裂缝扩展是间歇的、 脉冲式的,可以形成众多的、分立的、分 布在裂缝面上的微震震源。(2)这些微震震 源的定位结果,这些震源的排列趋势可以 反映裂缝的走向、长度和高度。(3)压裂裂 缝优先沿着破裂强度最低的方向。
5.先进的微地震信号识别、定位技术正演网格搜索信号识别、定位技术
把被监测空间切 分成三维网格, 把每个网格节点 模拟为震源,进 行时间偏移、叠 加。叠加后波形 清晰、可见的节 点为震源点。
图8.正演网格搜索识别、定位技术示意图
(1).技术关键
• 用速度模型计算出各节点至各台站的走时 及彼此间的走时差。 • 用时间偏移对齐来自某一指定节点的地震 信号;叠加这些信号,寻找经叠加信号明 显增强的那些节点,该节点即为震源。 • 网格节点依据压裂控制区设计,来自节点 的的地下信号是压裂形成的微地震。
图1.油田微地震强度、频度示意图
Frequency of Occurrence, log10
2
micro-earthquakes micro-seismicity earthquakes
0
-4
-3
-2
-1
ML
0
1
2பைடு நூலகம்
3
2.记到微地震-微地震信号强度
•
• 发展质量更高的监测系统是微地震技术发展 的必然趋势。记不到微地震,一切分析技术均没 有用武之地。 油田水力压裂形成的微地震分布在-1至-5级, 地下微地震信号的强度可以由下式估计,依据古 登堡的体波震级理论【3】: (3) M lg 3 A。 +Q( H , r ) 可以估算测点微地震幅度: =0.72*10-4 (4) 式中,单位是微米。
压裂裂缝监测技术

压裂定位控制——Frac-Hook多分支套管压裂技术,可以更好地定位 压裂位置,更精确地控制分支井筒,提供有选择性的高压压裂能力。
多级压裂能力——FracPoint EX技术,使用投球或滑套一次起下封隔 完井,在Williston油田成功完成24级裸眼封隔压裂。
IntelliFrac技术
This new service combines advanced microseismic services from Baker Hughes with pumping services from fracturing technology leader BJ Services.
导流 缝长 缝高 缝宽 方位 倾角 体积
能力 ◆◆◆○○◆◆ ◆○◆○○○◆ ◆○◆○○○◆ ○◆◆◆◆○○ ○◆○○○○○ ○○○◆◆○○ ○◆○○○○○ ○○○◆○○○ ★◆○★◆○○ ★★◆◆◆◆○ ◆◆○★★★○ ◆★★○○○○
★—可信 ◆—比裂缝监测技术
压裂裂缝监测技术
水力压裂技术是目前世界上老油田增产和非常规油气田 开发所应用最为广泛且最为有效的技术措施。油气储层裂缝 分布规律的研究分析是贯穿油田勘探开发各阶段的基础工作。
压裂裂缝监测技术
压裂监测的 主要目的是通过 采集压裂施工过 程中的一些参数 资料来分析地下 压裂的施工进展 情况和所压开裂 缝的几何参数。
要求:放射性同位素应不 发生自然扩散。
近井地带监测技术
放射性示踪剂技术
操作可参照“中华人民共和国石油天然气行业标准 SY/T 5327-2008”----《放射性核素载体法示踪测井技术规 范》执行。
压裂实时监测

Any questions
?
水力压裂井下实时监测的认识
1、填补了水力压裂工艺井下各种参数录取的空白, 提高了对储层的认识,提供了准确的参数用于压裂技术 分析,对以后的压裂参数的优化具有深远的意义。 2、井下工具简单,不产生节流,可满足大排量施工 ,不影响测井、测试作业,不会增加压裂管柱的复杂性 ,不会造成井下情况复杂化,施工成功率比较高, 3、简化了压裂井作业施工工序,可省去单独测压工 序,提高了作业时效,避免了单独测压井筒压力恢复后 井口产生溢流导致环境污染,处理技术难度大的现象。 4、可以全过程(下压裂管柱、等压力、压裂、管井 恢复、放喷、起压裂管柱)录取井底压力、温度的变化 情况
5、特别对封上压下、CO2 泡沫、增能压裂井 ,能了解真实的井底温度、压力变化。 6、用井底压力进行小型压裂测试解释,解释 结果更可信。 7、可对下压裂管、起压裂管、压裂施工、放 喷的作业施工进行监督,准确的分析作业时效。 8、分析不同的储层、不同的季节,特别是冬 天压裂施工井底的温度变化情况,在压裂工艺制 定措施时,采取合理的、必要的预防原油结蜡措 施和破胶措施。 9、利用大量的现场数据可对压裂软件温度场 的分析进行修正。 10、遗憾的是该技术目前不能实现真正的实时 监测,实时数据传输,仅能进行事后分析。
泵压、环空、井底压力对比
井底压力、“净压力”曲线
分析:
1、“净压力”破裂16.1---前置13.1,下降3.0。加砂结束 为17.19,上升4.09。
2、裂缝延伸:开启-高度增加-宽度增加-饱填砂
3、缝高控制在一定范围
HAL压裂裂缝监测技术说明

哈里伯顿压裂裂缝微地震监测说明2015年4月1.微地震数据采集方式井下微地震裂缝监测理论源于研究天然地震的地震学,主要为利用在水力压裂过程中储层岩石被破坏会产生岩石的错动(微地震)来监测裂缝形态的技术。
井下微地震监测法将三分量地震检波器(图1),以大级距的排列方式,多级布放在压裂井旁的一个或多个邻井的井底中(图2)。
三分量微地震检波器在压裂井的邻井有两种放置方式:一种是放置在邻井中的压裂目的层以上,用于邻井压裂目的层已射孔生产情况,由于收集微地震信号的检波器非常灵敏;为防止监测井内的液体流动对监测造成井内噪音,必须在射孔段之上下入桥塞封隔储层,然后将检波器仪器串下入到桥塞之上的位置。
另一种方法是将检波器放置在邻井中的压裂目的层位置上,这种情况检波器和水力裂缝都位于相同的深度和储层,此时声波传播距离最近、需要穿过的储层最少,属于最佳的观测位置,这种方式用于邻井的目的层未实施射孔生产的情况。
图1 三分量地震检波器图2 三分量地震检波器下井施工现场图3显示一个由5级检波器组成的仪器串在压裂井的邻井下入的两种布局方式:图中左边表示邻井已射孔的情况下,射孔段以上经过桥塞封堵,检波器仪器串放置在该井的目的层以上;图中右边表示邻井为新井的情况下,目的层未实施射孔,检波器仪器串放置在该井的压裂目的层位置上。
井下微地震压裂测试使用的三分量检波器系统检波器以多级、变级距的方式,通过普通7-芯铠装电缆或铠装光缆放置在压裂井的邻井中。
哈里伯顿使用采样速率为0.25ms的光缆检波器采集系统采集和传输数据。
常规的电缆一方面数据传输速率低,另一方面对于低频震动信号易受电磁波的干扰大。
采用铠装光纤进行数据传输不但传输速度快,并且允许连续记录高频事件,提高了对微小微地震事件的探测能力同时对微地震事件的定位更加准确,监测到的裂缝形态数据最为可靠。
图3 多级检波器系统在邻井的两种放置方式另外,由于检波器非常灵敏,井筒中的油气流动会很大程度的影响监测微地震事件的信噪比,如果监测井为已经射孔的生产井,需要在射孔段以上20米的位置下入桥塞,检波器仪器串底部下入到距离桥塞10米的位置。
页岩气井水力压裂微地震监测技术

页岩气井水力压裂微地震监测技术岩石破裂会伴随产生强度较弱的地震波,称为“微地震”。
微地震事件发生在裂隙之类的断面上,裂隙范围通常只有1~10m。
地层内地应力呈各向异性分布,剪切应力自然聚集在断面上。
通常情况下这些断裂面是稳定的。
然而,当原来的应力受到生产活动干扰时,岩石中原来存在的或新产生的裂缝周围地区就会出现应力集中、应变能增高;当外力增加到一定程度时,原有裂缝的缺陷地区就会发生微观屈服或变形、裂缝扩展,从而使应力松弛,储藏能量的一部分以弹性波(声波)的形式释放出来产生小的地震,即所谓微地震。
注入作业期间引发的微地震事件在空间和时间上的分布是复杂的,但不是随机的,可以在1Km范围内用适当的灵敏仪器检测到。
大多数微地震事件频率范围介于50~1500Hz之间,持续时间小于1s,通常能量介于里氏-3到+1级。
在地震记录上微地震事件一般表现为清晰的脉冲;越弱的微地震事件,其频率越高,持续时间越短;能量越小,破裂的长度就越短。
因此微地震信号很容易受其周围噪声的影响或遮蔽。
另一方面在传播当中由于岩石介质吸收以及不同的地质环境,也会使能量受到影响。
微地震监测技术就是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动之影响、效果及地下状态的地球物理技术。
其基本做法是:通过在井中或地面布置检波器排列接收生产活动所产生或诱导的微小地震事件;并通过对这些事件的反演求取微地震震源位置等参数;最后,通过这些参数对生产活动进行监控或指导。
目前该方法主要用于油田低渗透储层压裂的裂缝动态成像和油田开发过程的动态监测,主要是流体驱动监测。
微地震监测分为地面监测和井中监测两种方式。
地面监测就是在监测目标区域(比如压裂井)周围的地面上,布置若干接收点进行微地震监测。
井中监测就是在监测目标区域周围临近的一口或几口井中布置接收排列,进行微地震监测。
由于地层吸收、传播路径复杂化等原因;与井中监测相比,地面监测所得到的资料存在微震事件少、信噪比低、反演可靠性差等缺点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压裂施工井下监测技术
简介
二O一七年五月二十五日
压裂施工井下监测技术简介
1开展压裂施工井下监测的目的意义
水力压裂是油气层增产的最有效方法之一,目前尽管水力压裂在理论、设备、工艺技术等方面都有了较快的发展,但在现场施工中仍存在不少问题。
例如现场施工时如何根据施工曲线确定裂缝类型、裂缝的延伸状况及准确获得裂缝的几何尺寸、滤失系数、闭合压力、闭合时间、地层主应力等都没得到有效的解决。
随着油气藏整体压裂技术的发展,压裂的实时监测及压后评估技术必将受到广泛重视,相应的压力分析及解释技术也急需进一步的发展和完善。
此外,同一区块
一口井的压裂测试和解释,对于准确取得压裂所需要的参数并即时修改压裂设计是非常必要的,从而为下一次压裂措施作业提供借鉴和指导作用,这也是近年来实时监测及压后评估受到广泛关注的重要原因。
压裂压力是指压裂施工过程和停泵后井底或井口压力,压裂压力曲线是指压裂压力随时间的变化关系。
由于目前缺少直接测量水力裂缝的长度及导流能力等重要参数的手段,因此影响了分析压裂成败的原因及进一步提高水力裂缝效果的途径。
但是地下填砂裂缝的存在总要反映在压裂前后油井压力与产量的变化上来,特别是压力与产量随时间的变化速度与水力裂缝的长短、导流能力的大小等参数有直接关系。
通过对施工过程中压力曲线的分析,可以确定裂缝的延伸方式和施工期间任意时刻裂缝的几何参数,对停
泵后压力曲线(称为压降曲线)的分析,能为压裂设计提供重要的设计参数,如地层有效滤失系数、压裂液效率等。
因而对压裂压力曲线的分析可以提高压裂施工的成功率和有效率。
2压裂施工监测技术的发展趋势
压裂施工过程及其后的排液过程中都包含有许多反映油气层和裂缝性质的参数,如何进行该过程的动态监测及反演地层参数及有关裂缝的参数的获得是今后发展的主要方向,它可以及时、快速、高效、准确地了解地层参数及有关裂缝的参数,达到快速评价压裂效果的目的。
同时可以部分取消压裂后的试井测试(如测温、关井静压、示踪测井等),减少不必要的测试费用并可提前生产等。
根据国外文献报道,在压裂施工中井口压力与井下层位附近的压力有很大的区别,井下压力消除了磨阻影响,更加客观、真实地反映层位部位在施工过程中的压力变化,其井下压力监测资料分析结果可更真实地评价压裂施工效果,对下次压裂设计指导意义更大。
鉴于江汉油田目前压裂施工动态监测中存在的问题和缺陷,米油院环测所研究一套压裂施工井下监测的新理论、新方法,充分利用压裂施工过程中压力监测的信息,达到快速、高效评价压裂效果、反演地层参数及裂缝参数的目的。
利用这一方法,可以达到如下目的:
(1)快速。
利用本项目研究的方法可以快速地了解地层参数,
在压裂施工完成后,即可求出地层及裂缝的参数,如在压裂施工完成
停泵后只要再继续监测2-3小时的井底压力随时间的下降情况,就可
以了解压裂施工形成的裂缝长度、裂缝高度和裂缝导流能力等。
(2)节约测试费用。
利用本课题提出的测试方法,可以极节约
测试费用,可以不再进行部分压裂后的试井测试。
(3)能够比较准确地计算压裂的有关参数,包括裂缝的高度,裂缝的长度和裂缝的导流能力等,使得我们能够准确地评价压裂的效果。
3压裂施工井下压力监测方案
将适合压裂施工过程超高压的井下存储式压力实时监测短节(如图所示),接在压裂施工管柱的尾部或封隔器下方作为压裂管柱的一部分随管柱下至所需压裂的油层部位进行测量,记录压裂施工的井下压力变化全过程(包括压前、压裂过程中、压后排液过程等井下压力),施工后回放出测试数据,根据渗流力学理论编制专门的软件,分析压裂裂缝导流能力、裂缝长度等施工参数,再指导下次压裂施工作业设计。
井下存储式压力实时监测短节主要技术指标:
(1) .压力测试围0〜100 MPa 精度0.5%
(2) .温度测试围0〜125 C 精度0.5%
(3).压力计外径©20 mm
(4).测量装置外径©114 mm
(5).测量装置长度©500 mm
(6).测量装置通径©62 mm (径与油管径相同,对原压裂管柱影响可忽略不计)
4、现场应用实例
(1)压裂井基本数据:
(2 )油藏基本参数输入:
(3) 压裂施工基本参数:
1 3 7
3065. 226. 19.1 21.7 0.0 0.0 2.1
5 4
3081. 215. 105. 20.7 0.0 0.0 2.6
9 1 9
3098. 228. 124. 20.6 0.0 0.0 2.7
3 1 7
3114. 236. 131. 20.5 0.0 0.0 2.6
7 0 2
3131. 224. 55.3 20.4 0.1 13.1 2.5
1 6
3147. 210. 81.7 19.8 0.0 0.0 2.5
5 4
0.0 0.0 0.0 0.0 0.0 0.0 0.0 (4)压裂井施工过程
压裂施工过程有效数据:
力.忌jr和鴉丹谀.i,.u o
RrAti. d
图1井下有效监测数据段曲线
(5) 测试数据分析及解释结果
泵入过程分析
图3泵入过程施工数据曲线
闭合过程分析
图4闭合过程闭合点的确定图
返排过程分析
图5返排过程裂缝线性流特征直线拟和图
图6返排过程双线性流特征直线拟和图综合解释结果
附录1 —相关附图
窄压力(欣)不同时魁半镰长方冋曩编甲压可分布
田蹒
附图1不同时刻半缝长方向裂缝中压力分布曲线
&5. 0
bU. 0
5S fl
50. 0
45. 0
40. 0
35. 0
附图2不同时刻半缝长方向裂缝中温度分布曲线
质力齿脅〔胞叮并底不同帧1射孑LSL医力f轶超密
0 09
0- OO
0.0?
0 Ofi
CL 05
0 04
0 03。
心
0.01
附图3井底不同时刻射孔处压力损失曲线
谢.S (n 1) 泵人过程中不丽资旺裂很累积谑氏量
附图4泵入过程中不同时刻压裂液累积滤失量
錢长方冋4叵也宜进弓坯号
布纽段
附图6缝长方向不同位置处缝宽分布曲线。